
Instruction List (version 1996)

3. Textual languages

The textual languages defined in this standard are IL (Instruction List) and ST (Structured Text). The

sequential function chart (SFC) elements defined in 2.6 can be used in conjunction with either of these

languages.

3.1 Common elements

See ‘Common Elements’.

3.2 Language IL (Instruction List)

This subclause defines the semantics of the IL (Instruction List) language whose formal syntax is given in

B.2.

3.2.1 Instructions

As illustrated in table 51, an instruction list is composed of a sequence of instructions. Each instruction

shall begin on a new line and shall contain an operator with optional modifiers, and, if necessary for the

particular operation, one or more operands separated by commas. Operands can be any of the data

representations defined in 2.2 for literals and 2.4 for variables.

The instruction can be preceded by an identifying label followed by a colon (:). A comment, as defined in

2.1.5, if present, shall be the last element on a line. Empty lines can be inserted between instructions.

Table 51 - Examples of instruction fields

Label Operator Operand Comment

START: LD %IX1 (* PUSH BUTTON *)

 ANDN %MX5 (* NOT INHIBITED *)

 ST %QX2 (* FAN ON *)

3.2.2 Operators, modifiers and operands

Standard operators with their allowed modifiers and operands shall be as listed in table 52. The typing of

operators shall conform to the conventions of 2.5.1.4.

Unless otherwise defined in table 52, the semantics of the operators shall be

result := result OP operand

That is, the value of the expression being evaluated is replaced by its current value operated upon by the

operator with respect to the operand. For instance, the instruction AND %IX1 is interpreted as

result := result AND %IX1

The comparison operators shall be interpreted with the current result to the left of the comparison and the

operand to the right, with a Boolean result. For instance, the instruction "GT %IW10" will have the

Boolean result 1 if the current result is greater than the value of Input Word 10, and the Boolean result 0

otherwise.

The modifier "N" indicates Boolean negation of the operand. For instance, the instruction ANDN %IX2

is interpreted as

result := result AND NOT %IX2

The left parenthesis modifier "(" indicates that evaluation of the operator shall be deferred until a right

parenthesis operator ")" is encountered, e.g., the sequence of instructions

AND(%IX1

OR %IX2

)

shall be interpreted as

result := result AND (%IX1 OR %IX2)

The modifier "C" indicates that the associated instruction shall be performed only if the value of the

currently evaluated result is Boolean 1 (or Boolean 0 if the operator is combined with the "N" modifier).

Table 52 - Instruction List (IL) operators

No. Operator Modifiers Operand Semantics

1 LD N Note 2 Set current result equal to operand

2 ST N Note 2 Store current result to operand location

3 S Note 3 BOOL Set Boolean operand to 1

 R Note 3 BOOL Reset Boolean operand to 0

4 AND N, (BOOL Boolean AND

5 & N, (BOOL Boolean AND

6 OR N, (BOOL Boolean OR

7 XOR N, (BOOL Boolean Exclusive OR

8 ADD (Note 2 Addition

9 SUB (Note 2 Subtraction

10 MUL (Note 2 Multiplication

11 DIV (Note 2 Division

12 GT (Note 2 Comparison: >

13 GE (Note 2 Comparison: >=

14 EQ (Note 2 Comparison: =

15 NE (Note 2 Comparison: <>

16 LE (Note 2 Comparison: <=

17 LT (Note 2 Comparison: <

18 JMP C, N LABEL Jump to label

19 CAL C, N NAME Call function block (note 4)

20 RET C, N Return from called function or function block

21) Evaluate deferred operation

NOTES

1 - See 3.2.2 for explanation of modifiers and evaluation of expressions.

2 - These operators shall be either overloaded or typed as defined in 2.5.1.4. The

current result and the operand shall be of the same type.

3 - These operations are performed if and only if the value of the current result is

Boolean 1.

4 - The function block name is followed by a parenthesized argument list as defined in

3.2.3.

5 - When a JMP instruction is contained in an ACTION... END_ACTION construct, the

operand shall be a label within the same construct.

3.2.3 Functions and function blocks

Functions as defined in 2.5.1 shall be invoked by placing the function name in the operator field. The

current result shall be used as the first argument of the function. Additional arguments, if required, shall

be given in the operand field. The value returned by a function upon the successful execution of a RET

instruction or upon reaching the physical end of the function shall become the "current result" described

in 3.2.2.

Function blocks as defined in 2.5.2 can be invoked conditionally and unconditionally via the CAL (Call)

operator listed in table 52. As shown in table 53, this invocation can take one of three forms. The input

operators shown in table 54 can be used in conjunction with feature 3 of table 53.

Table 53 - Function block invocation features for IL language

No

.

Description/Example

1 CAL with input list:

 CAL C10(CU:=%IX10, PV:=15)

2 CAL with load/store of inputs:

 LD 15
 ST C10.PV
 LD %IX10
 ST C10.CU
 CAL C10

3 Use of input operators:

 LD 15
 PV C10
 LD %IX10
 CU C10

NOTE - A declaration such as VAR C10: CTU ;

END_VAR is assumed in the above examples.

Table 54 - Standard function block input operators for IL language

No. Operators FB Type Reference

4 S1,R SR 2.5.2.3.1

5 S,R1 RS 2.5.2.3.1

6 CLK R_TRIG 2.5.2.3.2

7 CLK F_TRIG 2.5.2.3.2

8 CU,R,PV CTU 2.5.2.3.3

9 CD,LD,PV CTD 2.5.2.3.3

10 CU,CD,R,LD,PV CTUD 2.5.2.3.3

11 IN,PT TP 2.5.2.3.4

12 IN,PT TON 2.5.2.3.4

13 IN,PT TOF 2.5.2.3.4

