

PLCopen OPC UA Client for IEC 61131-3

Scope
This specification was created by a joint working group of the OPC

Foundation and PLCopen. It defines a set of IEC 61131-3 based function

blocks for mapping the OPC UA Client functionalities. With this

functionality implemented on a controller it becomes possible to initiate a

communication session to any other available OPC UA Server. This is

flipping the classical CIM Triangle where, in terms of communication, a

controller as a main component of the automation system is “dumb”, and

always merely responds to requests “from above”: the higher level is always

the client and initiates data requests – the lower layer is always the server and

courteously responds.

In a modern smart network, every device or service is able to initiate independent communication with all other

services.

The OPC-UA client functionality out of the IEC61131-3 controller makes it possible that a controller can exchange

complex data structures horizontally with other controllers independently from fieldbus system or vertically with other

devices using an OPC-UA server call in an MES/ERP system in order to collect data or write new production orders to

the cloud. It allows a production line to be independently active in combination with integrated OPC UA Security

features.

Notes:

1. OPC-UA client functionality in a controller does not provide hard deterministic real time and so it’s not a deterministic

fieldbus – but UA provides fast, secured communication providing modelling mechanism for information models.

2. The function blocks are based on the second Edition of IEC61131-3.

3. Within the PLCopen OPC UA Client specification a lot of derived, enumerated and structured datatypes are defined, as well

as user specific datatypes identified, all of which are used by the function blocks but nor further described here. Also the

defined error codes are not described here.

The basic sequences for communication

A whole set of function blocks have been defined. But in

order to perform an operation like read a list, write a list

or do invoke a method call, one has to prepare the

communication following the sequence of calls as

described hereunder. After finalization, one has to stop

the communication and clean up.

Read and Write of multiple items

UA_Connect is used to create an (optional secure)

transport connection of an OPC-UA session.

UA_Connect is to be performed once for each

connection. The UA_NamespaceGetIndexList is to be

performed once for each namespace. The NodeHdl for a

specific node is to be retrieved once. Read and write can

be performed as frequent as necessary and permitted by

the system. Once the communication is done, the node

handle is not required anymore and shall be released via

the use of UA_NodeReleaseHandleList for all relevant

handles. The connection handle shall be released using

UA_Disconnect.

A list is handled as an array of the related base type (e.g.

UANodeID or UANodeAdditionalInfo). Additionally,

there is a length specified which holds the number of

elements in the array.

The UA_NodeGetHandleList will return a UANodeHdl

array. This call will not verify that the given UANodeID

is valid. It will just be checked if it is structurally right,

otherwise an error in the corresponding error element

(NodeErrorIDs) will be returned. The output array of

UA_NodeGetHandleList can be used unchanged for

subsequent calls to function blocks UA_ReadList,

UA_WriteList, but the control implementation shall

check always the corresponding error element

(NodeErrorIDs). In case of any general error no outputs

shall be changed from the underlying implementation.

Subscription and Monitored Items
Monitoring of nodes does invert the communication

interaction: the control program is initiating the

communication but as a consequence the values will be

pushed from the UA-Server to the control program.

There are two modes to actually retrieve latest values

within the control program:

 Controller-sync: The control program can decide

when values are updated. The control program polls

internally if the UA-Client-Firmware received

updates;

 FW-sync:
The firmware could internally update the values of

the memory of the controller and magically the value

are just updated from outside.

The following function blocks are used to create

subscriptions and to add monitored items to this

subscription. To create a subscription, a valid connection

handle is required. The connection handle is to be

acquired using UA_Connect once.

UA_SubscriptionCreate will create a subscription, and

needs to be called for every subscription needed. The

applicable SubscriptionHdl will be returned on successful

execution of the function block UA_SubscriptionCreate.

In order to monitor an item, a NodeHdl for that specific

node is required. In other words, both the applicable

UA_SubscriptionCreate and UA_NodeGetHandleList are

to be called before calling the related

UA_MonitoredItemAddList. UA_MonitoredItemAddList

is used to add items to a subscription identified by a

SubscriptionHdl. The items to be monitored are to be

assigned to this FB in form of NodeHdl.

UA_MonitoredItemModifyList can be used to modify

monitoring settings like sampling interval, deadband

type, and deadband value and hence it can be called

optionally.

Take note to delete the subscription. Release the

NodeHdl before you disconnect. Unless

UA_SubscriptionDelete is called the Subscription will

continue working, even if UA_NodeReleaseHandleList is

called.

Using Method Calls
Method calls are a way to perform a remote call on the

called object, which can run on a different machine or be

linked to any server, which than replies with the result to

the client. The appropriate sequence for initiating a

method call is shown below. A valid method handle is

necessary to call a method. Successful call of

UA_Method

GetHandleList will deliver a valid MethodHdls. One

shall release the method handle list before you

disconnect.

Prepare

UA_Connect

Cleanup

UA_NodeGetHandleList
UA_ReadList/

UA_WriteList

UA_Disconnect

UA_NodeReleaseHandleList

UA_NamespaceGetIndexList

For multiple reads or writes

Prepare

UA_Connect

UA_MonitoredItemAddList

Cleanup

UA_NodeGetHandleList

UA_SubscriptionCreate

UA_MonitoredItemOperateList

OR

UA_SubscriptionProcessed

UA_MonitoreItemRemoveList

UA_Disconnect

UA_SubscriptionDelete

UA_NodeReleaseHandleList

UA_NamespaceGetIndexList

Diagnostics
This procedure is to check if the connection is still alive.

The function block UA_Connect will deliver the

ConnectionHdl. UA_ConnectionGetStatus requires this

ConnectionHdl as input to deliver the connection status.

In case the connection is lost after receiving the handle

and while calling the UA_ConnectionGetStatus,

ServerState Unknown will be returned.

NOTE: It is recommended to call UA_ConnectionGetStatus

periodically but for performance reasons not in every control

program cycle.

Browsing
Browsing is used by a client to navigate through the

Address Space of an OPC-UA Server. By passing a

starting node the server returns a list of nodes by

references.

To be able to browse a valid connection handle is

required. Function block UA_Connect will deliver the

ConnectionHdl. UA_Browse takes a structure for starting

Node description and filter criteria. The result is an array

of structures for references and target Nodes.

With browsing one can “ask”, e.g. for validation

purposes, for the structure and all elements that are

running in a server (as far as the client has the

appropriate access rights).

TranslatePath
This function block is used to request that the Server

translates one or more UABrowsePaths to UANodeIDs.

Each UA_BrowsePath is constructed of a starting

UANodeID and a UARelativePath. The specified starting

UANodeID identifies the UANodeID from which the

UARelativePath is based. The UARelativePath contains

a sequence of UARelativePathElement and

UAQualifiedName.

One purpose of this function block is to allow

programming against type definitions. For example, an

ObjectType “Boiler” may have a “HeatSensor” Variable

as InstanceDeclaration. A graphical element programmed

against the “Boiler” may need to display the Value of the

“HeatSensor”. If the graphical element would be called

on “Boiler1”, an instance of “Boiler”, it would need to

call this Service specifying the UANodeID of “Boiler1”

as starting UANodeID and the UABrowsePaths of the

“HeatSensor” as browse path. The function block would

return the UANodeID of the “HeatSensor” of “Boiler1”

and the graphical element could subscribe to its value.

If an OPC UA Node has multiple targets with the same

UABrowsePaths, the underlying server will return a list

of UANodeIDs. However, since one of the main

purposes of this function block is to support

programming against type definitions, the UANodeID of

the OPC UA Node based on the type definition of the

starting OPC UA Node is returned as the first

UANodeID in the list.

Prepare

UA_Connect

Cleanup

UA_MethodGetHandleList

UA_MethodCall

UA_Disconnect

UA_MethodReleaseHandleList

UA_NamespaceGetIndexList

For multiple method

calls.

Prepare

UA_Connect UA_ConnectionGetStatus

Cleanup

UA_Disconnect

Prepare

UA_Connect
UA_Browse

Cleanup

UA_Disconnect

Monitor Events
A typical OPC-UA Server can be configured to fire

Events to a Client. OPC-UA specifies a wide range of

different Events. OPC-UA Clients can receive Events

when subscribing to an Event Notifier.

In order to monitor an item, a NodeHdl for that specific

node is required. Both UA_SubscriptionCreate and

UA_NodeGetHandle are to be called before calling

UA_EventItemAdd. UA_EventItemAdd is used to add an

event item to a subscription mentioned by the

SubscriptionHdl. The node of which events are

monitored is to be assigned to this FB in form of

NodeHdl. UA_EventItemOperate can be used to get

information about the incoming events occurred.

Take note to delete the subscription. Release the

NodeHdl before you disconnect. If

UA_NodeReleaseHandle is called before

UA_SubscriptionDelete the Subscription will continue

working.

Overview of the defined function blocks:
UA_CONNECT UA_DISCONNECT

UA_NAMESPACEGETINDEXLIST UA_TRANSLATEPATHLIST

UA_SERVERGETURIBYINDEX UA_SERVERGETINDEXBYURILIST

UA_NODEGETHANDLELIST UA_NODERELEASEHANDLELIST

UA_NODEGETINFORMATION

UA_SUBSCRIPTIONCREATE UA_SUBSCRIPTIONDELETE

UA_SUBSCRIPTIONMODIFY UA_SUBSCRIPTIONPROCESSED

UA_MONITOREDITEMADDLIST UA_MONITOREDITEMREMOVELIST

UA_MONITOREDITEMMODIFYLIST UA_MONITOREDITEMOPERATELIST

UA_READLIST UA_WRITELIST

UA_METHODGETHANDLELIST UA_METHODRELEASEHANDLELIST

UA_METHODCALL UA_BROWSE

UA_EVENTITEMADD UA_EVENTITEMOPERATELIST

UA_EVENTITEMREMOVELIST UA_HISTORYUPDATE

For diagnosis UA_CONNECTIONGETSTATUS

The specification also includes the basis for a compliance statement.

For the full technical file check www.PLCopen.org

Cleanup
Prepare

UA_Connect

UA_TranslatePathList

UA_Disconnect

UA_NamespaceGetIndexList

Prepare

UA_Connect

UA_EventItemAdd

Cleanup

UA_NodeGetHandle

UA_SubscriptionCreate

UA_EventItemOperate

UA_EventItemRemove

UA_Disconnect

UA_SubscriptionDelete

UA_NodeReleaseHandle

http://www.plcopen.org/

