
Common Elements (version 1996)

1.4.1 Software model

The basic high-level language elements and their interrelationships are illustrated in figure 1. These consist of

elements which are programmed using the languages defined in this part, that is, programs and function

blocks; and configuration elements, namely, configurations, resources, tasks, global variables, and access

paths, which support the installation of programmable controller programs into programmable controller

systems.

Figure 1 - Software model

A configuration is the language element which corresponds to a programmable controller system as defined

in IEC 1131-1. A resource corresponds to a "signal processing function" and its "man-machine interface" and

"sensor and actuator interface" functions (if any) as defined in IEC 1131-1. A configuration contains one or

more resources, each of which contains one or more programs executed under the control of zero or more

tasks. A program may contain zero or more function blocks or other language elements as defined in the

standard.

CONFIGURATION

RESOURCE

TASK TASK

PROGRAM PROGRAM

FB FB

RESOURCE

TASK TASK

PROGRAM PROGRAM

FB FB

GLOBAL and DIRECTLY

ACCESS PATHS

Execution control path

Variable access paths

FB
Function block

Variable

or

REPRESENTED VARIABLES

Communication function (See IEC 1131-5)

Configurations and resources can be started and stopped via the "operator interface", "programming, testing,

and monitoring", or "operating system" functions defined in IEC 1131-1. The starting of a configuration shall

cause the initialization of its global variables, followed by the starting of all the resources in the

configuration. The starting of a resource shall cause the initialization of all the variables in the resource,

followed by the enabling of all the tasks in the resource. The stopping of a resource shall cause the disabling

of all its tasks, while the stopping of a configuration shall cause the stopping of all its resources.

Programs, resources, global variables, access paths (and their corresponding access privileges, and

configurations can be loaded or deleted by the "communication function" defined in IEC 1131-1. The loading

or deletion of a configuration or resource shall be equivalent to the loading or deletion of all the elements it

contains.

The mapping of the language elements defined in this subclause on to communication objects is defined in

IEC 1131-5.

1.4.2 Communication model

Figure 2 illustrates the ways that values of variables can be communicated among software elements.

As shown in figure 2a, variable values within a program can be communicated directly by connection of the

output of one program element to the input of another. This connection is shown explicitly in graphical

languages and implicitly in textual languages.

Variable values can be communicated between programs in the same configuration via global variables such

as the variable x illustrated in figure 2b. These variables shall be declared as GLOBAL in the configuration,

and as EXTERNAL in the programs, as specified in 2.4.3.

As illustrated in figure 2c, the values of variables can be communicated between different parts of a

program, between programs in the same or different configurations, or between a programmable controller

program and a non-programmable controller system, using the communication function blocks defined in IEC

1131-5. In addition, programmable controllers or non-programmable controller systems can transfer data

which is made available by access paths, as illustrated in figure 2d, using the mechanisms defined in IEC

1131-5.

P R O G R A M A

F B _ X

a

F B 1

F B _ Y

b

F B 2

Figure 2a - Data flow connection within a program

P R O G R A M A

F B _ X

a

F B 1

P R O G R A M B

F B _ Y

b

F B 2

x x

V A R _ G L O B A L

x : B O O L ;

E N D _ V A R

V A R _ E X T E R N A L

x : B O O L ;

E N D _ V A R

V A R _ E X T E R N A L

x : B O O L ;

E N D _ V A R

C O N F I G U R A T I O N C

Figure 2b - Communication via GLOBAL variables

Figure 2c - Communication function blocks

Figure 2d - Communication via access paths

PROGRAM A

FB_X

FB1

CONFIGURATION C

SEND

send1

a

SD1

FB_Y

b

FB2

CONFIGURATION D

RCV

rcv1

RD1

PROGRAM B

PROGRAM A

FB_X

FB1

a Z

VAR_ACCESS
CSX: P1.Z : REAL READ_ONLY;

PROGRAM B

FB_Y

b

FB2

CONFIGURATION C CONFIGURATION D

READ

TO_FB2

RD1

'CSX' VAR_1

P1

NOTE: This figure is illustrative only. The graphical representation is not normative. The details of the

communication function blocks are not shown in this figure. See the standard itself and IEC 1131-5.

Figure 2 - Communication model

1.4.3 Programming model

The elements of programmable controller programming languages, and the subclauses in which they appear

in this part, are classified as follows:

Data types

Program organization units

Functions

Function blocks

Programs

Sequential Function Chart (SFC) elements

Configuration elements

Global variables

Resources

Tasks

Access paths

As shown in figure 3, the combination of these elements shall obey the following rules:

1) Derived data types shall be declared, using the standard data types and any previously derived data

types.

2) Derived functions can be declared, using standard or derived data types, the standard functions, and any

previously derived functions. This declaration shall use the mechanisms defined for the IL, ST, LD or FBD

language.

3) Derived function blocks can be declared, using standard or derived data types and functions, the

standard function blocks, and any previously derived function blocks. This declaration shall use the

mechanisms defined for the IL, ST, LD, or FBD language, and can include Sequential Function Chart

(SFC) elements.

4) A program shall be declared, using standard or derived data types, functions, and function blocks. This

declaration shall use the mechanisms defined for the IL, ST, LD, or FBD language, and can include

Sequential Function Chart (SFC) elements.

5) Programs can be combined into configurations using the elements, that is, global variables, resources,

tasks, and access paths.

Reference to "previously derived" data types, functions, and function blocks in the above rules is intended to

imply that once such a derived element has been declared, its definition is available, e.g., in a "library" of

derived elements, for use in further derivations. Therefore, the declaration of a derived element type shall not

be contained within the declaration of another derived element type.

A programming language other than one of those defined in this standard may be used in the declaration of a

function or function block. The means by which a user program written in one of the languages defined in

this standard invokes the execution of, and accesses the data associated with, such a derived function or

function block shall be as defined in this standard.

L I B R A R Y E L E M E N T S P R O D U C T I O N S D E R I V E D E L E M E N T S

D A T A T Y P E S

S t a n d a r d (2 . 3 . 1 , 2 . 3 . 2)

D e r i v e d

F U N C T I O N S

S t a n d a r d (2 . 5 . 1 . 5)

D e r i v e d

F U N C T I O N B L O C K S

S t a n d a r d (2 . 5 . 2 . 3)

D e r i v e d

P R O G R A M S

R E S O U R C E S

D e c l a r a t i o n (2 . 5 . 1 . 3)

I L , S T , L D , F B D

O T H E R S

D e c l a r a t i o n (2 . 5 . 2 . 2)

I L , S T , L D , F B D

S F C e l e m e n t s (2 . 6)

O T H E R S

D e c l a r a t i o n (2 . 5 . 3)

I L , S T , L D , F B D

S F C e l e m e n t s (2 . 6)

T a s k s (2 . 7 . 2)

D e c l a r a t i o n (2 . 7 . 1)

G l o b a l v a r i a b l e s (2 . 7 . 1)

A c c e s s p a t h s (2 . 7 . 1)

D e r i v e d

d a t a

t y p e s

D e r i v e d

f u n c t i o n s

D e r i v e d

f u n c t i o n

b l o c k s

P R O G R A M

C O N F I G U R A T I O N

D e c l a r a t i o n (2 . 3 . 3)

(1)

(2)

(3)

(4)

(5)(2 . 5 . 3)

(2 . 7 . 1)

NOTE - For the references please refer to the standard itself.

Figure 3 - Combination of programmable controller language elements

(LD - Ladder Diagram, FBD - Function Block Diagram, IL - Instruction List, ST -

Structured Text, OTHERS - Other programming languages)

1.5 Compliance

See IEC 1131-3 standard for details.

1.5.2 Programs

A programmable controller program complying with the requirements of IEC 1131-3:

a) shall use only those features specified in this part for the particular language used;

b) shall not use any features identified as extensions to the language;

c) shall not rely on any particular interpretation of implementation-dependent features.

The results produced by a complying program shall be the same when processed by any complying system

which supports the features used by the program, except as these results are influenced by program

execution timing, the use of implementation-dependent features in the program, and the execution of error

handling procedures.

2. Common elements

This clause defines textual and graphic elements which are common to all the programmable controller

programming languages specified in IEC 1131.

2.1 Use of printed characters

2.1.1 Character set

Textual languages and textual elements of graphic languages shall be represented in terms of the "Basic code

table” of the ISO/IEC 646 character set.

The encoding of characters from national or extended (8-bit) character sets shall be consistent with ISO/IEC

646.

The required character set shown as feature 1 in table 1 consists of all the characters in columns 3 to 7 of

the "Basic code table" given as table 1 in ISO/IEC 646, except for lower-case letters and those character

positions which are reserved or optionally available for use in national character sets.

NOTE - The use of characters from national character sets is a typical extension of this standard.

Table 1 - Character set features

No. Description

1 Required character set

2 Lower case characters

3a Number sign (#) OR

3b Pound sign (£)

4a Dollar sign ($) OR

4b Currency sign

5a

5b

Vertical bar (|) OR

Exclamation mark (!)

6a

6b

Subscript delimiters:

Left and right brackets "[]" OR

Left and right parentheses "()"

NOTE - When lower-case letters are supported, the case of letters shall not

be significant in language elements (except within terminal symbols as

defined in annexes A and B, comments, string literals, and variables of type

STRING), e.g., the identifiers "abcd", "ABCD", and "aBCd" shall be

interpreted identically.

2.1.2 Identifiers

An identifier is a string of letters, digits, and underline characters which shall begin with a letter or underline

character.

Underlines shall be significant in identifiers, e.g., "A_BCD" and "AB_CD" shall be interpreted as different

identifiers. Multiple leading or multiple embedded underlines are not allowed.

Identifiers shall not contain imbedded space (SP) characters.

At least six characters of uniqueness shall be supported in all systems which support the use of identifiers,

e.g., "ABCDE1" shall be interpreted as different from "ABCDE2" in all such systems.

Identifier features and examples are shown in table 2.

Table 2 - Identifier features

No. Feature description Examples

1 Upper case and numbers IW215 IW215Z QX75 IDENT

2 Upper and lower case, numbers,

embedded underlines

All the above plus:

LIM_SW_5 LimSw5 abcd ab_Cd

3 Upper and lower case, numbers,

leading or embedded underlines

All the above plus: _MAIN _12V7

2.1.3 Keywords

Keywords are unique combinations of characters utilized as individual syntactic elements as defined in annex

B. All keywords used in this part are listed in annex C. Keywords shall not contain imbedded spaces. The

keywords listed in annex C shall not be used for any other purpose, e.g., variable names or extensions.

NOTE - National standards organizations can publish tables of translations of the keywords given in

annex C.

2.1.4 Use of spaces

The user shall be allowed to insert one or more spaces (code position 2/0 in the ISO/IEC 646 character set)

anywhere in the text of programmable controller programs except within keywords, literals, identifiers,

directly represented variables, or delimiter combinations (e.g., for comments as defined below.

2.1.5 Comments

User comments shall be delimited at the beginning and end by the special character combinations "(*" and

"*)", respectively, as shown in table 3. Except in the IL language, comments shall be permitted anywhere in

the program where spaces are allowed, except within character string literals. Comments shall have no

syntactic or semantic significance in any of the languages defined in this part.

Nested comments are not allowed, e.g., (* (* NESTED *) *).

Table 3 - Comment feature

No. Feature description Examples

1

Comments

(*****************************)

(* A framed comment *)

(*****************************)

2.2 External representation of data

External representations of data in the various programmable controller programming languages shall consist

of numeric literals, character strings, and time literals. (Note: see the standard for details)

2.2.1 Numeric literals

Numeric literal features and examples are shown in table 4.

Table 4 - Numeric literals

No. Feature description Examples

1 Integer literals -12 0 123_456 +986

2 Real literals -12.0 0.0 0.4560 3.14159_26

3

Real literals with exponents

-1.34E-12 or -1.34e-12

1.0E+6 or 1.0e+6

1.234E6 or 1.234e6

4 Base 2 literals 2#1111_1111 (255 decimal)

2#1110_0000 (240 decimal)

5 Base 8 literals 8#377 (255 decimal)

8#340 (240 decimal)

6 Base 16 literals 16#FF or 16#ff (255 decimal)

16#E0 or 16#e0 (240 decimal)

7 Boolean zero and one 0 1

8 Boolean FALSE and TRUE FALSE TRUE

NOTE - The keywords FALSE and TRUE correspond to Boolean values of 0 and 1,

respectively.

2.2.2 Character string literals

Table 5 - Character string literal feature

No. Example Explanation

1 '' Empty string (length zero)

 'A' String of length one containing the single character A

 ' ' String of length one containing the "space" character

 '$'' String of length one containing the "single quote" character

 'RL'

'$0D$0A'

Strings of length two containing CR and LF characters

 '$$1.00' String of length five which would print as "$1.00"

Table 6 - Two-character combinations in character strings

No. Combination Interpretation when printed

2 $$ Dollar sign

3 $' Single quote

4 $L or $l Line feed

5 $N or $n Newline

6 $P or $p Form feed (page)

7 $R or $r Carriage return

8 $T or $t Tab

NOTE - The "newline" character provides an implementation-independent means of

defining the end of a line of data for both physical and file I/O; for printing, the effect is

that of ending a line of data and resuming printing at the beginning of the next line.

2.2.3 Time literals

The need to provide external representations for two distinct types of time-related data is recognized:

duration data for measuring or controlling the elapsed time of a control event, and time of day data (which

may also include date information) for synchronizing the beginning or end of a control event to an absolute

time reference.

2.2.3.1 Duration

Table 7 - Duration literal features

No. Feature description Examples

1a

Duration literals without underlines:

 short prefix

T#14ms T#-14ms T#14.7s T#14.7m

T#14.7h t#14.7d t#25h15m

t#5d14h12m18s3.5ms

1b long prefix TIME#14ms TIME#-14ms time#14.7s

2a

Duration literals with underlines:

 short prefix

t#25h_15m t#5d_14h_12m_18s_3.5ms

2b long prefix TIME#25h_15m

time#5d_14h_12m_18s_3.5ms

2.2.3.2 Time of day and date

Table 8 - Date and time of day literals

No. Feature description Prefix Keyword

1 Date literals

(long prefix)

DATE#

2 Date literals

(short prefix)

D#

3 Time of day literals

(long prefix)

TIME_OF_DAY#

4 Time of day literals

(short prefix)

TOD#

5 Date and time literals

(long prefix)

DATE_AND_TIME#

6 Date and time literals

(short prefix)

DT#

Table 9 - Examples of date and time of day literals

Long prefix notation Short prefix notation

DATE#1984-06-25

date#1984-06-25

D#1984-06-25

d#1984-06-25

TIME_OF_DAY#15:36:55.36

time_of_day#15:36:55.36

TOD#15:36:55.36

tod#15:36:55.36

DATE_AND_TIME#1984-06-25-15:36:55.36

date_and_time#1984-06-25-15:36:55.36

DT#1984-06-25-15:36:55.36

dt#1984-06-25-15:36:55.36

2.3 Data types

A number of elementary (pre-defined) data types are recognized by this standard. Additionally, generic data

types are defined for use in the definition of overloaded functions. A mechanism for the user or

manufacturer to specify additional data types is also defined.

2.3.1 Elementary data types

Table 10 - Elementary data types

No. Keyword Data type Bits Range

1 BOOL Boolean 1 Note 8

2 SINT Short integer 8 Note 2

3 INT Integer 16 Note 2

4 DINT Double integer 32 Note 2

5 LINT Long integer 64 Note 2

6 USINT Unsigned short integer 8 Note 3

7 UINT Unsigned integer 16 Note 3

8 UDINT Unsigned double integer 32 Note 3

9 ULINT Unsigned long integer 64 Note 3

10 REAL Real numbers 32 Note 4

11 LREAL Long reals 64 Note 5

12 TIME Duration Note 1 Note 6

13 DATE Date (only) Note 1 Note 6

14 TIME_OF_DAY or TOD Time of day (only) Note 1 Note 6

15 DATE_AND_TIME or DT Date and time of Day Note 1 Note 6

16 STRING Variable-length character string Note 1 Note 7

17 BYTE Bit string of length 8 8 Note 7

18 WORD Bit string of length 16 16 Note 7

19 DWORD Bit string of length 32 32 Note 7

20 LWORD Bit string of length 64 64 Note 7

2.3.2 Generic data types

Table 11 - Hierarchy of generic data types

ANY

ANY_NUM

ANY_REAL

LREAL

REAL

ANY_INT

LINT, DINT, INT, SINT

ULINT, UDINT, UINT, USINT

ANY_BIT

LWORD, DWORD, WORD, BYTE, BOOL

STRING

ANY_DATE

DATE_AND_TIME

DATE

TIME_OF_DAY

TIME

Derived (see notes)

2.3.3 Derived data types

2.3.3.1 Declaration

Derived (i.e., user- or manufacturer-specified) data types can be declared using the TYPE...END_TYPE textual

construction shown in table 12. These derived data types can then be used, in addition to the elementary

data types, in variable declarations.

An enumerated data type declaration specifies that the value of any data element of that type can only take

on one of the values given in the associated list of identifiers, as illustrated in table 12.

A subrange declaration specifies that the value of any data element of that type can only take on values

between and including the specified upper and lower limits, as illustrated in table 12.

A STRUCT declaration specifies that data elements of that type shall contain sub-elements of specified types

which can be accessed by the specified names. For instance, an element of data type

ANALOG_CHANNEL_CONFIGURATION as declared in table 12 will contain a RANGE sub-element of type

ANALOG_SIGNAL_RANGE, a MIN_SCALE sub-element of type ANALOG_DATA, and a MAX_SCALE element

of type ANALOG_DATA.

An ARRAY declaration specifies that a sufficient amount of data storage shall be allocated for each element

of that type to store all the data which can be indexed by the specified index subrange(s). Thus, any

element of type ANALOG_16_INPUT_CONFIGURATION as shown in table 12 contains (among other

elements) sufficient storage for 16 CHANNEL elements of type ANALOG_CHANNEL_CONFIGURATION.

Mechanisms for access to array elements are defined in 2.4.1.2.

2.3.3.2 Initialization

The default initial value of an enumerated data type shall be the first identifier in the associated enumeration

list, or a value specified by the assignment operator ":=". For instance, as shown in tables 12 and 14, the

default initial values of elements of data types ANALOG_SIGNAL_TYPE and ANALOG_SIGNAL_RANGE are

SINGLE_ENDED and UNIPOLAR_1_5V, respectively.

For data types with subranges, the default initial values shall be the first (lower) limit of the subrange, unless

otherwise specified by an assignment operator. For instance, as declared in table 12, the default initial value

of elements of type ANALOG_DATA is -4095, while the default initial value for the FILTER_PARAMETER sub-

element of elements of type ANALOG_16_INPUT_CONFIGURATION is zero. In contrast, the default initial

value of elements of type ANALOG_DATAZ as declared in table 14 is zero.

For other derived data types, the default initial values, unless specified otherwise by the use of the

assignment operator ":=" in the TYPE declaration, shall be the default initial values of the underlying

elementary data types as defined in table 13. Further examples of the use of the assignment operator for

initialization are given in 2.4.2.

Table 12 - Data type declaration features

No. Feature/textual example

1 Direct derivation from elementary types, e.g.:

TYPE R : REAL ; END_TYPE

2 Enumerated data types, e.g.:

TYPE ANALOG_SIGNAL_TYPE : (SINGLE_ENDED, DIFFERENTIAL) ; END_TYPE

3 Subrange data types, e.g.:

TYPE ANALOG_DATA : INT (-4095..4095) ; END_TYPE

4 Array data types, e.g.:

TYPE ANALOG_16_INPUT_DATA : ARRAY [1..16] OF ANALOG_DATA ; END_TYPE

5 Structured data types, e.g.:

TYPE

 ANALOG_CHANNEL_CONFIGURATION :

 STRUCT

 RANGE : ANALOG_SIGNAL_RANGE ;

 MIN_SCALE : ANALOG_DATA ;

 MAX_SCALE : ANALOG_DATA ;

 END_STRUCT ;

 ANALOG_16_INPUT_CONFIGURATION :

 STRUCT

 SIGNAL_TYPE : ANALOG_SIGNAL_TYPE ;

 FILTER_PARAMETER : SINT (0..99) ;

 CHANNEL : ARRAY [1..16] OF ANALOG_CHANNEL_CONFIGURATION ;

 END_STRUCT ;

END_TYPE

Table 13 - Default initial values

Data type(s) Initial value

BOOL, SINT, INT, DINT, LINT 0

USINT, UINT, UDINT, ULINT 0

BYTE, WORD, DWORD, LWORD 0

REAL, LREAL 0.0

TIME T#0S

DATE D#0001-01-01

TIME_OF_DAY TOD#00:00:00

DATE_AND_TIME DT#0001-01-01-00:00:00

STRING '' (the empty string)

Table 14 - Data type initial value declaration features

No. Feature/textual example

1 Initialization of directly derived types, e.g.:

TYPE FREQ : REAL := 50.0 ; END_TYPE

2 Initialization of enumerated data types, e.g.:

TYPE ANALOG_SIGNAL_RANGE :

 (BIPOLAR_10V, (* -10 to +10 VDC *)

 UNIPOLAR_10V, (* 0 to +10 VDC *)

 UNIPOLAR_1_5V, (* + 1 to + 5 VDC *)

 UNIPOLAR_0_5V, (* 0 to + 5 VDC *)

 UNIPOLAR_4_20_MA, (* + 4 to +20 mADC *)

 UNIPOLAR_0_20_MA (* 0 to +20 mADC *)

) := UNIPOLAR_1_5V ;

END_TYPE

3 Initialization of subrange data types, e.g.:

TYPE ANALOG_DATAZ : INT (-4095..4095) := 0 ; END_TYPE

4 Initialization of array data types, e.g.:

TYPE ANALOG_16_INPUT_DATAI :

 ARRAY [1..16] OF ANALOG_DATA := [8(-4095), 8(4095)] ;

END_TYPE

5 Initialization of structured data type elements, e.g.:

TYPE ANALOG_CHANNEL_CONFIGURATIONI :

 STRUCT

 RANGE : ANALOG_SIGNAL_RANGE ;

 MIN_SCALE : ANALOG_DATA := -4095 ;

 MAX_SCALE : ANALOG_DATA := 4095 ;

 END_STRUCT ;

END_TYPE

6 Initialization of derived structured data types, e.g.:

TYPE ANALOG_CHANNEL_CONFIGZ :

 ANALOG_CHANNEL_CONFIGURATIONI(MIN_SCALE := 0,

 MAX_SCALE := 4000);

END_TYPE

2.3.3.3 Usage

The usage of variables which are declared to be of derived data types shall conform to the following rules:

(1) A single-element variable of a derived type, can be used anywhere that a variable of its "parent's" type

can be used, e.g. variables of the types R and FREQ as shown in tables 12 and 14 can be used

anywhere that a variable of type REAL could be used, and variables of type ANALOG_DATA can be

used anywhere that a variable of type INT could be used.

This rule can be applied recursively. For example, given the declarations below, the variable R3 of type

R2 can be used anywhere a variable of type REAL can be used:

TYPE R1 : REAL := 1.0 ; END_TYPE

TYPE R2 : R1 ; END_TYPE

VAR R3: R2; END_VAR

(2) An element of a multi-element variable can be used anywhere the "parent" type can be used, e.g.,

given the declaration of ANALOG_16_INPUT_DATA in table 12 and the declaration

 VAR INS : ANALOG_16_INPUT_DATA ; END_VAR

the variables INS[1] through INS[16] can be used anywhere that a variable of type INT could be used.

This rule can also be applied recursively, e.g., given the declarations of

ANALOG_16_INPUT_CONFIGURATION, ANALOG_CHANNEL_CONFIGURATION, and ANALOG_DATA

in table 12 and the declaration

 VAR CONF : ANALOG_16_INPUT_CONFIGURATION ; END_VAR

the variable CONF.CHANNEL[2].MIN_SCALE can be used anywhere that a variable of type INT could

be used.

2.4 Variables

In contrast to the external representations of data described in 2.2, variables provide a means of identifying

data objects whose contents may change, e.g., data associated with the inputs, outputs, or memory of the

programmable controller. A variable can be declared to be one of the elementary types, or one of the derived

types.

2.4.1 Representation

2.4.1.1 Single-element variables

A single-element variable is defined as a variable which represents a single data element of one of the

elementary types; a derived enumeration or subrange type; or a derived type whose "parentage, is traceable

to an elementary, enumeration or subrange type. This subclause defines the means of representing such

variables symbolically, or alternatively in a manner which directly represents the association of the data

element with physical or logical locations in the programmable controller's input, output, or memory

structure.

Identifiers shall be used for symbolic representation of variables.

Direct representation of a single-element variable shall be provided by a special symbol formed by the

concatenation of the percent sign "%" (position 2/5 in the ISO/IEC 646 code table), a location prefix and a

size prefix from table 15, and one or more unsigned integers, separated by periods.

Examples of directly represented variables are:

 %QX75 and %Q75 Output bit 75

 %IW215 Input word location 215

 %QB7 Output byte location 7

 %MD48 Double word at memory location 48

 %IW2.5.7.1 See explanation below

The use of directly represented variables is only permitted in programs, configurations and resources. The

maximum number of levels of hierarchical addressing is an implementation-dependent parameter.

Table 15 - Location and size prefix features for directly represented variables

No. Prefix Meaning Default data type

1 I Input location

2 Q Output location

3 M Memory location

4 X Single bit size BOOL

5 None Single bit size BOOL

6 B Byte (8 bits) size BYTE

7 W Word (16 bits) size WORD

8 D Double word (32 bits) size DWORD

9 L Long (quad) word (64 bits) size LWORD

2.4.1.2 Multi-element variables

The multi-element variable types defined in this standard are arrays and structures.

An array is a collection of data elements of the same data type referenced by one or more subscripts

enclosed in brackets and separated by commas. An example of the use of array variables in the ST language

is:

OUTARY[%MB6,SYM] := INARY[0] + INARY[7] - INARY[%MB6] * %IW62 ;

A structured variable is a variable which is declared to be of a type which has previously been specified to be

a data structure, i.e., a data type consisting of a collection of named elements.

Example: if the variable MODULE_5_CONFIG has been declared to be of type

ANALOG_16_INPUT_CONFIGURATION as shown in table 12, the following statements in the ST language

would cause the value SINGLE_ENDED to be assigned to the element SIGNAL_TYPE of the variable

MODULE_5_CONFIG, while the value BIPOLAR_10V would be assigned to the RANGE sub-element of the

fifth CHANNEL element of MODULE_5_CONFIG:

MODULE_5_CONFIG.SIGNAL_TYPE := SINGLE_ENDED;

MODULE_5_CONFIG.CHANNEL[5].RANGE := BIPOLAR_10V;

2.4.2 Initialization

When a configuration element (resource or configuration) is "started", each of the variables associated with

the configuration element and its programs can take on one of the following initial values:

- the value the variable had when the configuration element was "stopped" (a retained value);

- a user-specified initial value;

- the default initial value for the variable's associated data type.

The user can declare that a variable is to be retentive by using the RETAIN qualifier specified in table 16,

when this feature is supported by the implementation.

The initial value of a variable upon starting of its associated configuration element shall be determined

according to the following rules:

 1) If the starting operation is a "warm restart" as defined in IEC 1131-1, the initial values of retentive

variables shall be their retained values as defined above.

 2) If the operation is a "cold restart as defined in IEC 1131-1, the initial values of retentive variables shall be

the user-specified initial values, or the default value for the associated data type of any variable for which

no initial value is specified by the user.

 3) Non-retained variables shall be initialized to the user-specified initial values, or to the default value for the

associated data type of any variable for which no initial value is specified by the user.

 4) Variables which represent inputs of the programmable controller system as defined in IEC 1131-1 shall be

initialized in an implementation-dependent manner.

2.4.3 Declaration

Each programmable controller program organization unit type declaration (i.e., each declaration of a program,

function, or function block, as defined in 2.5) shall contain at its beginning at least one declaration part

which specifies the types (and, if necessary, the physical or logical location) of the variables used in the

organization unit. This declaration part shall have the textual form of one of the keywords VAR,

VAR_INPUT, or VAR_OUTPUT, followed in the case of VAR by zero or one occurrence of the qualifier

RETAIN or the qualifier CONSTANT, and in the case of VAR_OUTPUT by zero or one occurrence of the

qualifier RETAIN, followed by one or more declarations separated by semicolons and terminated by the

keyword END_VAR. When a programmable controller supports the declaration by the user of initial values

for variables, this declaration shall be accomplished in the declaration part(s) as defined in this subclause.

The scope (range of validity) of the declarations contained in the declaration part shall be local to the

program organization unit in which the declaration part is contained. That is, the declared variables shall not

be accessible to other program organization units except by explicit parameter passing via variables which

have been declared as inputs or outputs of those units. The one exception to this rule is the case of

variables which have been declared to be global. Such variables are only accessible to a program

organization unit via a VAR_EXTERNAL declaration. The type of a variable declared in a VAR_EXTERNAL

block shall agree with the type declared in the VAR_GLOBAL block of the associated program, configuration

or resource.

Table 16 - Variable declaration keywords

Keyword Variable usage

VAR Internal to organization unit

VAR_INPUT Externally supplied, not modifiable within organization unit

VAR_OUTPUT Supplied by organization unit to external entities

VAR_IN_OUT Supplied by external entities

Can be modified within organization unit

NOTE - Examples of the use of these variables are given in figures 11b

and 12

VAR_EXTERNAL Supplied by configuration via VAR_GLOBAL .Can be modified within

organization unit

VAR_GLOBAL Global variable declaration

VAR_ACCESS Access path declaration

RETAIN Retentive variables

CONSTANT Constant (variable cannot be modified)

AT Location assignment

NOTE - The usage of these keywords is a feature of the program organization unit or

configuration element in which they are used.

2.4.3.1 Type assignment

As shown in table 17, the VAR...END_VAR construction shall be used to specify data types and retentivity

for directly represented variables. This construction shall also be used to specify data types, retentivity, and

(where necessary, in programs only) the physical or logical location of symbolically represented single- or

multi-element variables. The usage of the VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT constructions is

defined in 2.5.

The assignment of a physical or logical address to a symbolically represented variable shall be accomplished

by the use of the AT keyword. Where no such assignment is made, automatic allocation of the variable to

an appropriate location in the programmable controller memory shall be provided.

Table 17 - Variable type assignment features

No. Feature/examples

1 Declaration of directly represented, non-retentive variables

 VAR

 AT %IW6.2 : WORD;

 AT %MW6 : INT ;

END_VAR

16-bit string (note 2)

16-bit integer, initial value = 0

2 Declaration of directly represented retentive variables

 VAR RETAIN

 AT %QW5 : WORD ;

END_VAR

At cold restart, %QW5 will be initialized to a 16-bit string

with value 0

3 Declaration of locations of symbolic variables

 VAR_GLOBAL

 LIM_SW_S5 AT %IX27 : BOOL;

 CONV_START AT %QX25 : BOOL;

 TEMPERATURE AT %IW28: INT ;

END_VAR

Assigns input bit 27 to the Boolean variable

LIM_SW_5 (note 2)

Assigns output bit 25 to the Boolean variable

CONV_START

Assigns input word 28 to the integer variable

TEMPERATURE (note 2)

4 Array location assignment

 VAR

 INARY AT %IW6 :

 ARRAY [0..9] OF INT ;

END_VAR

Declares an array of 10 integers to be allocated to

contiguous input locations starting at %IW6 (note 2)

5 Automatic memory allocation of symbolic variables

 VAR

 CONDITION_RED : BOOL;

 IBOUNCE : WORD ;

 MYDUB : DWORD ;

 AWORD, BWORD, CWORD : INT;

 MYSTR: STRING[10] ;

END_VAR

Allocates a memory bit to the Boolean variable

CONDITION_RED.

Allocates a memory word to the 16-bit string

variable IBOUNCE.

Allocates a double memory word to the 32-bit-

string variable MYDUB.

Allocates 3 separate memory words for the

integer variables AWORD, BWORD, and CWORD.

Allocates memory to contain a string with a

maximum length of 10 characters. After initial-

ization, the string has length 0 and contains the

empty string ''.

6 Array declaration

 VAR THREE :

 ARRAY[1..5,1..10,1..8] OF INT;

END_VAR

Allocates 400 memory words for a three-

dimensional array of integers

7 Retentive array declaration

 VAR RETAIN RTBT:

 ARRAY[1..2,1..3] OF INT;

END_VAR

Declares retentive array RTBT with "cold

restart initial values of 0 for all elements

8 Declaration of structured variables

 VAR MODULE_8_CONFIG :

 ANALOG_16_INPUT_CONFIGURATION;

END_VAR

Declaration of a variable of derived data

type (see table 12)

NOTES

1 Features 1 to 4 can only be used in PROGRAM and VAR_GLOBAL declarations.

2 Initialization of system inputs is implementation-dependent.

2.4.3.2 Initial value assignment

The VAR...END_VAR construction shown in table 18 shall be used to specify initial values of directly

represented variables. This construction shall also be used to assign initial values of symbolically represented

single- or multi-element variables (the usage of the VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT

constructions is defined in 2.5).

Initial values cannot be given in VAR_EXTERNAL declarations.

When a variable is declared to be of a derived, structured data type, initial values for the elements of the

variable can be declared in a parenthesized list following the data type identifier, as shown in table 18.

Elements for which initial values are not listed in the initial value list shall have the default initial values

declared for those elements in the data type declaration.

Table 18 - Variable initial value assignment features

No. Feature/examples

1 Initialization of directly represented, non-retentive variables

 VAR AT %QX5.1 : BOOL :=1;

 AT %MW6 : INT := 8 ;

END_VAR

Boolean type, initial value =1

Initializes a memory word to integer 8

2 Initialization of directly represented retentive variables

 VAR RETAIN

 AT %QW5 : WORD := 16#FF00 ;

END_VAR

At cold restart, the 8 most significant bits of the 16-bit

string at output word 5 are to be initialized to 1 and

the 8 least significant bits to 0

3 Location and initial value assignment to symbolic variables

 VAR

 VALVE_POS AT %QW28 : INT

:= 100;

END_VAR

Assigns output word 28 to the integer variable

VALVE_POS, with an initial value of 100

4 Array location assignment and initialization

 VAR OUTARY AT %QW6 :

 ARRAY [0..9] OF INT := [10(1)]

;

END_VAR

Declares an array of 10 integers to be allocated to

contiguous output locations starting at %QW6, each

with an initial value of 1

5 Initialization of symbolic variables

 VAR

 MYBIT : BOOL := 1 ;

 OKAY : STRING[10] := 'OK';

END_VAR

Allocates a memory bit to the Boolean variable MYBIT with

an initial value of 1.

Allocates memory to contain a string with a maximum length

of 10 characters. After initialization, the string has length 2

and contains the two-byte sequence of characters 'OK' in

the ISO/IEC 646 character set, in an order appropriate for

printing as a character string.

6 Array initialization

 VAR

 BITS : ARRAY[0..7] OF BOOL

 := [1,1,0,0,0,1,0,0] ;

 TBT : ARRAY [1..2,1..3]

 OF INT

 := [1,2,3(4),6] ;

END_VAR

Allocates 8 memory bits to contain initial values

 BITS[0]:= 1, BITS[1] := 1,...,

 BITS[6]:= 0, BITS[7] := 0.

Allocates a 2-by-3 integer array TBT with initial values

 TBT[1,1]:=1, TBT[1,2]:=2,

 TBT[1,3]:=4, TBT[2,1]:=4,

 TBT[2,2]:=4, TBT[2,3]:=6.

7 Retentive array declaration and initialization

 VAR RETAIN RTBT :

 ARRAY(1..2,1..3) OF INT

 := [1,2,3(4)];

END_VAR

Declares retentive array RTBT with "cold restart initial values

of: RTBT[1,1] := 1, RTBT[1,2] := 2,

 RTBT[1,3] := 4, RTBT[2,1] := 4,

 RTBT[2,2] := 4, RTBT[2,3] := 0.

8 Initialization of structured variables

 VAR MODULE_8_CONFIG :

 ANALOG_16_INPUT_CONFIGURATION

 (SIGNAL_TYPE := DIFFERENTIAL,

 CHANNEL := [4((RANGE := UNIPOLAR_1_5)),

 (RANGE := BIPOLAR_10_V,

 MIN_SCALE := 0,

 MAX_SCALE := 500)]) ;

END_VAR

Initialization of a variable of derived data

type (see table 12)

NOTE - This example illustrates the

declaration of a non-default initial

value for the fifth element of the

CHANNEL array of the variable

MODULE_8_CONFIG.

9 Initialization of constants

 VAR CONSTANT PI : REAL := 3.141592 ; END_VAR

NOTE - Features 1 to 4 can only be used in PROGRAM and VAR_GLOBAL declarations, as defined in

2.5.3 and 2.7.1 respectively.

2.5 Program organization units

The program organization units defined in this Part of IEC 1311 are the function, function block, and

program. These program organization units can be delivered by the manufacturer, or programmed by the

user by the means defined in this part of the standard.

Program organization units shall not be recursive; that is, the invocation of a program organization unit shall

not cause the invocation of another program organization unit of the same type.

2.5.1 Functions

For the purposes of programmable controller programming languages, a function is defined as a program

organization unit which, when executed, yields exactly one data element (which can be multi-valued, e.g., an

array or structure, and whose invocation can be used in textual languages as an operand in an expression.

For example, the SIN and COS functions could be used as shown in figure 4.

a) Z := SIN(X)*COS(Y) + COS(X)*SIN(Y) ;

b)

 +-----+

 X----+--| SIN |--+

 | +-----+ |

 | | +---+ +---+

 | +-----+ +--| * |-----| + |---Z

 Y--+----| COS |-----| | +--| |

 | | +-----+ +---+ | +---+

 | | |

 | | +-----+ +---+ |

 | +--| COS |-----| * |--+

 | +-----+ +--| |

 | | +---+

 | +-----+ |

 +----| SIN |--+

 +-----+

Figure 4 - Examples of function usage

 a) Structured Text (ST) language; b) Function Block Diagram (FBD) language;

Functions shall contain no internal state information, i.e., invocation of a function with the same arguments

(input parameters) shall always yield the same value (output).

Any function type which has already been declared can be used in the declaration of another program

organization unit, as shown in figure 3.

2.5.1.1 Representation

Functions and their invocation can be represented either graphically or textually.

In the graphic languages defined in clause 4 of this part, functions shall be represented as graphic blocks

according to the following rules:

 1) The form of the block shall be rectangular or square.

 2) The size and proportions of the block may vary depending on the number of inputs and other

information to be displayed.

 3) The direction of processing through the block shall be from left to right (input parameters on the left

and output parameter on the right).

 4) The function name or symbol, as specified below, shall be located inside the block.

 5) Provision shall be made for formal input parameter names appearing at the inside left of the block

when the block represents:

- one of the standard functions when the given graphical form includes the formal parameter names; or

- any additional function declared.

 6) Since the name of the function is used for the assignment of its output value, no formal output

parameter name shall be shown at the right side of the block.

 7) Actual parameter connections shall be shown by signal flow lines.

 8) Negation of Boolean signals shall be shown by placing an open circle just outside of the input or output

line intersection with the block. In the ISO/IEC 646 character set, this shall be represented by the

upper case alphabetic "O", as shown in table 19.

 9) The output of a graphically represented function shall be represented by a single line at the right side

of the block, even though the output may be a multi-element variable.

Table 19 - Graphical negation of Boolean signals

No. Feature Representation

1

Negated input

 +---+

 ---O| |---

 +---+

2

Negated output

 +---+

 ----| |O---

 +---+

NOTE - If either of these features is supported for functions, it

shall also be supported for function blocks, and vice versa.

Figure 5 illustrates both the graphical and equivalent textual use of functions, including the use of a standard

function (ADD) with no defined formal parameter names, and another standard function (SHL) with defined

formal parameter names.

Example Explanation

 +-----+

 | ADD |

B---| |---A

C---| |

D---| |

 +-----+

Graphical use of "ADD" function

 (FBD language; see 4.3)

(No formal parameter names)

A := ADD(B,C,D); Textual use of "ADD" function

(ST language)

 +-----+

 | SHL |

B---|IN |---A

C---|N |

 +-----+

Graphical use of "SHL" function

 (FBD language)

(Formal parameter names)

A := SHL(IN := B,N := C); Textual use of "SHL" function

(ST language)

Figure 5 - Use of formal parameter names

TABLE 19a - Textual invocation of functions

No. Feature Example

 Parameter
assignment

Parameter
order

Number of
parameters

1 yes fixed fixed A := LIMIT(MN:=1, IN:= B, MX:= 5);

2 yes any any A := LIMIT(IN := B, MX := 5) ;

3 no fixed fixed A := ADD(B,C,D) ;

2.5.1.2 Execution control

As shown in table 20, an additional Boolean "EN" (Enable) input and "ENO" (Enable Out output shall be used

with functions in the LD language, and their use shall also be possible in the FBD language defined in this

part. These variables are considered to be available in every function according to the implicit declarations

VAR_INPUT EN: BOOL := 1; END_VAR

VAR_OUTPUT ENO: BOOL; END_VAR

When these variables are used, the execution of the operations defined by the function shall be controlled

according to the following rules:

 1) If the value of EN is FALSE (0) when the function is invoked, the operations defined by the function

body shall not be executed and the value of "ENO" shall be reset to FALSE (0) by the programmable

controller system.

 2) Otherwise, the value of ENO shall be set to TRUE (1) by the programmable controller system, and the

operations defined by the function body shall be executed. These operations can include the

assignment of a Boolean value to ENO.

 3) If one of the errors defined in annex E occurs during the execution of one of the standard functions,

the ENO output of that function shall be reset to FALSE (0) by the programmable controller system.

NOTE - The use of the ENO output is an allowable exception to the rule that the execution of a

function yields exactly one output.

Table 20 - Use of EN input and ENO output

No. Feature Example

1

Use of "EN" and "ENO"

Required for LD

(Ladder Diagram) language

 +-------+ |

 | ADD_EN | + | ADD_OK |

 +---||---|EN ENO|---()---+

 | | | |

 | A---| |---C |

 | B---| | |

 +-------+ |

2

Use of "EN" and "ENO"

Optional for FBD

(Function Block Diagram)

language

 +-------+

 | + |

 ADD_EN--|EN ENO|---ADD_OK

 A---| |---C

 B---| |

 +-------+

3

FBD without "EN" and "ENO"

 +-----+

 A---| + |---C

 B---| |

 +-----+

2.5.1.3 Declaration

a) FUNCTION SIMPLE_FUN : REAL

 VAR_INPUT

 A,B : REAL ; (* External interface specification *)

 C : REAL := 1.0;

 END_VAR

 SIMPLE_FUN := A*B/C; (* Function body specification *)

 END_FUNCTION

b) FUNCTION

 +-------------+

 | SIMPLE_FUN |

 REAL----|A |----REAL

 REAL----|B |(* External interface specification *)

 REAL----|C |

 +-------------+

 +---+ (* Function body specification *)

 A---| * | +---+

 B---| |---| / |---SIMPLE_FUN

 +---+ | |

 C-----------| |

 +---+

 END_FUNCTION

 NOTE - In example a), the input variable C is given a default value of 1.0 to avoid a

"division by zero" error if the input is not specified when the function is invoked,

for example, if a graphical input to the function is left unconnected.

Figure 6 - Examples of function declarations

a) Textual declaration in ST language

b) Graphical declaration in FBD language

2.5.1.4 Typing, overloading, and type conversion

A standard function, function block type, operator, or instruction is said to be overloaded when it can

operate on input data elements of various types within a generic type designator. For instance, an overloaded

addition function on generic type ANY_NUM can operate on data of types LREAL, REAL, DINT, INT, and

SINT.

Table 21 - Typed and overloaded functions

No. Feature Example

1

 Overloaded functions

 +-----+

 | ADD |

 ANY_NUM-----| |----ANY_NUM

 ANY_NUM-----| |

 . -----| |

 . -----| |

 ANY_NUM-----| |

 +-----+

2

 Typed functions

 +---------+

 | ADD_INT |

 INT-----| |----INT

 INT-----| |

 . -----| |

 . -----| |

 INT-----| |

 +---------+

Type declaration

(ST language)

Usage

(FBD language)

(ST language)

 VAR

 . A : INT ;

 . B : INT ;

 . C : INT ;

 END_VAR

 +---+

 A---| + |---C

 B---| |

 +---+

C := A+B;

 VAR

 A : INT ;

 B : REAL ;

 C : REAL;

 END_VAR

 +-----------+ +---+

 A---|INT_TO_REAL|---| + |---C

 +-----------+ | |

 B-------------------| |

 +---+

C := INT_TO_REAL(A)+B;

 VAR

 A : INT ;

 B : INT ;

 C : REAL;

 END_VAR

 +---+ +-----------+

A----| + |---|INT_TO_REAL|---C

B----| | +-----------+

 +---+

C := INT_TO_REAL(A+B);

NOTE - Type conversion is not required in the first example shown above.

Figure 7 - Examples of explicit type conversion with overloaded functions

Type declaration

(ST language)

Usage

(FBD language)

(ST language)

 VAR

 A : INT ;

 B : INT ;

 C : INT ;

 END_VAR

 +---------+

 A---| ADD_INT |---C

 B---| |

 +---------+

C := ADD_INT(A,B);

 VAR

 A : INT ;

 B : REAL ;

 C : REAL;

 END_VAR

 +-----------+ +----------+

 A---|INT_TO_REAL|---| ADD_REAL |---C

 +-----------+ | |

 B-------------------| |

 +----------+

C := ADD_REAL(INT_TO_REAL(A),B);

 VAR

 A : INT ;

 B : INT ;

 C : REAL;

 END_VAR

 +---------+ +-----------+

 A---| ADD_INT |---|INT_TO_REAL|---C

 | | +-----------+

 B---| |

 +---------+

C := INT_TO_REAL(ADD_INT(A,B));

NOTE - Type conversion is not required in the first example shown above.

Figure 8 - Examples of explicit type conversion with typed functions

2.5.1.5 Standard functions

Definitions of functions common to all programmable controller programming languages are given in this

subclause. Where graphical representations of standard functions are shown in this subclause, equivalent

textual declarations may be written.

A standard function specified in this subclause to be extensible is allowed to have a variable number of

inputs, and shall be considered as applying the indicated operation to each input in turn, e.g., extensible

addition shall give as its output the sum of all its inputs. The maximum number of inputs of an extensible

function is an implementation-dependent parameter.

2.5.1.5.1 Type conversion functions

Table 22 - Type conversion function features

No. Graphical form Usage example Notes

1

 +---------+

 * ---| *_TO_** |--- **

 +---------+

 (*) - Input data type, e.g., INT

 (**) - Output data type, e.g.,REAL

 (*_TO_**) - Function name, e.g.,

INT_TO_REAL

A := INT_TO_REAL(B) ;

 1

 2

 5

2

 +-------+

 ANY_REAL---| TRUNC |---ANY_INT

 +-------+

 A := TRUNC(B) ;

3

3

 +-----------+

 ANY_BIT--| BCD_TO_** |---ANY_INT

 +-----------+

 A := BCD_TO_INT(B) ;

4

4

 +----------+

 ANY_INT--| *_TO_BCD |---ANY_BIT

 +----------+

 A := INT_TO_BCD(B) ;

4

2.5.1.5.2 Numerical functions

Table 23 - Standard functions of one numeric variable

Graphical form Usage example

 +---------+

* ---| ** |--- *

 +---------+

(*) - Input/Output (I/O) type

(**) - Function name

A := SIN(B) ;

(ST language)

No. Function

name

I/O type Description

 General functions

1 ABS ANY_NUM Absolute value

2 SQRT ANY_REAL Square root

 Logarithmic functions

3 LN ANY_REAL Natural logarithm

4 LOG ANY_REAL Logarithm base 10

5 EXP ANY_REAL Natural exponential

 Trigonometric functions

6 SIN ANY_REAL Sine of input in radians

7 COS ANY_REAL Cosine in radians

8 TAN ANY_REAL Tangent in radians

9 ASIN ANY_REAL Principal arc sine

10 ACOS ANY_REAL Principal arc cosine

11 ATAN ANY_REAL Principal arc tangent

Table 24 - Standard arithmetic functions

Graphical form Usage example

 +-----+

 ANY_NUM ---| *** |--- ANY_NUM

 ANY_NUM ---| |

 . ---| |

 . ---| |

 ANY_NUM ---| |

 +-----+

(***) - Name or Symbol

A := ADD(B,C,D) ;

or

A := B+C+D ;

No. Name Symbol Description

 Extensible arithmetic functions

12 ADD + OUT := IN1 + IN2 + ... + INn

13 MUL * OUT := IN1 * IN2 * ... * INn

 Non-extensible arithmetic functions

14 SUB - OUT := IN1 - IN2

15 DIV / OUT := IN1 / IN2

16 MOD OUT := IN1 modulo IN2

17 EXPT ** Exponentiation: OUT := IN1IN2

18 MOVE := OUT := IN

2.5.1.5.3 Bit string functions

Table 25 - Standard bit shift functions

Graphical form Usage example

 +-----+

 | *** |

 ANY_BIT ---|IN |--- ANY_BIT

 UINT ------|N |

 +-----+

 (***) - Function Name

 A := SHL(IN:=B, N:=5) ;

(ST language)

No. Name Description

1 SHL OUT := IN left-shifted by N bits, zero-filled on right

2 SHR OUT := IN right-shifted by N bits, zero-filled on left

3 ROR OUT := IN right-rotated by N bits, circular

4 ROL OUT := IN left-rotated by N bits, circular

 NOTE - The notation "OUT" refers to the function output.

2.5.1.5.4 Selection and comparison functions

Graphical form Usage examples

 +-----+

 ANY_BIT ---| *** |--- ANY_BIT

 ANY_BIT ---| |

 . ---| |

 . ---| |

 ANY_BIT ---| |

 +-----+

 (***) - Name or symbol

A := AND(B,C,D) ;

or

A := B & C & D ;

No. Name Symbol Description

5 AND & OUT := IN1 & IN2 & ... & INn

6 OR >=1 OUT := IN1 OR IN2 OR ... OR INn

7 XOR =2k+1 OUT := IN1 XOR IN2 XOR ... XOR INn

8 NOT OUT := NOT IN1

Table 27 - Standard selection functions

No. Graphical form Explanation/example

1

 +-----+

 | SEL |

 BOOL----|G |----ANY

 ANY-----|IN0 |

 ANY-----|IN1 |

 +-----+

Binary selection:

OUT := IN0 if G = 0

OUT := IN1 if G = 1

Example:

A := SEL(G:=0,IN0:=X,IN1:=5) ;

2a

 +-----+

 | MAX |

(Note 1)---| |----ANY

 : ---| |

(Note 1)---| |

 +-----+

Extensible maximum function:

OUT := MAX (IN1,IN2, ...,INn)

Example:

A := MAX(B,C,D) ;

2b

 +-----+

 | MIN |

(Note 1)---| |----ANY

 : ---| |

(Note 1)---| |

 +-----+

Extensible minimum function:

OUT := MIN (IN1,IN2, ...,INn)

Example:

A := MIN(B,C,D) ;

3

 +-------+

 | LIMIT |

(Note 1)--|MN |----ANY

(Note 1)--|IN |

(Note 1)--|MX |

 +-------+

Limiter:

OUT := MIN(MAX(IN,MN),MX)

Example:

A := LIMIT(IN:=B,MN:=0,MX:=5);

4

 +-----+

 | MUX |

 ANY_INT---|K |----ANY

 ANY---| |

 : ---| |

 ANY---| |

 +-----+

Extensible multiplexer:

Select one of "N" inputs

 depending on input K

Example:

A := MUX(0, B, C, D);

would have the same effect as

 A := B ;

Table 28 - Standard comparison functions

Graphical form Usage examples

 +-----+

(Note 1)--| *** |--- BOOL

 : --| |

(Note 1)--| |

 +-----+

 (***) - Name or Symbol

A := GT(B,C,D) ;

or

A := (B>C) & (C>D) ;

No. Name Symbol Description

5 GT > Decreasing sequence:

OUT := (IN1>IN2) & (IN2>IN3) & ... & (INn-1 > INn)

6 GE >= Monotonic sequence:

OUT := (IN1>=IN2) & (IN2>=IN3) & ... & (INn-1 >= INn)

7 EQ = Equality:

OUT := (IN1=IN2) & (IN2=IN3) & ... & (INn-1 = INn)

8 LE <= Monotonic sequence:

OUT := (IN1<=IN2) & (IN2<=IN3) & ... & (INn-1 <= INn)

9 LT < Increasing sequence:

OUT := (IN1<IN2) & (IN2<IN3) & ... & (INn-1 < INn)

10 NE <> Inequality (non-extensible)

 OUT := (IN1 <> IN2)

2.5.1.5.5 Character string functions

Table 29 - Standard character string functions

No. Graphical form Explanation/example

1 +-----+

 STRING---| LEN |---INT

 +-----+

String length function

Example:

A := LEN('ASTRING')

is equivalent to A := 7;

2 +------+

 | LEFT |

 STRING----|IN |--STRING

 UINT------|L |

 +------+

Leftmost L characters of IN

Example:

A := LEFT(IN:='ASTR',L:=3);

is equivalent to

A := 'AST' ;

3 +-------+

 | RIGHT |

 STRING----|IN |--STRING

 UINT------|L |

 +-------+

Rightmost L characters of IN

Example:

A := RIGHT(IN:='ASTR',L:=3);

is equivalent to

A := 'STR' ;

4 +-------+

 | MID |

 STRING----|IN |--STRING

 UINT------|L |

 UINT------|P |

 +-------+

L characters of IN,

beginning at the P-th

Example:

A := MID(IN:='ASTR',L:=2,P:=2);

is equivalent to

A := 'ST' ;

5 +--------+

 | CONCAT |

 STRING---| |--STRING

 : ---| |

 STRING---| |

 +--------+

Extensible concatenation

Example:

A := CONCAT('AB','CD','E') ;

is equivalent to

A := 'ABCDE' ;

6 +--------+

 | INSERT |

 STRING---|IN1 |--STRING

 STRING---|IN2 |

 UINT-----|P |

 +--------+

Insert IN2 into IN1 after the

P-th character position

Example:

A:=INSERT(IN1:='ABC',IN2:='XY',P=2);

is equivalent to

A := 'ABXYC' ;

No. Graphical form Explanation/example

7 +--------+

 | DELETE |

 STRING---|IN |--STRING

 UINT-----|L |

 UINT-----|P |

 +--------+

Delete L characters of IN, beginning

at the P-th character position

Example:

A := DELETE(IN:='ABXYC',L:=2, P:=3) ;

is equivalent to

A := 'ABC' ;

8 +---------+

 | REPLACE |

 STRING---|IN1 |--STRING

 STRING---|IN2 |

 UINT-----|L |

 UINT-----|P |

 +---------+

Replace L characters of IN1 by IN2,

starting at the P-th character position

Example:

A := REPLACE(IN1:='ABCDE',IN2:='X',

L:=2, P:=3) ;

is equivalent to

A := 'ABXE' ;

9 +--------+

 | FIND |

 STRING---|IN1 |---INT

 STRING---|IN2 |

 +--------+

Find the character position of the

beginning of the first occurrence of IN2 in

IN1. If no occurrence of IN2 is found,

then OUT := 0.

Example:

A := FIND(IN1:='ABCBC',IN2:='BC') ;

is equivalent to A := 2 ;

NOTE - The examples in this table are given in the Structured Text (ST) language.

2.5.1.5.6 Functions of time data types

In addition to the comparison and selection functions defined in 2.5.1.5.4, the combinations of input and

output time data types shown in table 30 shall be allowed with the associated functions.

2.5.1.5.7 Functions of enumerated data types

The selection and comparison functions listed in table 31 can be applied to inputs which are of an

enumerated data type.

Table 30 - Functions of time data types

 Numeric and concatenation functions

No. Name Symbol IN1 IN2 OUT

1 ADD + TIME TIME TIME

2 TIME_OF_DAY TIME TIME_OF_DAY

3 DATE_AND_TIME TIME DATE_AND_TIME

4 SUB - TIME TIME TIME

5 DATE DATE TIME

6 TIME_OF_DAY TIME TIME_OF_DAY

7 TIME_OF_DAY TIME_OF_DAY TIME

8 DATE_AND_TIME TIME DATE_AND_TIME

9 DATE_AND_TIME DATE_AND_TIME TIME

10 MUL * TIME ANY_NUM TIME

11 DIV / TIME ANY_NUM TIME

12 CONCAT DATE TIME_OF_DAY DATE_AND_TIME

 Type conversion functions

13

14

DATE_AND_TIME_TO_TIME_OF_DAY

DATE_AND_TIME_TO_DATE

Table 31 - Functions of enumerated data types

No. Name Symbol Feature No. in Tables 27 and 28

1 SEL 1

2 MUX 4

3 EQ = 7

4 NE <> 10

NOTE - The provisions of NOTES 2-5 of table 28 apply to this table.

2.5.2 Function blocks

For the purposes of programmable controller programming languages, a function block is a program

organization unit which, when executed, yields one or more values. Multiple, named instances (copies) of a

function block can be created. Each instance shall have an associated identifier (the instance name), and a

data structure containing its output and internal variables, and, depending on the implementation, values of

or references to its input parameters. All the values of the output variables and the necessary internal

variables of this data structure shall persist from one execution of the function block to the next; therefore,

invocation of a function block with the same arguments (input parameters) need not always yield the same

output values.

Only the input and output parameters shall be accessible outside of an instance of a function block, i.e., the

function block's internal variables shall be hi31Ôdden from the user of the fction block.

Execution of the operations of a function block shall be invoked as defined in clause 3 for textual languages,

according to the rules of network evaluation given in clause 4 for graphic languages, or under the control of

sequential function chart (SFC) elements.

Any function block type which has already been declared can be used in the declaration of another function

block type or program type as shown in figure 3.

The scope of an instance of a function block shall be local to the program organization unit in which it is

instantiated, unless it is declared to be global in a VAR_GLOBAL block as defined in 2.7.1.

As illustrated in 2.5.2.2, the instance name of a function block instance can be used as the input to a

function or function block if declared as an input variable in a VAR_INPUT declaration, or as an input/output

variable of a function block in a VAR_IN_OUT declaration, as defined in 2.4.3.

2.5.2.1 Representation

Graphical (FBD language) Textual (ST language)

 FF75

 +------+

 | SR |

 %IX1---|S1 Q1|---%QX3

 %IX2---|R |

 +------+

VAR FF75: SR; END_VAR (* Declaration *)

FF75(S1:=%IX1, R:=%IX2); (* Invocation *)

%QX3 := FF75.Q1 ; (* Assign Output *)

Figure 9 - Function block instantiation example

Assignment of a value to an output variable of a function block is not allowed except from within the

function block. The assignment of a value to the input of a function block is permitted only as part of the

invocation of the function block.

Table 32 - Examples of function block I/O parameter usage

Usage Inside function block Outside function block

Input read IF S1 THEN ... Not allowed

Input write Not allowed (notes 1 and 3) FF75(S1:=%IX1,R:=%IX2);

Output read Q1 := Q1 AND NOT R; %QX3 := FF75.Q1;

Output write Q1 := 1; Not Allowed

2.5.2.2 Declaration

As illustrated in figure 10, a function block shall be declared textually or graphically in the same manner as

defined for functions in 2.5.1.3, with the differences summarized in table 33:

As illustrated in figure 12, only variables or function block instance names can be passed into a function

block via the VAR_IN_OUT construct, i.e., function or function block outputs cannot be passed via this

construction. This is to prevent the inadvertent modifications of such outputs. However, "cascading" of

VAR_IN_OUT constructions is permitted, as illustrated in figure 12c.

a) FUNCTION_BLOCK DEBOUNCE

(*** External Interface ***)

VAR_INPUT

 IN : BOOL ; (* Default = 0 *)

 DB_TIME : TIME := t#10ms ; (* Default = t#10ms *)

END_VAR

VAR_OUTPUT OUT : BOOL ; (* Default = 0 *)

 ET_OFF : TIME ; (* Default = t#0s *)

END_VAR

VAR DB_ON : TON ; (** Internal Variables **)

 DB_OFF : TON ; (** and FB Instances **)

 DB_FF : SR ;

END_VAR

(** Function Block Body **)

DB_ON(IN := IN, PT := DB_TIME) ;

DB_OFF(IN := NOT IN, PT:=DB_TIME) ;

DB_FF(S1 :=DB_ON.Q, R := DB_OFF.Q) ;

OUT := DB_FF.Q ;

ET_OFF := DB_OFF.ET ;

END_FUNCTION_BLOCK

b) FUNCTION_BLOCK

(** External Interface **)

 +---------------+

 | DEBOUNCE |

 BOOL---|IN OUT|---BOOL

 TIME---|DB_TIME ET_OFF|---TIME

 +---------------+

(** Function Block Body **)

 DB_ON DB_FF

 +-----+ +----+

 | TON | | SR |

 IN----+------|IN Q|-----|S1 Q|---OUT

 | +---|PT ET| +--|R |

 | | +-----+ | +----+

 | | |

 | | DB_OFF |

 | | +-----+ |

 | | | TON | |

 +--|--O|IN Q|--+

 DB_TIME--+---|PT ET|--------------ET_OFF

 +-----+

 END_FUNCTION_BLOCK

Figure 10 - Examples of function block declarations

a) Textual declaration in ST language

b) Graphical declaration in FBD language

Table 33 - Function block declaration features

No. Description Example

1 RETAIN qualifier on internal variables VAR RETAIN X : REAL ; END_VAR

2 RETAIN qualifier on output variables VAR_OUTPUT RETAIN X : REAL ; END_VAR

3 RETAIN qualifier on internal function

blocks

VAR RETAIN TMR1: TON ; END_VAR

4a Input/output declaration (textual)

VAR_IN X: INT; END_VAR

VAR_IN_OUT A: INT ; END_VAR

A := A+X ;

4b Input/output declaration (graphical) See figure 12

5a Function block instance name as input

(textual)

VAR_INPUT I_TMR: TON ; END_VAR

EXPIRED := I_TMR.Q; (* Note 1 *)

5b Function block instance name as input

(graphical)
See figure 11a

6a Function block instance name as

input/output (textual)

VAR_IN_OUT IO_TMR: TOF ; END_VAR

IO_TMR(IN:=A_VAR, PT:=T#10S);

EXPIRED := IO_TMR.Q; (* Note 1 *)

6b Function block instance name as

input/output (graphical)
See figure 11b

7a Function block instance name as

external variable (textual)

VAR_EXTERNAL EX_TMR : TOF ;END_VAR

EX_TMR(IN:=A_VAR, PT:=T#10S);

EXPIRED := EX_TMR.Q; (* Note 1 *)

7b Function block instance name as

external variable (graphical)
See figure 11c

8a

8b

Textual declaration of:

rising edge inputs

falling edge inputs

FUNCTION_BLOCK AND_EDGE (* Note 2

*)

VAR_INPUT X : BOOL R_EDGE;

 Y : BOOL F_EDGE;

END_VAR

VAR_OUTPUT Z : BOOL ; END_VAR

Z := X AND Y ; (* ST language

example *)

END_FUNCTION_BLOCK (*- see 3.3 *)

9a

9b

Graphical declaration of:

rising edge inputs

falling edge inputs

FUNCTION_BLOCK (* Note 2 *)

 +-----------+ (* External interface *)

 | AND_EDGE |

BOOL--->X Z|---BOOL

 | |

BOOL---<Y |

 | |

 +-----------+

 +---+ (* Function block body *)

 X---| & |---Z (* FBD language example *)

 Y---| | (* - see 4.3 *)

 +---+

END_FUNCTION_BLOCK

NOTES

1 It is assumed in these examples that the variables EXPIRED and A_VAR have been

declared of type BOOL.

2 The declaration of function block AND_EDGE in the above examples is equivalent to:

 FUNCTION_BLOCK AND_EDGE

 VAR INPUT X : BOOL; Y : BOOL; END_VAR

 VAR X_TRIG : R_TRIG ; Y_TRIG : F_TRIG ; END_VAR

 X_TRIG(CLK := X) ;

 Y_TRIG(CLK := Y) ;

 Z := X_TRIG.Q AND Y_TRIG.Q;

 END_FUNCTION_BLOCK

See 2.5.2.3.2 for the definition of the edge detection function blocks R_TRIG and

F_TRIG.

FUNCTION_BLOCK

 +--------------+ (* External interface *)

 | INSIDE_A |

 TON---|I_TMR EXPIRED|---BOOL

 +--------------+

 I_TMR (* Function Block body *)

 +-----+

 | TON |

 |IN Q|---EXPIRED

 |PT ET|

 +-----+

END_FUNCTION_BLOCK

FUNCTION_BLOCK

 +--------------+ (* External interface *)

 | EXAMPLE_A |

 BOOL---|GO DONE|---BOOL

 +--------------+

 E_TMR (* Function Block body *)

 +-----+ I_BLK

 | TON | +--------------+

 GO---|IN Q| | INSIDE_A |

 t#100ms---|PT ET| E_TMR---|I_TMR EXPIRED|---DONE

 +-----+ +--------------+

END_FUNCTION_BLOCK

Figure 11a - Graphical use of a function block name as an input variable

(table 33, feature 5b)

FUNCTION_BLOCK

 +--------------+ (* External interface *)

 | INSIDE_B |

 TON---|I_TMR----I_TMR|---TON

 BOOL--|TMR_GO EXPIRED|---BOOL

 +--------------+

 I_TMR (* Function Block body *)

 +-----+

 | TON |

 TMR_GO---|IN Q|---EXPIRED

 |PT ET|

 +-----+

END_FUNCTION_BLOCK

FUNCTION_BLOCK

 +--------------+ (* External interface *)

 | EXAMPLE_B |

 BOOL---|GO DONE|---BOOL

 +--------------+

 E_TMR (* Function Block body *)

 +-----+ I_BLK

 | TON | +---------------+

 |IN Q| | INSIDE_B |

 t#100ms---|PT ET| E_TMR---|I_TMR-----I_TMR|

 +-----+ GO------|TMR_GO EXPIRED|---DONE

 +---------------+

END_FUNCTION_BLOCK

Figure 11b - Graphical use of a function block name as an input/output variable

(table 33, feature 6b)

FUNCTION_BLOCK

 +--------------+ (* External interface *)

 | INSIDE_C |

 BOOL--|TMR_GO EXPIRED|---BOOL

 +--------------+

VAR_EXTERNAL X_TMR : TON ; END_VAR

 X_TMR (* Function Block body *)

 +-----+

 | TON |

 TMR_GO---|IN Q|---EXPIRED

 |PT ET|

 +-----+

END_FUNCTION_BLOCK

PROGRAM

 +--------------+ (* External interface *)

 | EXAMPLE_C |

 BOOL---|GO DONE|---BOOL

 +--------------+

 VAR_GLOBAL X_TMR : TON ; END_VAR

 I_BLK (* Program body *)

 +---------------+

 | INSIDE_C |

 GO------|TMR_GO EXPIRED|---DONE

 +---------------+

END_PROGRAM

NOTE - PROGRAM declaration is defined in 2.5.3.

Figure 11c - Graphical use of a function block name as an external variable

(table 33, feature 7b)

a) +-------+

 | ACCUM |

 INT---|A-----A|---INT

 INT---|X |

 +-------+

 +---+

 A---| + |---A

 X---| |

 +---+

FUNCTION_BLOCK ACCUM

 VAR_IN_OUT A : INT ; END_VAR

 VAR_INPUT X : INT ; END_VAR

 A := A+X ;

END_FUNCTION_BLOCK

b) ACC1

 +-------+

 | ACCUM |

 ACC----------|A-----A|---ACC

 +---+ | |

 X1---| * |---|X |

 X2---| | +-------+

 +---+

c) ACC1 ACC2

 +-------+ +-------+

 | ACCUM | | ACCUM |

ACC----------|A-----A|----------------|A-----A|---ACC

 +---+ | | +---+ | |

X1---| * |---|X | X3---| * |---|X |

X2---| | +-------+ X4---| | +-------+

 +---+ +---+

d) ACC1

 +---+ +-------+

 X1---| * | | ACCUM |

 X2---| |---|A-----A|---ACC

 +---+ | |

 X3-----------|X |

 +-------+

Figure 12 - Examples of use of input/output variables

a) Graphical and textual declarations

b), c) Legal usage

d) Illegal usage

2.5.2.3 Standard function blocks

2.5.2.3.1 Bistable elements

Table 34 - Standard bistable function blocks

No. Graphical form Function block body

1 Bistable Function Block (set dominant) (notes 1 and 2)

 +-----+

 | SR |

 BOOL---|S1 Q1|---BOOL

 BOOL---|R |

 +-----+

 +-----+

 S1----------------| >=1 |---Q1

 +---+ | |

 R------O| & |----| |

 Q1------| | | |

 +---+ +-----+

2 Bistable Function Block (reset dominant) (notes 1 and 2)

 +-----+

 | RS |

 BOOL---|S Q1|---BOOL

 BOOL---|R1 |

 +-----+

 +---+

 R1----------------O| & |---Q1

 +-----+ | |

 S-------| >=1 |----| |

 Q1------| | | |

 +-----+ +---+

2.5.2.3.2 Edge detection

The graphic representation of standard rising- and falling-edge detecting function blocks shall be as shown in

table 35. The behaviors of these blocks shall be equivalent to the definitions given in this table. This

behavior corresponds to the following rules:

 1) The "Q" output of an R_TRIG function block shall stand at the Boolean "1" value from one execution

of the function block to the next, following the "0" to "1" transition of the "CLK" input, and shall

return to "0" at the next execution.

 2) The "Q" output of an F_TRIG function block shall stand at the Boolean "1" value from one execution

of the function block to the next, following the "1" to "0" transition of the "CLK" input, and shall

return to "0" at the next execution.

Table 35 - Standard edge detection function blocks

No. Graphical form Definition

(ST language)

1 Rising edge detector

 +--------+

 | R_TRIG |

 BOOL---|CLK Q|---BOOL

 +--------+

FUNCTION_BLOCK R_TRIG

 VAR_INPUT CLK: BOOL; END_VAR

 VAR_OUTPUT Q: BOOL; END_VAR

 VAR RETAIN M: BOOL; END_VAR

Q := CLK AND NOT M;

M := CLK;

END_FUNCTION_BLOCK

2 Falling edge detector

 +--------+

 | F_TRIG |

 BOOL---|CLK Q|---BOOL

 +--------+

FUNCTION_BLOCK F_TRIG

 VAR_INPUT CLK: BOOL; END_VAR

 VAR_OUTPUT Q: BOOL; END_VAR

 VAR RETAIN M: BOOL; END_VAR

Q := NOT CLK AND NOT M;

M := NOT CLK;

END_FUNCTION_BLOCK

2.5.2.3.3 Counters

Table 36 - Standard counter function blocks

No. Graphical form Function block body

(ST language)

1 Up-counter

 +-----+

 | CTU |

 BOOL--->CU Q|---BOOL

 BOOL---|R |

 INT---|PV CV|---INT

 +-----+

 IF R THEN CV := 0 ;

 ELSIF CU AND (CV < PVmax)

 THEN CV := CV+1;

 END_IF ;

 Q := (CV >= PV) ;

2 Down-counter

 +-----+

 | CTD |

 BOOL--->CD Q|---BOOL

 BOOL---|LD |

 INT---|PV CV|---INT

 +-----+

 IF LD THEN CV := PV ;

 ELSIF CD AND (CV > PVmin)

 THEN CV := CV-1;

 END_IF ;

 Q := (CV <= 0) ;

3 Up-down counter

 +------+

 | CTUD |

 BOOL--->CU QU|---BOOL

 BOOL--->CD QD|---BOOL

 BOOL---|R |

 BOOL---|LD |

 INT---|PV CV|---INT

 +------+

 IF R THEN CV := 0 ;

 ELSIF LD THEN CV := PV ;

 ELSE

 IF NOT (CU AND CD) THEN

 IF CU AND (CV < PVmax)

 THEN CV := CV+1;

 ELSIF CD AND (CV > PVmin)

 THEN CV := CV-1;

 END_IF;

 END_IF;

 END_IF ;

 QU := (CV >= PV) ;

 QD := (CV <= 0) ;

NOTE - The numerical values of the limit variables PVmin and PVmax are implementation-

dependent.

2.5.2.3.4 Timers

Table 37 - Standard timer function blocks

No. Description Graphical form

1

2a

2b

3a

3b

*** is: TP (Pulse)

 TON (On-delay)

 T---0 (On-delay)

 TOF (Off-delay)

 0---T (Off-delay)

 +-------+

 | *** |

 BOOL---|IN Q|---BOOL

 TIME---|PT ET|---TIME

 +-------+

4 Real-time clock

 PDT = Preset date and time,

 loaded on rising edge of EN

CDT = Current date and time,

 valid when EN=1

Q = copy of EN

+-------+

| RTC |

BOOL---|IN Q|---BOOL

DT-----|PDT CDT|-----DT

+-------+

Table 38 - Standard timer function blocks - timing diagrams

 Pulse (TP) timing

 +--------+ ++ ++ +--------+

 IN | | || || | |

 --+ +-----++-++---+ +---------

 t0 t1 t2 t3 t4 t5

 +----+ +----+ +----+

 Q | | | | | |

 --+ +---------+ +--+ +-------------

 t0 t0+PT t2 t2+PT t4 t4+PT

 PT +---+ + +---+

 : / | /| / |

 ET : / | / | / |

 : / | / | / |

 : / | / | / |

 0-+ +-----+ +--+ +---------

 t0 t1 t2 t4 t5

(continued on following page)

Table 38 - Standard timer Function Blocks - timing diagrams - continued

On-delay (TON) timing

 +--------+ +---+ +--------+

 IN | | | | | |

 --+ +--------+ +---+ +-------------

 t0 t1 t2 t3 t4 t5

 +---+ +---+

 Q | | | |

 -------+ +---------------------+ +-------------

 t0+PT t1 t4+PT t5

 PT +---+ +---+

 : / | + / |

 ET : / | /| / |

 : / | / | / |

 : / | / | / |

 0-+ +--------+ +---+ +-------------

 t0 t1 t2 t3 t4 t5

Off-delay (TOF) timing

 +--------+ +---+ +--------+

 IN | | | | | |

 ---+ +--------+ +---+ +-----------

 t0 t1 t2 t3 t4 t5

 +-------------+ +---------------------+

 Q | | | |

 ---+ +---+ +------

 t0 t1+PT t2 t5+PT

 PT +---+ +------

 : / | + /

 ET : / | /| /

 : / | / | /

 : / | / | /

 0------------+ +---+ +--------+

 t1 t3 t5

2.5.2.3.5 Communication function blocks

Standard communication function blocks for programmable controllers are defined in IEC 1131-5. These

function blocks provide programmable communications functionality such as device verification, polled data

acquisition, programmed data acquisition, parametric control, interlocked control, programmed alarm

reporting, and connection management and protection.

2.5.3 Programs

A program is defined in IEC 1131-1 as a "logical assembly of all the programming language elements and

constructs necessary for the intended signal processing required for the control of a machine or process by a

programmable controller system."

The declaration and usage of programs is identical to that of function blocks as defined in 2.5.2.1 and

2.5.2.2, with the additional features shown in table 39 and the following differences:

 1) The delimiting keywords for program declarations shall be PROGRAM...END_PROGRAM.

 2) A program can contain a VAR_ACCESS...END_VAR construction, which provides a means of

specifying named variables which can be accessed by some of the communication services specified in

IEC 1131-5. An access path associates each such variable with an input, output or internal variable of

the program The format and usage of this declaration shall be as described in 2.7.1 and in IEC 1131-

5.

 3) Programs can only be instantiated within resources, as defined in 2.7.1, while function blocks can only

be instantiated within programs or other function blocks.

The declaration and use of programs are illustrated in figure 19, and in examples F.7 and F.8 of annex F.

Table 39 - Program declaration features

No. DESCRIPTION

1 to 9b Same as features 1 to 9b, respectively, of table 33

10 Formal input and output parameters

11 to 14 Same as features 1 to 4, respectively, of table 17

15 to 18 Same as features 1 to 4, respectively, of table 18

19 Use of directly represented variables (subclause 2.4.1.1)

20 VAR_GLOBAL...END_VAR declaration within a PROGRAM (see 2.4.3 and 2.7.1)

21 VAR_ACCESS...END_VAR declaration within a PROGRAM

2.7 Configuration elements

As described in 1.4.1, a configuration consists of resources, tasks (which are defined within resources),

global variables, and access paths. Each of these elements is defined in detail in this subclause.

Figure 19a - Graphical example of a configuration

CONFIGURATION CELL_1

RESOURCE STATION_1 RESOURCE STATION_2

GLOBAL AND DIRECTLY REPRESENTED VARIABLES

ACCESS PATHS

w

BAKER ABLE CHARLIE DOG GAMMA ALPHA BETA

Communication function (See IEC 1131-5)

PROGRAM F PROGRAM G

A B

P1 P2

x1

y1

FB1 FB2

z1

x2

out1

y2
SLOW_1 FAST_1

SLOW_1

%IX1.1

b1

b2

y1

TASK TASK

SLOW_1 FAST_1

C D

TASK TASK

PER_2 INT_2

P1 P4

y1

y2

FB1 FB2

z2

x1

x2

PER_2

PROGRAM F PROGRAM H

HOUT1

%QW5

INT_2

c1 d1

PER_2

FUNCTION_BLOCK A

 VAR_OUTPUT y1 : UINT ;

 y2 : BYTE ;

 END_VAR

END_FUNCTION_BLOCK

FUNCTION_BLOCK B

 VAR_INPUT b1 : UINT ;

 b2 : BYTE ;

 END_VAR

END_FUNCTION_BLOCK

FUNCTION_BLOCK C

 VAR_OUTPUT c1 : BOOL ;

 END_VAR

END_FUNCTION_BLOCK

FUNCTION_BLOCK D

 VAR_INPUT d1 : BOOL ; END_VAR

 VAR_OUTPUT y2 : INT ; END_VAR

END_FUNCTION_BLOCK

 PROGRAM F

 VAR_INPUT x1 : BOOL ; x2 : UINT ; END_VAR

 VAR_OUTPUT y1 : BYTE ; END_VAR

 END_PROGRAM

 PROGRAM G

 VAR_OUTPUT out1 : UINT ; END_VAR

 VAR_EXTERNAL z1 : BYTE ; END_VAR

 VAR FB1 : A ; FB2 : B ; END_VAR

 FB1(...); out1 := FB1.y1; z1 := FB1.y2;

 FB2(b1 := FB1.y1, b2 := FB1.y2) ;

 END_PROGRAM

 PROGRAM H

 VAR_OUTPUT HOUT1: INT ; END_VAR

 VAR FB1 : C ; FB2 : D ; END_VAR

 FB1(...) ;

 FB2(d1 := FB1.c1); HOUT1 := FB2.y2;

 END_PROGRAM

Figure 19b - Skeleton function block and program declarations

 for configuration example

2.7.1 Configurations, resources, and access paths

Table 49 enumerates the language features for declaration of configurations, resources, global variables, and

access paths. Partial enumeration of TASK declaration features is also given; additional information on tasks

is provided in 2.7.2. The formal syntax for these features is given in B.1.7. Figure 20 provides examples of

these features, corresponding to the example configuration shown in figure 19a and the supporting declara-

tions in figure 19b.

The ON qualifier in the RESOURCE...ON...END_RESOURCE construction is used to specify the type of

"processing function" and its "man-machine interface" and "sensor and actuator interface" functions upon

which the resource and its associated programs and tasks are to be implemented. The manufacturer shall

supply a resource library of such functions, as illustrated in figure 3. Associated with each element in this

library shall be an identifier (the resource type name) for use in resource declaration.

The scope of a VAR_GLOBAL declaration shall be limited to the configuration or resource in which it is

declared, with the exception that an access path can be declared to a global variable in a resource using

feature 10d in table 49.

Table 49 - Configuration and resource declaration features

No. DESCRIPTION

1 CONFIGURATION...END_CONFIGURATION construction

2 VAR_GLOBAL...END_VAR construction within CONFIGURATION

3 RESOURCE...ON...END_RESOURCE construction

4 VAR_GLOBAL...END_VAR construction within RESOURCE

5a Periodic TASK construction within RESOURCE (Note 1)

5b Non-periodic TASK construction within RESOURCE (Note 1)

6a PROGRAM declaration with PROGRAM-to-TASK association using the

WITH construction (Note 1)

6b PROGRAM declaration with Function Block-to-TASK association using

the WITH construction (Note 1)

6c PROGRAM declaration with no TASK association (Note 1)

7 Declaration of directly represented variables in VAR_GLOBAL (Note 2)

8a Connection of directly represented variables to PROGRAM inputs

8b Connection of GLOBAL variables to PROGRAM inputs

9a Connection of PROGRAM outputs to directly represented variables

9b Connection of PROGRAM outputs to GLOBAL variables

10a VAR_ACCESS...END_VAR construction

10b Access paths to directly represented variables

10c Access paths to PROGRAM inputs

10d Access paths to GLOBAL variables in RESOURCES

10e Access paths to GLOBAL variables in CONFIGURATIONS

10f Access paths to PROGRAM outputs

NOTES

1. See 2.7.2 for further description of TASK features.

2. See 2.4.3.1 for further description of related features.

No. EXAMPLE

1 CONFIGURATION CELL_1

2 VAR_GLOBAL w: UINT; END_VAR

3 RESOURCE STATION_1 ON PROCESSOR_TYPE_1

4 VAR_GLOBAL z1: BYTE; END_VAR

5a TASK SLOW_1(INTERVAL := t#20ms, PRIORITY := 2) ;

5a TASK FAST_1(INTERVAL := t#10ms, PRIORITY := 1) ;

6a

8a

 PROGRAM P1 WITH SLOW_1 :

 F(x1 := %IX1.1) ;

9b PROGRAM P2 : G(OUT1 => w,

6b FB1 WITH SLOW_1,

6b FB2 WITH FAST_1) ;

3 END_RESOURCE

3 RESOURCE STATION_2 ON PROCESSOR_TYPE_2

4 VAR_GLOBAL z2 : BOOL ;

7 AT %QW5 : INT ;

4 END_VAR

5a TASK PER_2(INTERVAL := t#50ms, PRIORITY := 2) ;

5b TASK INT_2(SINGLE := z2, PRIORITY := 1) ;

6a

8b

 PROGRAM P1 WITH PER_2 :

 F(x1 := z2, x2 := w) ;

6a

9a

 PROGRAM P4 WITH INT_2 :

 H(HOUT1 => %QW5,

6b FB1 WITH PER_2);

3 END_RESOURCE

10a VAR_ACCESS

10b ABLE : STATION_1.%IX1.1 : BOOL READ_ONLY ;

10c BAKER : STATION_1.P1.x2 : UINT READ_WRITE ;

10d CHARLIE : STATION_1.z1 : BYTE ;

10e DOG : w : UINT READ_ONLY ;

10f ALPHA : STATION_2.P1.y1 : BYTE READ_ONLY ;

10f BETA : STATION_2.P4.HOUT1 : INT READ_ONLY ;

10d GAMMA : STATION_2.z2 : BOOL READ_WRITE ;

10a END_VAR

1 END_CONFIGURATION

Figure 20 - Examples of CONFIGURATION and RESOURCE declaration features

2.7.2 Tasks

For the purposes of IEC 1131-3, a task is defined as an execution control element which is capable of

invoking, either on a periodic basis or upon the occurrence of the rising edge of a specified Boolean variable,

the execution of a set of program organization units, which can include programs and function blocks whose

instances are specified in the declaration of programs.

Tasks and their association with program organization units can be represented graphically or textually using

the WITH construction, as shown in table 50, as part of resources within configurations. A task is implicitly

enabled or disabled by its associated resource according to the mechanisms defined in 1.4.1. The control of

program organization units by enabled tasks shall conform to the following rules:

1) The associated program organization units shall be scheduled for execution upon each rising edge of the

SINGLE input of the task.

2) If the INTERVAL input is non-zero, the associated program organization units shall be scheduled for

execution periodically at the specified interval as long as the SINGLE input stands at zero (0). If the

INTERVAL input is zero (the default value), no periodic scheduling of the associated program organization

units shall occur.

3) The PRIORITY input of a task establishes the scheduling priority of the associated program organization

units, with zero (0) being highest priority and successively lower priorities having successively higher

numeric values. As shown in table 50, the priority of a program organization unit (that is, the priority of

its associated task) can be used for preemptive or non-preemptive scheduling.

a) In non-preemptive scheduling, processing power becomes available on a resource when execution of a

program organization unit or operating system function is complete. When processing power is

available, the program organization unit with highest scheduled priority shall begin execution. If more

than one program organization unit is waiting at the highest scheduled priority, then the program

organization unit with the longest waiting time at the highest scheduled priority shall be executed.

b) In preemptive scheduling, when a program organization unit is scheduled, it can interrupt the execution

of a program organization unit of lower priority on the same resource, that is, the execution of the

lower-priority unit can be suspended until the execution of the higher-priority unit is completed. A

program organization unit shall not interrupt the execution of another unit of the same or higher

priority.

NOTE - Depending on schedule priorities, a program organization unit might not begin execution

at the instant it is scheduled. However, in the examples shown in table 50, all program

organization units meet their deadlines, that is, they all complete execution before being

scheduled for re-execution. The manufacturer shall provide information to enable the

user to determine whether all deadlines will be met in a proposed configuration.

4) A program with no task association shall have the lowest system priority. Any such program shall be

scheduled for execution upon "starting" of its resource, as defined in 1.4.1, and shall be re-scheduled for

execution as soon as its execution terminates.

5) When a function block instance is associated with a task, its execution shall be under the exclusive control

of the task, independent of the rules of evaluation of the program organization unit in which the task-

associated function block instance is declared.

6) Execution of a function block instance which is not directly associated with a task shall follow the normal

rules for the order of evaluation of language elements for the program organization unit (which can itself

be under the control of a task) in which the function block instance is declared.

7) The execution of function blocks within a program shall be synchronized to ensure that data concurrency

is achieved according to the following rules:

a) If a function block receives more than one input from another function block, then when the former is

executed, all inputs from the latter shall represent the results of the same evaluation. For instance, in

the example represented by figure 21a, when Y2 is evaluated, the inputs Y2.A and Y2.B shall

represent the outputs Y1.C and Y1.D from the same (not two different) evaluations of Y1.

b) If two or more function blocks receive inputs from the same function block, and if the "destination"

blocks are all explicitly or implicitly associated with the same task, then the inputs to all such

"destination" blocks at the time of their evaluation shall represent the results of the same evaluation of

the "source" block. For instance, in the example represented by figures 21b and 21c, when Y2 and

Y3 are evaluated in the normal course of evaluating program P1, the inputs Y2.A and Y2.B shall be the

results of the same evaluation of Y1 as the inputs Y3.A and Y3.B.

Provision shall be made for storage of the outputs of functions or function blocks which have explicit task

associations, or which are used as inputs to program organization units which have explicit task associations,

as necessary to satisfy the rules given above.

Table 50 - Task features

No. Description/Examples

1a Textual declaration of periodic TASK (feature 5a of table 49)

1b Textual declaration of non-periodic TASK (feature 5b of table 49)

 Graphical representation of TASKs within a RESOURCE

 TASKNAME

 +---------+

 | TASK |

BOOL---|SINGLE |

TIME---|INTERVAL |

UINT---|PRIORITY |

 +---------+

2a Graphical representation of periodic TASKs

 SLOW_1 FAST_1

 +---------+ +---------+

 | TASK | | TASK |

 |SINGLE | |SINGLE |

t#20ms---|INTERVAL | t#10ms---|INTERVAL |

 2---|PRIORITY | 1---|PRIORITY |

 +---------+ +---------+

2b Graphical representation of non-periodic TASK

 INT_2

 +---------+

 | TASK |

 %IX2---|SINGLE |

 |INTERVAL |

 1---|PRIORITY |

 +---------+

3a Textual association with PROGRAMs (feature 6a of table 49)

3b Textual association with FUNCTION BLOCKs (feature 6b of table 49)

4a Graphical association with PROGRAMs (within RESOURCEs)

 RESOURCE STATION_2

P1 P4

+-------+ +-------+

| F | | H |

| | | |

| | | |

+-------+ +-------+

| PER_2 | | INT_2 |

+-------+ +-------+

END_RESOURCE

4b
Graphical association with FUNCTION BLOCKs

(within PROGRAMs inside RESOURCEs)

 RESOURCE STATION_1

 P2

 +---+

 | G |

 | |

 | FB1 FB2 |

 | +------+ +------+ |

 | | A | | B | |

 | | | | | |

 | | | | | |

 | +------+ +------+ |

 | |SLOW_1| |FAST_1| |

 | +------+ +------+ |

 +---+

 END_RESOURCE

5a Non-preemptive scheduling

 Example 1:

 - RESOURCE STATION_1 as configured in figure 20

 - Execution times: P1 = 2 ms; P2 = 8 ms;

- P2.FB1 = P2.FB2 = 2 ms (NOTE 3)

 - STATION_1 starts at t = 0

 SCHEDULE (repeats every 40 ms)

 t(ms) Executing Waiting

 0 P2.FB2 @ 1 P1 @ 2, P2.FB1 @ 2, P2

 2 P1 @ 2 P2.FB1 @ 2, P2

 4 P2.FB1 @ 2 P2

 6 P2

 10 P2 P2.FB2 @ 1

 14 P2.FB2 @ 1 P2

 16 P2 (P2 restarts)

 20 P2 P2.FB2 @ 1, P1 @ 2, P2.FB1 @ 2

 24 P2.FB2 @ 1 P1 @ 2, P2.FB1 @ 2, P2

 26 P1 @ 2 P2.FB1 @ 2, P2

 28 P2.FB1 @ 2 P2

 30 P2.FB2 @ 1 P2

 32 P2

 40 P2.FB2 @ 1 P1 @ 2, P2.FB1 @ 2, P2

5a Non-preemptive scheduling

 Example 2:

 - RESOURCE STATION_2 as configured in figure 20

- Execution times: P1 = 30 ms, P4 = 5 ms, P4.FB1 = 10 ms (NOTE 4)

- INT_2 is triggered at t = 25, 50, 90, ... ms

- STATION_2 starts at t = 0

 SCHEDULE

 t(ms) Executing Waiting

 0 P1 @ 2 P4.FB1 @ 2

 25 P1 @ 2 P4.FB1 @ 2, P4 @ 1

 30 P4 @ 1 P4.FB1 @ 2

 35 P4.FB1 @ 2

 50 P4 @ 1 P1 @ 2, P4.FB1 @ 2

 55 P1 @ 2 P4.FB1 @ 2

 85 P4.FB1 @ 2

 90 P4.FB1 @ 2 P4 @ 1

 95 P4 @ 1

 100 P1 @ 2 P4.FB1 @ 2

5b Preemptive scheduling

 Example 3:

 - RESOURCE STATION_1 as configured in figure 20

 - Execution times: P1 = 2 ms; P2 = 8 ms; P2.FB1 = P2.FB2 = 2 ms (NOTE 3)

 - STATION_1 starts at t = 0

 SCHEDULE

 t(ms) Executing Waiting

 0 P2.FB2 @ 1 P1 @ 2, P2.FB1 @ 2, P2

 2 P1 @ 2 P2.FB1 @ 2, P2

 4 P2.FB1 @ 2 P2

 6 P2

 10 P2.FB2 @ 1 P2

 12 P2

 16 P2 (P2 restarts)

 20 P2.FB2 @ 1 P1 @ 2, P2.FB1 @ 2, P2

5b Preemptive scheduling

 Example 4:

 - RESOURCE STATION_2 as configured in figure 20

 - Execution times: P1 = 30 ms, P4 = 5 ms, P4.FB1 = 10 ms (NOTE 4)

 - INT_2 is triggered at t = 25, 50, 90, ... ms

 - STATION_2 starts at t = 0

 SCHEDULE

 t(ms) Executing Waiting

 0 P1 @ 2 P4.FB1 @ 2

 25 P4 @ 1 P1 @ 2, P4.FB1 @ 2

 30 P1 @ 2 P4.FB1 @ 2

 35 P4.FB1 @ 2

 50 P4 @ 1 P1 @ 2, P4.FB1 @ 2

 55 P1 @ 2 P4.FB1 @ 2

 85 P4.FB1 @ 2

 90 P4 @ 1 P4.FB1 @ 2

 95 P4.FB1 @ 2

 100 P1 @ 2 P4.FB1 @ 2

 RESOURCE R1

 fast1

 +----------+

 | TASK |

t#10ms---|INTERVAL |

 1---|PRIORITY |

 +----------+

 slow1

 +----------+

 | TASK |

t#20ms---|INTERVAL |

 2---|PRIORITY |

 +----------+

 P1

 PROGRAM X

 Y1 Y2

 +-----+ +-----+

 | Y | | Y |

 ---|A C|----+--------|A C|---

 ---|B D|----|--+-----|B D|---

 +-----+ | | +-----+

 |slow1| | | |fast1|

 +-----+ | | +-----+

 | |

 | | Y3

 | | +-----+

 | | | Y |

 +--|--|A C|---

 +--|B D|---

 +-----+

 |fast1|

 +-----+

END_PROGRAM

Figure 21a - Synchronization of function blocks with explicit task associations

 RESOURCE R1

 fast1

 +----------+

 | TASK |

t#10ms---|INTERVAL |

 1---|PRIORITY |

 +----------+

 slow1

 +----------+

 | TASK |

t#20ms---|INTERVAL |

 2---|PRIORITY |

 +----------+

 P1

 PROGRAM X

 Y1 Y2

 +-----+ +-----+

 | Y | | Y |

 ---|A C|----+--------|A C|---

 ---|B D|----|--+-----|B D|---

 +-----+ | | +-----+

 |fast1| | |

 +-----+ | |

 | |

 | | Y3

 | | +-----+

 | | | Y |

 +--|--|A C|---

 +--|B D|---

 +-----+

 END_PROGRAM

 slow1

Figure 21b - Synchronization of function blocks with implicit task associations

 RESOURCE R1

 fast1

 +----------+

 | TASK |

t#10ms---|INTERVAL |

 1---|PRIORITY |

 +----------+

 slow1

 +----------+

 | TASK |

t#20ms---|INTERVAL |

 2---|PRIORITY |

 +----------+

 P1

 PROGRAM X

 Y1 Y2

 +-----+ +-----+

 | Y | | Y |

 ---|A C|----+--------|A C|---

 ---|B D|----|--+-----|B D|---

 +-----+ | | +-----+

 |fast1| | | |slow1|

 +-----+ | | +-----+

 | |

 | | Y3

 | | +-----+

 | | | Y |

 +--|--|A C|---

 +--|B D|---

 +-----+

 |slow1|

 +-----+

END_PROGRAM

Figure 21c - Explicit task associations equivalent to figure 21b

