

Explanation of the combined technologies of
PLCopen and OPC Foundation

Introduction

The cooperation between PLCopen and OPC Foundation not only resulted in specification

activities, these results were also shown in live demonstrations.

This cooperation merges two technologies:

 The PLCopen technology is based on the world wide IEC 61131-3 programming standard.

 The OPC Foundation technology is based on their OPC Unified Architecture as specified by

their members. Be aware that this specification is submitted to IEC for standardization.

Overall this combination eases the communication in production lines and plants and the

engineering effort to create the right interfaces and information.

PLCopen and IEC 61131-3

The well-known programming standard IEC 61131-3 specifies several items that are useful for

other systems as information and data. The first items are shown in the so called Software Model.

Items like Configuration, describing the overall control components, the Resources as processing

facility that is able to execute IEC programs, the Tasks controlling the execution of a set of

programs and/or function blocks, and Programs typically consisting of a network of Functions and

Function Blocks, able to exchange data. Functions and Function Blocks are the basic building

blocks, containing a datastructure and an algorithm.

The prefix Ctrl is there to avoid conflicts with the OPC UA terminology. For instance, the

definition of the ‘Program’ is a little different in both environments.

Ctrl Task

Ctrl Program

Ctrl

FB

Ctrl

FB

Ctrl Program

Ctrl Resource

Ctrl Program

Ctrl

FB

Ctrl

FB

Ctrl Program

Ctrl Resource

Ctrl Configuration

Ctrl TaskCtrl TaskCtrl Task

Figure 1: The IEC 61131-3 Software Model

The data exchange in this model is via variables, which are normally called by their name.

Variables can have complex structures to better describe the content. Variables are also used in

function and function blocks within the datastructure.

OPC Foundation and their Unified Architecture

What the Software Model is for PLCopen / IEC 61131-3, is the Information Model for OPC UA.

The main use case for OPC standards is the online data exchange between controllers or devices

and HMI or SCADA systems, where the controller or device data is provided by an OPC server and

is consumed by an OPC client, as is shown in the demonstration. OPC UA is platform independent

and the servers and clients can be directly integrated into devices and controllers. Features like

security, access control and reliability are directly built into the transport mechanisms.

The OPC UA Information Model provides a standard way for Servers to expose Objects to Clients.

Objects in OPC UA terms are composed of other Objects, Variables and Methods. OPC UA also

allows relationships to other Objects to be expressed. Objects are used to represent IEC 61131-3

software model components like Ctrl Program, Ctrl Task, Ctrl Resource and Ctrl Function Blocks,

and Variables are used to represent values.

The set of Objects and related information that an OPC UA Server makes available to Clients is

referred to as its AddressSpace. OPC UA provides functionality to browse through a hierarchical

namespaces containing data items and to read, write and to monitor these items for data changes.

Figure 2: The client / server architecture of OPC UA

If we now represent the IEC software model in the OPC UA information model, it could look like

the following picture (figure 3).

OPC-UA
BaseVariableType

OPC UA Part 5

OPC-UA DI

Examples

IEC 61131-3 OPC-UA

CtrlProgramType

BaseObject Type

OPC UA Part 5

CPU_A100

CtrlTaskType

Main

nInput

CtrlResourceType

CtrlFunctionBlockType

CtrlConfigurationType

PLC_Z345 FB_MotorControler

FB_MotorControler:

MotorControler1
fOutput

bLocal

bLocalMain

CPU_A100:

CPU1

CtrlProgramOrganizationUnitType

DeviceType

TopologyElement

Type

Configurable

ObjectType

ConfigurableComponentsType:

Resources

ConfigurableComponentsType:

Resources

FB_MotorControler:

MotorControler2

CPU_A100:

CPU2

Priority

BlockType

Figure 3: The IEC model is using OPC UA Device Integration as base

In this example we see four layers, with on top the 2 OPC UA related layers. In the 3
rd

 layer, the

link between IEC 61131-3 and OPC-UA is depicted. Here the elements of the IEC Software Model

are shown, which are mapped on the lowest layer to the control architectures.

Instances

Types

MyCounter

CtrlFunctionBlockType

HasSubtype

CTU_INT

Has Type

Definition

HasInputVars HasOutputVars

HasInputVars

PV

Value = 24

HasOutputVars

PV

DataType = Int16

Value = 0

CV

DataType = Int16

Value = 0

Q

DataType = Boolean

Value = FALSE

CU

DataType = Boolean

Value = FALSE

R

DataType = Boolean

Value = FALSE

R

Value = FALSE

CU

Value = TRUE

CV

Value = 11

Q

Value = FALSE

MyCounter2

HasInputVars

PV

Value = 19

HasOutputVars

R

Value = FALSE

CU

Value = FALSE

CV

Value = 74

Q

Value = TRUE

PVmax

DataType = Int16

Value = 32767

HasLocalVars

PVmax

Value = 32767

HasLocalVars

PVmax

Value = 32767

HasLocalVars

CU_OLD

DataType = Boolean

Value = FALSE

CU_OLD

Value = FALSE

CU_OLD

Value = FALSE

Figure 4: A Function Block and Program …and the representation in the OPC UA information model

In figure 4 we see the mapping of a self-defined function block (FB) to the OPC UA information

model. On the left we see the definition of the FB with a counter functionality, starting with the

name ‘CTU_INT’, and just below that the definition of the input variable, the internal variables, and

the output variables, and below that the algorithm or code to define the functionality. Under this we

see a small program using two instances of the same function block via MyCounter and

MyCounter2.

On the right side we see the information model, with also on the top the ‘Types’, in this case the

CtrlFunctionBlockType, with the name of the FB, and below that on the left the inputs and on the

right the outputs and internal variables. Just below that we see the two ‘Instances’ of the function

block.

With this information model, the OPC UA server on the controller can provide all the information

shown here on the right side regarding the function block type and instances to the client. This

makes a transparent communication possible. Since the information model can be discovered during

run-time, and the function block instance can be coupled to a graphical template prepared for the

FB type on the client side. The reusability of PLC and visualization modules and the efficiency of

the engineering process will be increased.

About OPC Foundation

The OPC Foundation defines standards for online data exchange between automation systems. They

address access to current data (OPC DA), alarms and events (OPC A&E) and historical data (OPC

HDA). Those standards are successfully applied in industrial automation.

The new OPC Unified Architecture (OPC UA) unifies the existing standards and brings them to

state-of-the-art technology using service-oriented architecture (SOA). Platform-independent

technology allows the deployment of OPC UA beyond current OPC applications only running on

Windows-based PC systems. OPC UA can also run on embedded systems as well as Linux / UNIX

based enterprise systems. The provided information can be generically modelled and therefore

arbitrary information models can be provided using OPC UA.

More information on www.OPCfoundation.org

About PLCopen

PLCopen, as an organization active in industrial control, is creating a higher efficiency in your

application software development: in one-off projects as well as in higher volume products. As such

it is based on standard available tools to which extensions are and will be defined.

With results like Motion Control Library, Safety, XML specification, Reusability Level and

Conformity Level, PLCopen made solid contributions to the community, extending the hardware

independence from the software code, as well as reusability of the code and coupling to external

software tools. One of the core activities of PLCopen is focused around IEC 61131-3, the only

global standard for industrial control programming. It harmonizes the way people design and

operate industrial controls by standardizing the programming interface. This allows people with

different backgrounds and skills to create different elements of a program during different stages of

the software lifecycle: specification, design, implementation, testing, installation and maintenance.

Yet all pieces adhere to a common structure and work together harmoniously.

More information on www.PLCopen.org

http://www.opcfoundation.org/
http://www.plcopen.org/

