
PLCopen
®

for efficiency in automation

Structuring Program Development with IEC 61131-3

General trends

The role of software has changed. It plays an ever

increasing factor in the quality of the product. Software

errors can have dramatic effects, even ruining the overall

investment of money and time sense. The requirements of

industrial control have grown, extending the software

code by factors from 100 lines of code to 10,000 now.

This is not only prone to errors but makes 100% testing

impossible. Creating this software is not a one-man-job

anymore: the conventional programmer is now part of a

multidisciplinary team.

With the ever increasing requirements, installation,

maintenance, upgrades and improvements have become

an essential part of the life cycle of the controls, and

software plays the crucial role in it.

Introduction

Modern programming methods provide tools to improve

the intrinsic quality of software, i.e. its correctness in the

sense of reliability, robustness, integrity, persistence, and

safety. The international standard IEC 61131-3 provides

such a tool, dealing with the programming, installation

and maintenance phases of software development projects

in industrial control.

Basically, IEC 61131-3 consists of two parts, i.e.

Common Elements and Programming Languages.

The structuring tools within IEC 61131-3 are focused on

the common elements, although clearly links to the

programming languages are needed.

This article shows that by using IEC 61131-3 in a

consistent way, one generates software code that is

understandable, reusable, verifiable and maintainable.

The essence of structuring

The above mentioned trends require a different approach.

An approach through structuring provides advantages

like:

 a better overview of the system, not only important

for the original programmers, but also for the

installation and maintenance personnel

 a better basis for internal communication within the

multidisciplinary development team

 a better focus on the real problem and its possible

solutions

 a basis for reusable software

 inherent / automatic documentation

Overall, structuring is done via dividing the problem into

smaller parts, which again can be sub-divided. There are

limits to this: it is not practical to continue to an endless

fine granularity, since the effort is then moved towards

the integration of these parts.

Within IEC 61131-3 there are two co-operating ways,

which for clarity sake we name:

 Modulariy

 Decomposition

Modularity principles

Within the modern software development methods there

are five principles associated with modularity. These are:

1. The programming language should support the

modular units

2. The units should be composed in such a way /

number that they have few interfaces and few

interactions

3. The interfaces should be small, needing little data

exchange

4. The module interactions require explicit definition, to

increase their re-usability

5. The modules should provide data encapsulation: the

application data is partitioned, and each partition

should only be accessible by a proper set of functions

which hide it from undesired uses.

To support this, IEC 61131-3 has defined Program

Organization Units, POU's, consisting of:

 Functions

 Function Blocks

 Programs

These will be explained in more detail below.

Functions

We all know functions like add, square root, sin, cos,

Greater Than, etc. IEC has an enormous set of these

defined. In addition, you also can create your own

functions like this simple_function:

PLCopen
®

for efficiency in automation

FUNCTION SIMPLE_FUN : REAL

 VAR_INPUT

 A, B : REAL;

 C : REAL := 1.0;

 END_VAR

 SIMPLE_FUN := A*B/C;

 END FUNCTION

Once defined, you can use it over and over again, within

the same program, other programs or even other projects.

Function Blocks, FBs

The same is valid for Function Blocks: there are standard

defined Functions Blocks and FB's added by the supplier.

You can also create your own Function Blocks and add

them to your own Function Block Library. All these

Function Blocks are highly re-usable within the same

program, new programs or even projects. You can use

them with any of the IEC programming languages, giving

you a clear separation between different levels of

programmers, or maintenance people.

This re-usability increases your efficiency, and reduces

the number of errors.

Let's look at an example:

The Function Block above (on the left side) is represented

here in the programming language Function Block

Diagram. The Function Block has the name Hysterisis. It

has three inputs on the left, named XIN1, XIN2 and EPS,

all of datatype REAL. It has one output, on the right,

called Q, of type BOOL.

Internally, the FB contains body code, as shown on the

right side. In this example, the body code is written in the

Structured Text, ST, language. The first part deals with

the data structure, the second part with the algorithm,

which uses the inputs, does some calculation, and sets the

outputs. The algorithm is hidden to the user of the

Function Block, who sees only the functionality of the

block as shown on the left. This creates a different level

of access, showing the encapsulation as referred to in

point 5 of the modularity principles.

Names used within a function block are local to that FB.

No matter which name is used in a FB for local data,

there will be no conflict if the same name is used in a

different manner in another function block or elsewhere

in the program.

Programs: hierarchical network

With these Functions and Function Blocks, you can look

at a program as a network of these basic building blocks.

In this way complex programs can be broken down into

function blocks, which can again be broken down into

smaller function blocks. This helps you increase your

efficiency.

Decomposition: how does it look in

IEC 61131-3?

As decomposition tool, IEC 61131-3 provides Sequential

Function Charts (SFC). SFC describes graphically the

sequential behavior of a control program. In this way it

structures the internal organization of a program by

decomposing the control problem into manageable parts,

while maintaining the overview. This makes it very

suitable for diagnostic purposes.

SFC consists of Steps, linked with Action blocks and

Transitions (see picture below).

Each step represents a particular state of the system. Steps

are linked to Actions, performing a certain control

function.

A transition is coupled to a condition, which, when true,

causes the previous step to be de-activated and the next

step to be activated.

Each action block or transition can be programmed in any

of the IEC languages, Ladder Diagram, Function Block

Diagram, Instruction List and Structured Text, and even

including SFC itself for further decomposition.

PLCopen
®

for efficiency in automation

SFC supports alternative sequences and parallel

sequences, such as commonly required in batch

applications. For instance, one sequence is used for the

primary process, and a second for monitoring the overall

operating constraints. And this occurs within the same

overview and structure.

Structuring: 7 steps to success

Structuring within IEC 61131-3 is presented here as the

combination of Modularity and Decomposition. The

following 7 steps provide a road to success for the

structuring of software:

1. Identification of the external interfaces to the control

system

2. Definition of the main signals exchanged between the

control system and the rest of the plant

3. Definition of all operator interactions, overrides and

supervisory data

4. Analysis of the control problem broken down from

the top level into the logical partitions

5. Definition of the required POU's, i.e. Program &

Function Blocks

6. Definition of scan cycle time requirements for the

different parts of the application

7. Configuration of the system by defining resources,

linking programs with physical inputs and outputs

and assigning programs and function blocks to tasks

IEC 61131-3 helps you especially in the last steps 4 - 7,

where the translation into software occurs.

Besides these 7 steps, there are some overall principles

which should be used to optimize the structuring method.

These principles are:

 Work purely symbolic: no absolute addressing (this

only in declaration part). Advantages: easy

adaptation to changing environment, higher level of

re-usability of code, fewer side effects

 Program parts belonging to each other should be

joined in the source code also

 Do not use jumps. Advantages: higher transparency,

higher level of re-usability, fewer side effects

 Consistent naming of variables and function blocks

increases transparency and overall readability

An Example: Fermentation control system

(courtesy of Omron Electronics)

An example tells more than 1000 words…, so let us look

at a fermentation process and its control, as shown below.

Fermentation process

All external interfaces are defined here (step 1). There is

a large vessel, which can be filled (Feed Valve) with the

liquid, can be heated with the heater band (cooling via

convection), can be stirred via the motor, and where acid

and alkali fluid can be added into the vessel.

Looking at step 4, the analysis of the control problem

broken down from the top level into the logical partitions,

one can easily identify 5 functions:

1. Main Sequence, d e.g., top level process steps -

filling, heating, agitating, fermenting, harvesting,

cleaning.

2. Valve control, e.g., operating valves used to fill and

empty the vessel

3. Temperature control for monitoring the

temperature of the vessel modulating the heater.

4. Agitator control for the agitator motor activated as

demanded by the main process sequence.

5. pH Control for monitoring the acidity of the

fermentation contents, adding acidic or alkali

reagents as required.

PLCopen
®

for efficiency in automation

Step 5: Definition of the required POU's,.e., Program &

Function Blocks.

Presenting these in the Function Block Diagram

programming language, the overview of the fermentation

control program could look like this: (Read from left to

right side. On the left are the inputs; on the right the

outputs).

If we look closely at the Main Sequence, we could

structure it with Sequential Function Charts, SFC, as

follows:

We start at the top with the Initialization: since we do not

know the status of the system when we first switch it on,

we must check the position of the valves, etc.

Then we start filling till the right level has been reached.

Next phase is the heating till the fermentation process

starts. When it does, we move to the next phase: the

actual fermentation process control part.

After completion, we harvest, and after that clean, and we

are ready to restart at the top.

This decomposition gives everybody involved a clear

overview which sequences are involved, and further

modularization into the function blocks which can be

programmed in any of the four languages.

Or, stated differently: our user requirement specification

is (nearly) done!

The programming work now to be done is at the level of

the action blocks. Those could be divided between

different people, with different backgrounds. For this,

IEC defined 2 graphical and 2 textual programming

languages, i.e., Instruction List, Structured Text,

Ladder Diagram and Function Block Diagram, to best

suit the needs and the problem at hand. Also, further

decomposition of the action blocks can be done via SFC,

if needed.

The development system will support you in the two final

steps:

6. Definition of scan cycle time requirements for the

different parts of the application.

7. Configuration of the system by defining resources,

linking programs with physical inputs and outputs

and assigning programs and function blocks to tasks.

Conclusion

The software development process has changed

 more requirements

 more functionality

 more code

 more people involved

 … more requirements wishes

Structuring, Modularity and Decomposition are essential

elements in modern software development and IEC

61131-3 offers the right basis to fulfill your requirements.

Please let us know if this article is useful for you!

info@PLCopen.org

www.PLCopen.org

mailto:info@PLCopen.org
http://www.plcopen.org/

