

I. INTRODUCTION

Based on application requirements and project specifications engineers

are required to use a wide range of motion control hardware. In the past
this required unique software to be created for each application even

though the functions are the same. The PLCopen motion standard

provides a way to have standard application libraries that are reusable
for multiple hardware platforms. This lowers development, main-

tenance, and support costs while eliminating confusion. In addition,
engineering becomes easier, training costs decrease, and the software is

reusable. Effectively, this standardization is done by defining libraries

of reusable components. In this way the programming is less hardware
dependent, the reusability of the application software increased, the cost

involved in training and support reduced, and the application becomes

scalable across different control solutions. Due to the data hiding and
encapsulation, it is usable on different architectures, ranging from

centralized to distributed or integrated to networked control. It is not

specifically designed for one application, but will serve as a basis for
ongoing definitions in different areas. As such it is open to existing and

future technologies.

II. OVERVIEW OF THE RESULTS

Currently the suite of PLCopen Motion Control Specifications consists

of the following parts:

 Part 1& 2 – Basics & Extensions combined in one

 Part 3 – User Guidelines and examples

 Part 4 – Coordinated motion

 Part 5 – Homing Procedures

 Part 6 – Extensions for fluid power

Basically every specification contains 3 sections:

1. definition of the state machine

2. definition of a basic set of FB’s for single axis and multi-axes

motion control

3. compliance rules and statement procedure.

III. BASICS – DEFINITION OF THE STATE MACHINE

The axis is always in one of the defined state (see diagram). Any motion

command is a transition that changes the state of the axis and, as a
consequence, modifies the way the current motion is computed.

The state diagram normatively defines the behavior of the axis at a high

level. This diagram is useful to build a more complicated profile or to
treat exceptions within a program. (In real implementations there may

be additional states at a lower level defined).

There are eight states defined as shown in the picture below:

A normal procedure starts in Disabled. In this state the power can be

switched on per axis (via the command MC_Power) which transfers the

relevant axis to the state Standstill. From there one can access the
Homing state (via the issue of the command Home per axis), which after

normal completion returns to Stand Still. From here one can transfer an

axis to either Discrete Motion or Continuous Motion. From these states

a coupling to a master axis can be realized for instance via issuing
MC_GearIn. The resulting state for the slave axis is then Synchronized

Motion. Issuing a single axis move command will bring the axis back to

either Discrete or Continuous Motion. Via the state Stopping one can
return to StandStill. ErrorStop is a state the axis transfers to in case of an

error. Via a (manual) Reset command one can return to StandStill, from
which the machine can be moved to an operational state again. Please

note that the States define the functionality of the Function Blocks.

IV. FUNCTION BLOCKS DEFINITIONS

A. AxisRef

The reference to an axis is done via the derived datatype AXIS_REF.
This datatype is supplied by all manufacturers. It provides the interface

towards the motor / drive itself. The technicalities of the real interface

are hidden within the structure and function block itself. In this way,
different architectures, from centralized to distributed and networked

systems, looks the same to the user while giving access to all relevant

parameters.

B. AxisRef as Var_In_Out

The Axis_Ref is used as Var_In_Out, represented as an input and an

output connected by a horizontal line in a graphical representation of a
Function Block. The variables used within Axis_Ref, acting both as

input and output parameters, can be modified within the Function Block

as well as receive values from external variables. However they are
stored externally to the FB, making copying of the structure

unnecessary.

As an example of how this could operate: imagine a program containing
several function blocks, all linked after each other (left-to-right) and all

referring to the same axis via Axis_Ref. The first FB reads the latest

values in Axes_Ref, and might update some of these values before it
finishes its execution. Then the next FB is started and reads the updated

values within Axes_Ref, so uses the latest values. And these values are

internally coupled to the motor itself. Again, the control architecture can
be quite different across systems.

One can use this reference to define one or more virtual axes, in that

sense that it exists as a datastructure but is not coupled to a physical
drive and/or motor.

V. THE FUNCTION BLOCKS FOR SINGLE AXIS MOTION

CONTROL

There are motion related and administrative function blocks defined in

both part 1 and 2. The first movement function block is shown here in

some more detail:

FB-Name MC_MoveAbsolute

This function block commands a controlled motion at a specified absolute

position.

In a graphical representation it looks like:

Creating Reusable, Hardware Independent Motion Control

Applications via IEC 61131-3 and PLCopen Function Blocks

 MC_MoveAbsolute

AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

REAL Position Busy BOOL

REAL Velocity Active BOOL

REAL Acceleration CommandAborted BOOL

REAL Deceleration Error BOOL

REAL Jerk ErrorID WORD

MC_Direction Direction

MC_BufferMode BufferMode

The other single axis Function Blocks as defined in part 1 and 2 are

listed here below in short-form:

 MC_MoveRelative - moves the axis a specified distance relative to

the actual position at the time of the execution;

 MC_MoveAdditive - for a specified relative distance additional to

the original commanded position in the discrete motion state. In
state Continuous Motion the specified relative distance is added to

the actual position at the time of the execution;

 MC_MoveSuperimposed - for a specified relative distance
additional to an existing motion. The existing Motion is not

interrupted, but is superimposed by the additional motion;

 MC_HaltSuperimposed - commands a halt to all superimposed

motions of the axis. The underlying motion is not interrupted;

 MC_MoveVelocity - for a never ending controlled motion at a
specified velocity;

 MC_MoveContinuousAbsolute &MC_MoveContinuousRelative
- commands a controlled motion to a specified absolute or relative

position ending with the specified velocity;

 MC_TorqueControl - continuously exerts a torque or force of the

specified magnitude, approached using a defined ramp, and sets the

‘InTorque’ output if the torque level is reached;

 MC_SetPosition - shifts the coordinate system of an axis by

manipulating both the set-point position as well as the actual
position of an axis with the same value without any movement

caused;

 MC_SetOverride - sets the values of override for the whole axis
and all functions that are working on that axis;

 MC_TouchProbe - records an axis position at a trigger event;

 MC_AbortTrigger - is used to abort function blocks which are

connected to trigger events (e.g. MC_TouchProbe);

 MC_DigitalCamSwitch - provides the analogy to switches on a

motor shaft: it commands a group of discrete output bits to switch
in analogy to a set of mechanical cam controlled switches

connected to an axis. Forward and backward movements are

allowed;

 MC_Home - commands the axis to perform the «search home»

sequence. The details of this sequence are manufacturer dependent
and can be set by axis parameters, as well as the function blocks as

defined in Part 5 – Homing Procedures;

 MC_Stop - commands a controlled motion stop and transfers the
axis to the state ‘Stopping’. It aborts any ongoing function block

execution. With the ‘Done’ output set, the state is transferred to the

‘StandStill”. While the axis is in state ‘Stopping’ no other FB can
perform any motion on the same axis;

 MC_Halt - commands a controlled motion stop. It aborts any
ongoing function block execution. The axis is moved to the state

‘DiscreteMotion’ until the velocity is zero. With the ‘Done’ output

set, the state is transferred to ‘StandStill’;

 MC_Power - switches the power stage on or off;

 MC_ReadStatus - returns in detail the status of the state diagram
of the selected axis;

 MC_ReadMotionState - returns in detail the status of the axis with
respect to the motion currently in progress;

 MC_ReadAxisInfo - reads information like modes, inputs directly
related to the axis, and certain axis status information;

 MC_ReadAxisError - Indicates errors not relating to the function

blocks;

 MC_Reset - makes the transition from the state ‘ErrorStop’ to

‘StandStill’ by resetting all internal axis-related errors and clearing
pending commands;

 MC_ReadParameter & MC_ReadBoolParameter - Returns the
value of a vendor specific parameter;

 MC_WriteParameter & MC_WriteBoolParameter - modifies
the value of a vendor specific parameter;

 MC_ReadActualPosition - returns the actual position;

 MC_ReadDigitalInput - provides the value of the digital input as
referenced by INPUT_REF;

 MC_ReadDigitalOutput - provides the value of the digital output
as referenced by OUTPUT_REF;

 MC_WriteDigitalOutput - writes a value to the output referenced
by the argument ‘Output’ once;

 MC_ReadActualVelocity& MC_ReadActualTorque - returns the

value of the actual velocity or torque as long as enabled;

 MC_PositionProfile, MC_VelocityProfile & MC_Acceleration-

Profile - commands different locked motion profiles: a time-
position, a time-velocity or a time-acceleration profile.

VI. COMMON SET OF MULTI-AXES FUNCTION BLOCKS

For multi-axes, coordinated movements, a small set is defined. This set

will be extended by additional application specific libraries. The current

defined Function Blocks are:

 CamTableSelect - selects the CAM tables by setting the pointers to
the relevant tables;

 CamIn - engages the CAM;

 CamOut - disengages the Slave from the Master axis immediately;

 GearIn - commands a ratio between the velocity of the slave and
master axis;

 GearOut - disengages the Slave from the Master axis;

 MC_GearInPos - commands a gear ratio between the position of
the slave and master axes from the synchronization point onwards;

 MC_PhasingAbsolute & MC_Phasing Relative - creates an
absolute or relative phase shift in the master position of a slave axis;

 MC_CombineAxes - combines the motion of two axes into a third
axis with selectable combination method.

A. Aborting, merging, and blending

Multiple function blocks have an input to set the different operating

modes, combined with an output for signalling this. With this input, the

FB can either work in a “Non-buffered mode” (default behavior) or in a
“Buffered mode”. The difference between those modes is when they

should start their action:

 A command in a non-buffered mode acts immediately, even if this
interrupts another motion;

 A command in a buffered mode waits till the current FB is done
(signaled via the corresponding output or via in-position, or in-

velocity or similar outputs).

The following modes have been identified:

 Aborting - Default mode without buffering. The next FB aborts an

ongoing motion and the command is affecting the axis immediately;

 Buffered - The next FB is affecting the axis as soon as the previous

movement is ‘Done’. There is no blending;

 BlendingLow - The next FB is controlling the axis after the previous

FB has finished (equal to buffered), but the axis may not stop
between the movements. The velocity is blended with the lowest

velocity of both commands (1 and 2) at the first end-position (1);

 BlendingPrevious - blending with the velocity of FB 1 at end-
position of FB 1;

 BlendingNext - blending with velocity of FB 2 at end-position of
FB1;

 BlendingHigh - blending with highest velocity of FB 1 and FB 2 at
end-position of FB1.

VII. AN EXAMPLE

The following example is Example of a simple drilling unit:

We use Sequential Function Chart here to describe the different step for

this drilling example.

Step 1: Initialization, for instance at power up;

FF F

REV

Step 2: Move forward to drilling position and start driller turning: in this

way it will be fully operational before the position is reached; then
check if both actions are completed;

Step 3: Drill the hole;

Step 4: After drilling the hole we have to wait for the step-chain

sequence to finish dwelling the hole free of any stuff which might have

stuck in the hole;

Step 5: Move driller back to starting position and shut the spindle off.
Combining the finishing of moving backwards and stopping the spindle

we signal the step-chain to start over.

Done

Initialization

Ton

MoveAbsolute

MoveRelative

MoveAbsolute

Done

Done

Done

Done

INT

Representation of the drilling example in SFC

The corresponding timing diagram for the movement is depending on
the selected mode. For example:

Timing diagram for drilling – aborting mode

Velocity

Position

t

t

FFWD FWD DWELL REV

Timing diagram for drilling – blending mode

VIII. PART 3 – USER GUIDELINES

Within Part 3 user examples are explained. These examples show how

to create real application parts based on the function blocks as defined in

the specifications. With this, a user can create an own set of Function
Blocks, and so their own library, dedicated to their typical application

areas.

To give an example: in Part 2 there is no registration function defined.
For this the function block TouchProbe is intended. With an example it

is shown how the user can create an own function block Registration,

based on the function block TouchProbe, together with already defined
function blocks. With this, an application specific function block is

created that also can be used across platforms. In this way, different

inputs from sensors can be used, where either the location is not known
(directly or networked) and /or need to be compensated. This user

derived function block can be added to the company own library. This

registration function now can be used company wide, and the source is

usable on different platforms. This saves time and money in the next
machine.

This part is an ongoing specification, which releases as new examples

are added. For up-to-date information, check www.PLCopen.org.

IX. PART 4 – COORDINATED MOTION

Part 4 is focused to the coordinated multi-axes motion in 3D space, to
serve the majority of user’s application needs in this area. Part 1 and

Part 2 deal with Master / slave motion control, a type of coordinated

motion control where the master axis position is used to generate one or
more slave axis position commands. For multi-dimensional movements,

one goes beyond this point via a grouping of a set of axes, without a
master axis. This is done via the definition of a set of Function Blocks

with related coordinated motion functionality as well as a higher level

state diagram, linking the single axis state diagrams in the group. In this
way a better trajectory planning is possible. Also, the current

Master/Slave axes can have the problem that if an error occurs, the other

axes have no knowledge about this, and continue their movement. By
combining axes in a group one knows upfront which axes are involved

and has the basis for a better error behavior.

The level of the PLCopen Motion Control Function Blocks are specified
at such a level that the user quickly recognizes the functionality of the

function block and what happens if it is activated or connected to other

blocks in a sequence of motion commands. This PLCopen initiative
transforms the functionalities as known in the CNC and Robotic world

to the PLC world.

Overall there are a number of sets of function blocks defined to do this,
as shown below without going into details: for this download the

specification from the website www.PLCopen.org.

The first step is to group axes. The following FBs are defined for this:

 MC_AddAxisToGroup

 MC_RemoveAxisFromGroup

 MC_UngroupAllAxes

 MC_GroupReadConfiguration

 MC_GroupEnable

 MC_GroupDisable

The next step is to link the transformations:

 MC_SetKinTransform

 MC_SetCartesianTransform

 MC_SetCoordinateTransform

 MC_ReadKinTransform

 MC_ReadCartesianTransform

 MC_ReadCoordinateTransform

 MC_SetDynCoordTransform

Axis group

y´

PCS

MCS

ACS

31 2

Kinematical

transformations

Cartesian and/or

cylindrical

transformations

Product or Programmer´s

Coordinate System

Machine

Coordinate System

Axes Coordinate

System

X Y

Z
X'

Z'Y'

Overview of the coordinate systems and transformations

 ACS Axis related

 MCS Machine related

 PCS Product or Workpiece related

For coordinated moving, the following blocks are defined:

 MC_GroupHome

 MC_GroupStop

 MC_GroupHalt

 MC_GroupInterrupt

 MC_GroupContinue

 MC_MoveLinearAbsolute

 MC_MoveLinearRelative

 MC_MoveCircularAbsolute

 MC_MoveCircularRelative

 MC_MoveDirectAbsolute

 MC_MoveDirectRelative

 MC_MovePath

FFWD FWD DWELL REV

v

s

t

t

http://www.plcopen.org/
http://www.plcopen.org/

Axes Group Synchronized Motion

The following function blocks deal with a master/ slave relationship
between a single or group of axes and a single or group of axes for

coordination purposes. There are two kinds of coordinated motion that

have to be distinguished from a programming point of view and in the

realization of the motion control itself. These two modes are identified

here through their names: Synchronization and Tracking. The

differences and related FBs are shown in the next figure:

Graphical explanation of coordination

Then there are other FBs defined, most without motion:

 MC_GroupSetPosition

 MC_GroupReadActualPosition

 MC_GroupReadActualVelocity

 MC_GroupReadActualAcceleration

 MC_GroupReadStatus

 MC_GroupReadError

 MC_GroupReset

 MC_PathSelect

 MC_GroupSetOverride

X. PART 5 – HOMING PROCEDURES AND BLOCKS

A. Homing Procedures

The homing functionality was originally seen as a separate sequence in
the startup phase of a machine or axis. The sequence for an axis was:

power on, homing, and move ‘something’. The whole homing procedure

itself was hidden to the user. However, some users needed more control

on the homing functionality itself. For this reason, a set of building

blocks have been identified to be able to define dedicated homing

procedures. This procedure can be encapsulated in a dedicated homing
function block, which can be added to the library and used for this

specific procedure. As examples, several possible homing procedures

are defined:

 HomeAbsSwitch - Absolute Switch homing plus limit switches;

 HomeLimitSwitch - Homing against limit switches;

 HomeBlock - Homing against hardware parts blocking movement;

 HomeRefPulse - Homing using encoder reference pulse ‘Zero
Mark’;

 HomeRefPulseSet - Homing using a set of encoder reference pulses
‘Zero Mark’;

 HomeDirect - Static Homing, forcing a position from a user
reference;

 HomeAbsolute - Static Homing, forcing a position from an absolute
encoder.

B. Homing Step Function Blocks

To make these procedures available to the user, a toolkit is defined with
additional Function Blocks, FBs. By using one or more connected

function blocks one can create complex homing sequences. With these,

a user can create its own homing procedure in more detail, and even
create own, user specific, homing procedures. Additionally, these

function blocks include advanced homing process error reporting,

evaluating time, distance and torque limits.
The following defined FBs match the homing procedures and are issued

in or change the state to the ‘Homing’ state.

 MC_StepAbsSwitch - Absolute Switch homing plus limit
switches;

 MC_StepLimitSwitch - Homing against limit switches;

 MC_StepBlock - Homing against hardware parts blocking

movement;

 MC_StepRefPulse - Homing using encoder reference Pulse ‘Zero

Mark’.

In this way, any combination sequence is possible without the need of

predefining hundreds of homing methods. The individual adjustments
for torque limit, time limit and distance limit provide control of the

sequence error conditions.

The following FBs lead to a final position and leave the homing state to

‘StandStill’:

 MC_HomeDirect - Static Homing forcing a position from a user
reference;

 MC_HomeAbsolute - Static Homing forcing a position from an
absolute encoder;

 MC_FinishHoming - Finishes the homing procedure with the
possibility to do a relative move to the operational area.

In addition, the homing functionality is needed while the machine is
operating, i.e. not in the state ‘Homing’. This ‘homing-on-the-fly’ is

called passive homing. They have no effect on State Diagram, like the
administrative FBs, and can be called in any movement state. They

consist of:

 MC_StepReferenceFlyingSwitch

 MC_StepReferenceFlyingRefPulse

 MC_AbortPassiveHoming

XI. PART 6 – FLUID POWER

The goal of this part is optimizing programming and integration of fluid

power devices and systems by defining Function Blocks employing
PLCopen standardization and modular methodology, based on the

existing set and resulting in a limited number of additional function

blocks.
The primary goal is to level restrictions to market response and provide

integrators with the option to apply the best technology to a given

problem without regard to specific technology constructs. Standardized
interfaces will allow cross pollination from electrical and fluid power

resource pools and drive best of breed solution configuration.

The defined Function Blocks are:

 MC_LimitLoad

 MC_LimitMotion

 MC_LoadControl

 MC_LoadSuperImposed

 MC_LoadProfile

XII. CERTIFICATION

Included in the document are the rules for compliance and certification.

Basically this is a self-certification, from which the results per supplier

are published on the PLCopen website www.PLCopen.org. Certified
companies are allowed to use the logo below, with additional number,

date and number of supported compliant function blocks:

XIII. CONCLUSION

The publication of the specification and the first implementations

clearly showed that the multi-axes implementation certainly fits within

the framework as defined by the IEC 61131-3 standard.
With many implementations becoming available, motion control will

never be the same: more hardware independence give the users less

training costs, and the possibility to create application software that is
usable on a number of different targets more easily, and targets which

can be selected in a later phase of the overall machine development

cycle. This brings a higher efficiency and reduces costs during
development, maintenance and training.

For up-to-date information, the specification itself, as well as
information on the contributions of PLCopen in safety, communication

and exchange, check www.PLCopen.org.

http://www.plcopen.org/
http://www.plcopen.org/

