

PLCopen Safety - Integrating Safety Functionality into the

Development System

Taking IEC 61508 & IEC 62061 to the Software Level

Overview

The changing environments facing the machine building industry

ask for new solutions. The changes include:

 The availability of many safety standards, including IEC 61508

and IEC 62061;

 Additional governmental requirements increasing the liability

issues;

 The availability and acceptance of digital networks with safety

functionality built-in;

 The inherent move from hardwired safety functionalities to

software solutions;

 The increasing importance of safety related issues regarding

personnel and machines.

The solution includes standardization of the safety functionality on

the software level, and integrating this in the development

environment. This combination helps developers to integrate safety

related functionality with more ease in their systems, even from the

beginning of the development cycle. Also, it contributes to the

understanding of safety aspects, as well as to reducing the

certification time and costs by relevant organizations.

Positioning of the work of PLCopen

IEC 61508 and IEC 62061, and companion and related standards,

describe safety requirements at different levels. However, they are

open on the implementation of this functionality in software

development environments for the creation of the application

software. Also, both standards are targeted to a somewhat different

level: run time environment or application level. For both different

tools are used.

The new safety related standards come with a new nomenclature.

Some related terms are:

 FVL : Full Variability Language. Application independent

languages used by component suppliers for the implementation

of (safety) firmware, operating systems, or development tools.

Rarely used for the safety application itself. Typical languages

are C/C++, Java, and assembler.

 LVL : Limited Variability Language. Aimed at users to create

their safety application functionality. Typical languages used

are Ladder Diagram and Function Block Diagram.

 SRAS : Safety Related Application Software

 SRES : Safety Related Embedded Software

The Rationale of a New Safety Standard

Machine builders are faced with a large set of safety-related

standards. This makes it expensive and in some cases unfeasible

for machine builders to understand them all fully. Yet in the end

they are still responsible for their products and related safety

aspects. This risk situation is not very healthy, especially since

legislation imposes greater constraints on the equipment suppliers.

And their liability increases.

Nowadays there is often a clear separation between the safety-

related part and the functional application part. This separation can

be made by using different systems for the environments, different

tools, and even different people can be involved. This separation

often results in the safety aspects being included at the end, and not

integrated into the whole system philosophy from the beginning,

and often with only limited tests performed. This clearly does not

contribute to the overall safety aspects.

Also, the on-going technological innovation now provides safety-

approved digital communication busses. This supports the trend

away from hard-wired systems towards software-oriented

solutions. A parallel can be drawn with the movement away from

hard-wired relay logic towards programmable logic controllers,

PLCs. Such a trend, of course, involves a change in the mindset.

This type of change requires time, widespread support from the

industry as a whole, support from educational institutes as well as

from certification bodies.

In addition, governmental requirements add to the complexity. For

instance, the US-based FDA, Food and Drugs Administration, has

set strict regulations that must be complied with. Non-compliance

can result in heavy financial penalties, again weakening the

sustainability of the organization.

Standards enhance the safety aspects

With so many standards already available, one needs to help the

users to implement them, without inhibiting their functionality and

performance, and without adding costs. Standardization in

functionalities and the integration and support from the software

tools should help the programmers to integrate safety functionality

in their applications more easily.

The common basic requirements of a safety application for

machine builders within all applicable safety standards are:

 Distinction between safety and non-safety functionalities;

 Use of applicable programming languages and language

subsets;

 Use of validated software blocks;

 Use of applicable programming guidelines;

 Use of recognized error-reducing measures for the lifecycle of

the safety-related software.

In order to support this, the independent association PLCopen,

together with its members and external safety related organizations,

defined safety related aspects within the IEC 61131-3 development

environments. With this, the safety aspects are transferred to a

software tool, which is integrated in the software development

tools. This helps developers to integrate safety-related functionality

into their systems, even from the beginning of the development

cycle.

Also, it contributes to the overall understanding of safety aspects,

as well as reducing the certification time and costs by relevant

organizations.

Standardization in the look and feel

In order to help developers use safety-related functionalities, the

comfort zone of users must be improved, thus making it easier to

accept this way of working. This can be done by standardizing the

look and feel of the safety functionalities. In this way the safety

functionality can be better recognized and used independently of

the applicable system. Re-training is not necessary and the

tendency to create dedicated safety functionality is reduced. This

complete approach provides the user with a harmonized view to the

total application within one environment. With this, a major

contribution to the acceptance and usage of safety related

functionality is made. This will take away several hurdles as they

now exist, especially in the machine building industry.

In addition, this assists the certification bodies. Specifying and

checking the safety software becomes much easier, and therefore

quicker, less risky, and less costly.

Providing Function Blocks at a higher level makes them less

dependent on the underlying hardware architecture. Architectures

such as hard-wired systems, systems containing safe input and

output modules, and network-based systems can be supported with

the same Function Blocks. With this higher-level solution the

implementation details can be hidden from users, making the

implementation of safety-related software much easier and less

costly. This also improves the comfort zone of users.

To support this, the PLCopen Technical Committee defined a

multi-level approach:

A. Support in programming environment, including languages

and functionality, combined with programming guidelines

for the users of the safety related development

environment, to be able to create safety related application

programs;

B. The definition of a set of Functions and Function Blocks

with safety related functionality, including a style guide for

additional functionality;

C. Error handling and diagnosis.

Ad A: Support in programming environment

Within the programming environment there are three levels of

users identified, with different sets of experience and authority to

manage the safety related aspects:

1. Basic level – focused to the safety-application programmer

using the specified function blocks;

2. Extended level – extended functionality giving the ability to

define own extensions to the specified Function Blocks.

3. System level – focused to the implementation by the

suppliers of the (specified) function blocks. This level is not

further described in the document.

Without going too much in detail, we zoom in on the first group.

For this, the safety standard IEC 61508, Chapter 7, defines a

reduction in the preferred programming languages for the different

SIL levels (Highly Recommended, Recommended or Not

Recommended). Based on this, the preferred languages within this

group are the graphical languages FBD and LD, and even ST with

a defined subset of these. The graphical languages provide a clear

overview of the safety program itself, and the tool can support and

guide the users much better. The textual language adds flexibility

to the Extended Level.

Separation via the SAFE datatype

In order to differentiate clearly between safety-relevant and

standard signals, a new data type with the designation "SAFE" was

defined. This provides the basis for the development tool to

identify safety-critical program parts, and guide the user with

permissible connections, while preventing incorrect connections.

Furthermore, because of this designation the data links can be

verified automatically to detect any impermissible links between

standard signals and safety-relevant signals. In this way, support

can be implemented for the different levels of the various safety

standards and errors in the application program are minimized.

Additionally, when releasing the application program, the safety-

relevant signals can be clearly recognized. This simplifies and

shortens signal flow verification and eases the validation and

certification purposes.

For instance, SAFEBOOL is a data type that is applicable within

the safety-related environment and represents a higher safety

integrity level. It differentiates between safety-related and non-

safety-related variables. A SAFEBOOL acts as a BOOL within the

system, but can contain additional information (attributes)

necessary for the safety status and level (could include PL, SILs,

PFD/PFH). Such information could be used to calculate the SIL

with the programming tool.

Essentially there are (at least) two ways to get a SAFE(BOOL)

variable in the application level:

1. The data is provided as a safe data type by the devices,

either by the devices themselves or by the operating

system or firmware. This can include a safe network.

2. The data is provided by combining safety inputs in the

application itself (such as two safe single-channel

inputs).

Reduction in data types and declarations (short form: user-

defined data types and variable declarations not shown here)

Note: BL = Basic Level; EL = Extended Level

Description BL EL Comment

ANY_INT,

ANY_SAFE

INT

X X BL: Arithmetic functions are not

permitted.

EL: Arithmetic functions are permitted.

ANY_REAL

ANY_SAFE

REAL

X X Same as INT, DINT

Only valid values for REAL and

SAFEREAL are allowed.

ANY_DURA

TION

ANY_SAFE

DURATION

X X BL: Only as a constant FB input

parameter and/or as outputs for

diagnosis on the called FB.

EL: no restrictions

ANY_BIT

ANY_SAFE

BIT

X X BL: Only as outputs for diagnosis on

the called FB and as inputs for

processing diagnostices codes from

another FB.

EL: no restrictions

ANY_DATE X X

ANY_SAFE

DATE

- X

Reduction in functions and function blocks

 1. Standard functions: (See IEC 61131-3; Tables 22-30)

Description BL EL Comment

AND X X BL: Operation of both BOOL and

SAFEBOOL.

EL: Operation on ANY_BIT

OR X X BL: Operation of SAFEBOOL only

allowed.

Extended Level: Operation of both

BOOL and SAFEBOOL allowed,

but not mixed. (S_OR and OR)

XOR, NOT - X Operation for XOR only allowed

with 2 inputs

ADD, MUL,

SUB, DIV,

MOD, EXPT,

+,*,-,/,MOD,**

- X Operation of INT/ DINT/ REAL and

SAFEINT/ SAFEDINT/

SAFEREAL permitted.

NEG - - X Negation in ST (and FBD)

MOVE - -

SHL, SHR,

ROR, ROL

- - Shift functions are not required.

EQ, NE, =, <> - X Restrictions apply

GT, GE, LE,LT

>,>=,<=,<

- X Restrictions apply

SEL,MAX,MIN,

LIMIT, MUX

- X Restrictions apply

Type conversion

functions

X X Implicit & explicit

Restrictions apply

String functions - - No STRING available

Time Functions - X Only ADD,SUB, DIV, MUL with

type TIME or SAFE_TIME

Unary REAL

functions

- X e.g. SIN, SQRT, LOG.

 2. Standard function blocks: (See IEC 61131-3; Tables 34-37)

Description UL EL Comment

TON, TOF, TP X X

CTU, CTD,

CTUD

X X

Bistable FB (SR,

RS)

- X No semaphores (SEMA)

Edge Detection - X

Structured Text Specifics.

Within the textual language ST, supported only in Extended Level,

the powerful statements like FOR, IF..THEN..ELSE, CASE OF are

supported, as well as EXIT, RETURN and CONTINUE. WHILE

and REPEAT are not supported due to the danger of an endless

loop and non-constant loop count.

Ad B. Functions and Function Blocks

The PLCopen Technical Committee on Safety has identified 23

safety functions, which are represented by 33 Function Blocks.

These provide the basis for developing certified Function Blocks

within an environment. The specification itself provides a unified

description of all the Function Blocks. Included elements are:

1. Applicable Safety standards, with reference to the sections of

the relevant requirements;

2. Interface description, including name of the FB, and short

description;

3. Functional description, including Safe State description, in

both textual and graphical form, including description of

normal operation and start behavior;

4. Error detection, with description of External signals, Internal

signals, and External test signals;

5. Error behavior;

6. Function Block specific error and status codes.

The full list of blocks is:

Reset Button Adds the trailing edge functionality to all FBs.

Used to comply to EN ISO 13849-1:2015

Equivalent,

Antivalent

Converts two equivalent or antivalent

SAFEBOOL inputs to one SAFEBOOL

output, including discrepancy time monitoring.

Mode Selector Selects the mode of operation of the system,

such as Manual, Automatic, Semi-automatic,

etc.

Emergency Stop Monitoring an emergency stop button.

ESPE Monitoring Electro-Sensitive Protective

Equipment (ESPE).

PSE Pressure Sensitive Equipment like safety mats

Two-Hand

Control Type II

& Type III

Provides the two-hand control functionality.

(cf. EN574, Ch. 4 Type II and Type III (with

fixed time difference is 500 msec.)).

Testable Safety

Sensors

Can be used for external testable safety sensors

(like ESPE:).

Sequential

Muting,

Parallel Muting,

Parallel Muting

with 2 Sensors

Muting is the intended suppression of the

safety function (e.g. light barriers). Specified

for different configurations: 4 sensors and 2

sensors.

Enable Switch

Enable Switch 2

Evaluates the signals of an enable switch with

three positions. Also Version 2 without

detection of panic position.

Safety Guard

Monitoring

Monitors relevant safety guard (for two

switches coupled with a time difference for

closing the guard).

Safety Guard

Interlocking

with locking

(two versions)

Controls an entrance to a hazardous area via an

interlocking guard with guard locking ("four

state interlocking"). Two different versions:

Version 2, and one for switches with serial

contacts.

Override To move a product in the production line even

when the sequential muting was aborted due to

an error. This FB is only applicable in

combination with a muting FB.

Safety Request Provides the interface to a generic actuator,

e.g. a safety drive or safety valve, to place the

actuator in a safe state.

Out Control Control of a safety output with a signal from

the functional application and a safety signal

with optional start-up inhibits.

External Device

Monitoring

Controls a safety output and monitors

controlled actuators, e.g. subsequent

contactors.

Part 2 of the specification provides user guidelines to support the

user with examples of these functionalities.

The FBs in Part 4 - Safety for presses are the following:

Foot Switch Evaluates the signals of a foot switch with

three positions.

Press Control Controls the safety related process and

enables the signal for the safety related

valves, depending on the operation mode.

Single Valve

Monitoring

Monitors the switching behavior of fluidic

single valves, which confirm the safe state

within a monitoring time by a static

feedback signal (spool position monitoring).

Double Valve

Monitoring

Idem for double valves (press safety

valves). Both valves used should be of the

same type.

Single Valve

Cycle Monitoring

Idem for a cartridge valve in that manner,

that per machine cycle a signal change of

the spool monitoring signal must be

recognized.

Valve Group

Control

Summarizes all the connected valves to a

group. In case of an error of one valve all

valves are switched off.

Camshaft

Monitor

This function block provides the camshaft

monitoring functionality. There must be a

number of signal changes in a specified time

period.

Cycle Control Controls the cycle mode (1 to n cycles) of

an ESPE.

Cam Monitoring Provides the cam monitoring functionality.

Two-Hand Multi

Operator

Controls a press with two operator control

stations. On each control station is one two-

hand control device.

Two-Hand Con-

trol Type III C

Provides the pluggable two-hand control

functionality with fixed specified time

difference of 500 ms.

Implementations

The next step is implementing these Function Blocks on multiple

platforms. At this level these FBs can be certified by independent

organizations. With this, the standardized look and feel is

supported on a broad set of software tools, reducing the tendency

to create own functionality which can contain errors.

Ad C. Error Handling and diagnosis

For a transparent and unique diagnostic concept all safety-related

Function Blocks have at least two error-related outputs: Error and

DiagCode. These are provided for diagnostic purposes on the user

application level, and not for diagnostics on the system/hardware

level.

With a set of pre-defined diagnostics codes per Function Block it is

guaranteed that uniform diagnostic information is available to the

user, independent of the vendor's implementation. The internal

status of the function block (State Machine) is indicated. An error

is indicated via a binary output (Error). One can retrieve detailed

information on the Function Block internal or external errors via

the DiagCode.

Also the DiagCode can provide information when an operator

interaction is needed, like a reset is needed or if the safety chain

needs to be closed. For this the outputs ResetRequest and

SafetyDemand are available in the relevant FBs.

A safety-related function has the highest priority, and after

switching to the safe mode there is sufficient time for the

diagnostics, either in the functional program or in the operator

interface.

Combining the functional and safety application

By integrating the functional application with the safety application

in the same environment, one can exchange data between both.

This goes beyond the diagnosis functionality. It can include

confirmation by an operator or it can give general status

information. Of course different rules apply for going from the

safety environment to the operational application then vice versa.

Again, the safety related software tool helps to avoid errors here.

On the left side of the model, two sets of inputs are identified, and

on the right side two levels of outputs. In the middle, the two

environments are shown separately, both coupled to their related

inputs and outputs.

Data exchange between the safety and the functional applications

are shown in the middle. The functional application has

unrestricted read access to the safety inputs. The non-safe signals

can only be used in the safety application to control program flow

and cannot be connected directly to the safe outputs. It is limited to

the non-SAFE input parameters, such as a ‘reset’ and diagnosis,

and limited to the AND function with a SAFEBOOL parameter for

a safety related input. The same is valid for the two sets of outputs.

PLCopen Compliance information

For quick identification of compliant products, PLCopen has

developed a logo for the Safety Specification:

Different levels of certification are applicable:

1. Certification of the software tool supplier, often part of the

control supplier;

2. Certification of the application at the user / machine builder.

Ad 1: Certification of the software tool supplier

The development environment, including the safety related

Function Blocks, as well as the underlying hardware, have to be

certified by the relevant safety related bodies. In order to be able to

be certified, certain rules, like described in IEC 61508 and related

standards like IEC 61511, are applicable. The PLCopen

specification provides a framework for this; however the overall

requirements are beyond the scope of PLCopen, and have to be

dealt with by external dedicated organizations.

Ad 2: Certification / Conformity of the application

Within an application, a certification includes the safety related

software combined with the infrastructure, like sensors, switches

and actuators, connection schemes, etc, like described in standards

like IEC 62061. Certification of the application software is made

easier; however the full application has to be dealt with by external

dedicated organizations.

The use of the PLCopen logo does not give any guarantee about

any compliance or fulfillment. The use of the logo just refers to the

inclusion of the ideas and guidelines as described in this document,

within the relevant software environment, and the availability of

this information in more detail on the relevant section of PLCopen

website www.PLCopen.org

Note:

Some motion related functionalities like SafeStop and

SafelyLimitedSpeed are removed from Version 2.0 and moved to a

separate specification dedicated to SafeMotion. This separate

specification is also available from the PLCopen website.

http://www.plcopen.org/

