
On the Programming of Industrial Computers

Author: Oded Maler

Abstract

This report, which is part of the deliverable IP.1 of the Esprit project VHS (Verification of

Hybrid Systems), analyzes some software engineering aspects of industrial computers such

as PLCs (programmable logic controllers) and DCS (distributed control systems). The report

starts with a comparison between the development of software engineering for general-

purpose computers and the programming of control computers. Then it critically surveys the

five programming languages defined by the IEC 61131-3 standard which is intended to unify

PLC programming languages. Finally several potential contributions of the consortium

toward improving the state-of-the-art in this domain are suggested.

Introduction: Industrial vs. General-purpose Computers

Programming methodologies for the general-purpose computer have undergone tremendous

improvements since the 50's. In few decades programming moved from machine code and

assembly languages, via the first high-level languages, structured programming, data-types,

cross-compilers and debuggers up to object libraries, graphical programming environments

and inter-application interfaces. The outcome of all these developments (and many others

not mentioned here) is that programming can be done at a more abstract and problem-

oriented fashion, letting the computer itself do the tedious tasks of handling the technical

details of the specific hardware platform on which the program will eventually run.

Consequently the cost-effectiveness and quality of software production has increased

beyond what could be imagined in the early days of computers.

So far the development of programming methodologies for special purpose industrial

computers has been significantly slower [1]. Before we analyze this problem, its origins and,

hopefully, some of its solutions, we have to characterize, even roughly, the type of systems

we are talking about. First and foremost we are concerned with systems whose major role is

to interact via sensors and actuators with a dynamic physical environment, in other words,

computers that control. Of course, ordinary computers are connected as well to peripherals

such as a mouse, a keyboard or a communication port, but this interaction is not their

raison-d'être. The functionality of control computers is defined in terms of the performance

of the physical processes with which they interact. In order to achieve this performance the

control system monitors input signals which deliver information from the process, makes

some calculations and produces output signals which are then amplified and transduced into

actions that influence the process. The calculations done by the controller are usually simple

[2] (compared to arbitrary algorithms which can be performed by general-purpose

computers) but they must respect some timing constraints due to the interaction with a

dynamic environment which does not wait for the controller to conclude its computations.

One can distinguish between two types of signals, continuous and discrete. The former

represent quantities such as temperature, velocity or water level while the latter can stand

for on/off states of devices such as valves and furnaces, for threshold conditions on

continuous quantities or for higher-level supervisory signals. In the pre-computer days

calculations over continuous signals where done by analog means, first mechanically and

later electrically by analog computers. This is the origin of the block diagram paradigm

where input signal move through arithmetical components and integrators to produce output

signals. Similarly the discrete "logical" input-output functions were computed initially by

electro-magnetic and pneumatic relays and later by hardwired digital electronics, which can

be viewed as a discrete version of block diagrams.

The rapid progress in VLSI technology and the arrival of cheap micro-processors affected

both types of control systems. For continuous control it turned out to be more cost-effective

to replace analog noisy devices by digital calculations. The price of going digital is the

replacement of "real" numbers, represented by magnitudes of physical quantities, by their

binary encoded floating-point approximations and of continuous control by sampled

piecewise-constant control. The nature of continuous processes (sampling theorems)

combined with the speed and accuracy of digital computers guarantee the dominance of

digital control. Discretized versions of continuous blocks such as integrators and PID

controllers are widely used. On the discrete control side, the replacement of the hardwired

(and later programmable) logic controller by a general-purpose microprocessor was even

more natural. With a microprocessor inside, one would expect that control computers will

converge toward general-purpose computers and benefit from the progress in software

engineering but some technical, conceptual and sociological factors are slowing-down this

convergence.

To analyze the situation let us see what is still special about computers that control.

Closed and Open Architectures

The major feature of control computers is the need to interact with many I/O signals coming

from various types of devices. From the computer hardware point of view this means that

the processor board is augmented with specialized I/O boards whose function is to connect

physical signals with the computer memory using A/D and D/A conversion, amplification of

output signals in order to drive actuators, and communication with the processor. In

addition, these computers are supposed sometimes to work in hard physical conditions and

be more solid and reliable. Hence the processor and its software constituted a secondary

concern relative to measurement technology and other electrical and mechanical engineering

considerations. The intimate connection with the physical world explains the lag in

development of more high-level programming culture in this domain. In fact, the situation is

similar to that of operating systems programming two decades ago, where “systems”

programming was dominated by assembly languages and low-level primitives to handle I/O

devices and improve performance.

The diversity of plants to be controlled, such as airplanes and missiles, refineries, CNC

machines, production lines at various scales, railway systems, washing machines, alarm

systems, and what not, made it hard to reach a general abstract concept encompassing the

common features of all these phenomena [3]. As a result, real-time programming (also

known as embedded systems, computer enabled control, etc.) is one of the most eclectic

and confused parts of computer science. In some safety-critical domains such as avionics, or

nuclear plant monitoring, there was a concentration of a critical mass of software engineers

working on the same application using the same hardware and software platform. However,

in many industrial domains, software developpers work in relative isolation, they are not the

dominant sub-community in the enterprise, and their productivity is not the determining

factor in hardware selection decisions. Consequently, they are often locked in the specific

programming environment supplied by hardware vendors, and need to stay with the same

vendor in order to reutilize already developed software. This situation was very convenient

for the major hardware vendors.

In contrast, the general-purpose market converged mostly into the open architectures of the

personal computer or workstation where hardware vendors compete with each other,

offering a variety of choices in motherboards, processors, I/O cards, modems, monitors, etc.

This open “plug-and-play” architecture encourages competition among vendors, resulting in

price reduction and can be viewed as one of the driving forces behind the proliferation of

computers in contemporary society. The quest for a similar standard interface is now taking

place in the consumer electronics market (IEEE 1394), and will probably change the

landscape of this domain as well. As for software, albeit the dominance of Microsoft on the

Intel architecture, users have a choice in almost any application domain (including operating

systems) and there are numerous programming environments, including several competing

compilers for every useful programming language.

Inspired by this state-of-affairs, users and developers of industrial control systems started to

push toward an open hardware and software architecture for industrial computers, based on

a PC-like computer with modern programming environment, as is offered by, for example,

by the Siemens S7 system. The advantage of such PC-like systems is their easy integration

with other software used by the enterprise. This connection is achieved either by interfacing

the PLC operating system with a commonly-used operating system, or by using the concept

of a Soft PLC, which is a regular PC equipped with an emulator for the PLC hardware and its

operating system. At the hardware level, compatibility is to be achieved by the use of one or

more out of several standard buses and communication protocols already being used in the

industry (some field bus standard already exist for DCS). In order to create a common

software base, an organization (PLCopen) and several technical committee have been

formed, resulting in the so-called IEC 1131-3 standard (now called IEC 61131-3), published

in 1993.[4]

The IEC 61131-3 Standard

Introduction

The IEC 61131-3 standard (hereafter "the standard") is an attempt to unify, at least at the

syntactic level, the main types of languages used in practice for PLC programming around

the world. Before getting into the details, some general comments about theory and practice

are in order. From a theoretical point of view it is somewhat strange to read a document

that speaks with the same importance about details such as character sets, and about how

to connect and evaluate function blocks: the former being a theoretically-trivial question

while the latter is a deep semantic issue on which numerous papers have been written.

Neither does a theoretician feel comfortable with a document starting as a legal contract

with a list of 79 terms and their meaning in the text. These terms are of various sorts

including absolute time, bistable function block, generic data-type, resource, task, carriage

return, and semantics. These sentiments are not particular to the IEC standard and one can

feel the same toward formalisms such as VHDL (hardware definition language), SDL (a

language for specifying distributed systems) and UML, which is supposed to be a “universal”

modeling formalism, supported by software industry giants. All these formalisms seem to

put too much attention to notation and features (to satisfy all committee members), while

neglecting the semantics, that is, what is the meaning of the specification or the program

written in them.

However, let us not forget that:

 Theoretically-trivial questions such as compatibility of character sets (or electronic plugs,

for that matter) are prerequisites for any possibility of connecting devices and software

units together.

 The engineer needs to solve problems in real-time and produce solutions for concrete

problems today. The esthetics, generality and scalability of the solutions are of

secondary importance. People started to communicate with each other long before

having any abstract ideas about grammar or meaning.

 Theoreticians have a tendency to want to start everything from scratch. However in real

life, backward compatibility is very important, even if the price is carrying with you some

of the anachronisms of previous solutions. Moreover, practitioners tend to hold on to

formalisms and tools they are used to (see Fortran or Cobol) as long as they feel they

solve their problems.

Having this in mind, together with the fact that before the standard, many PLC vendors

provided more or less the same functionalities but with different syntax, one can appreciate

the enormous progress which the standard has brought, although some aspects of the

standard will be criticized from a theoretical standpoint in the sequel. Five classes of

languages are covered by the standard:

1. Instruction List (IL): An assembly language inspired by languages used in various

existing hardware platforms.

2. Structured Text (ST): A Pascal-like imperative general-purpose programming language.

3. Ladder Diagram (LD): Essentially the popular graphical RLL formalism used mostly in the

US. Ladder diagrams are essentially yet another way to write Boolean switching functions

based on the metaphpor of relays.

4. Function Block Diagrams (FBD): a data-flow formalism for describing a network of

function blocks connected by signals.

5. Sequential Function Charts (SFC): A graphical formalism inspired by the French

(standard) formalism Grafcet, based on a variation of a class of Petri nets. This

formalism allows a combination of sequential and parallel activities and is popular in

Europe. The standard is adopted mostly from an older standard called IEC 848 defined in
1988.

As one can see, the languages come from various origins. IL and ST are in the computer

science tradition of sequential programming, while LD and FBD imitate the structure of their

predecessors, that is, hardware implementation of discrete and continuous controllers, which

are essentially parallel by nature. SFC combines sequentiality with parallelism.

The standard does not try to define compatibility relations between these formalisms. It

allows (without a guarantee of meaningfulness) to combine elements from different

languages. For example, relay diagrams may connect to function blocks, some of which may

be written in a textual language. Many lexical, syntactical and graphical conventions are

shared by all these languages.

Common Features

The standard starts with a description of the hardware and systems software environments

(configuration and resource) on which programs are supposed to be run. The simplest and

most generic case is a single control program running on single PLC. Such a program reads

its input, calculates its state and writes its output. The details of how a specific PLC performs

I/O and memory management operation are not part of the standard, which is based on a

layered architecture. It is assumed that the PLC sensor readings and actuator values are

passed through machine-specific memory locations, and the application software need not

be concerned with these details. This part of the standard also links the programming

standard with higher-level parts of the IEC-61131 standard for which PLC systems are

among the building blocks.

The standard has constructs for allowing different programs to be loaded and run on the

same PLC (separately or under multi-tasking) and for several PLCs running in parallel and

communicate via “access paths” which are abstractions of communication protocols.

A program is built from a number of different software elements, written in any of the five

languages (typically function blocks), which may exchange data among themselves. These

software elements are composed in parallel and are not invoked by themselves unless they

are assigned to a task and the task is either triggered by an event or configured to execute

periodically.

All languages share the same character sets and conform to ISO standards and conventions

for encoding time stamps. The standard defines elementary data-types, declaration of

compound data-types, initializations, etc. Variables can have local or global scopes. This is

standard stuff in modern programming.

In addition to the usual abstract variables, there are “directly represented” variables which

are addresses in the input, output and internal memory locations. There is also a distinction

between normal and "retainable" variables, where the latter are supposed to keep their

value after a physical shutdown of the computer.

Functions and Function Blocks

Function blocks are one of the basic elements of the standard, a special case of which are

the (memory-less) functions which we discuss first. These are functions that have no

internal variables that persist between two invocation, and hence produce the same output

for the same input each time they are called. Basic built-in functions can be composed

together in an a-cyclic fashion to yield new functions. This is a well-known and non-

problematic practice in sequential programming and in the design of combinatorial circuits.

Functions can be written either in the textual ST language (standard Pascal-like definition) or

in a graphical formalism used for the FBD language. The syntax of the latter is defined using

a mixture of text and ASCII graphics whose origin is probably related to backward

compatibility with existing programming environments.

Someone more aware to the distinction between syntax and semantics and between internal

and graphical representation, would have probably offered a cleaner formulation based on

an abstract mathematical representation of a network of functions (along with its isomorphic

internal computer representation), a compilation of textual programs into this format, and a

graphic editor which can extract the structure of the network from a user-drawn graphical

layout. This is in fact what is done today by IEC-61131-3-based tools.

The standard offers numerous built-in functions including, type conversions, numerical

operations, boolean functions and string manipulation and selection functions. In general,

functions do not seem to pose any serious semantical problems as long as combinatorial

loops are avoided.

Function blocks, which are function with memory, constitute the major software element of

the standard. Here, we believe, a better understanding of the theoretical issues involved,

would have improved the standard. The objects described by function blocks are as well

functions, but not functions on "static" data-types such as Reals, or Integers or Booleans or

some aggregations of those, but rather functions on sequences of elements taken from

these domains. For example, the function block DEBOUNCE appearing in Figure 10 of the

standard is not a function from BOOL times TIME to BOOL times TIME but a functions that

maps sequences of BOOL times TIME to other sequences of this domain. In theoretical

terminology this is a sequential function or a transducer, which can be represented by an

automaton or by a circuit with latches. Of course, memory-less functions, described in the

previous paragraph, such as AND which maps pairs of Booleans to Booleans can be extended

naturally to functions on sequences, but since at each time instance the current output

depends only on the current input, this point of view does not contribute much. For functions

with memory, this insight is indispensable, and is in the heart of the distinction between

transformational and reactive systems [5].

Function block declaration are syntactically similar to functions, except for having internal

variables which can be updated at every invocation and retain their value after each

invocation (this is an indirect way to speak of sequences). In fact, the declaration of a

function block is viewed in the standard as declaring a type, and then instances of this type

are declared as variables. In principle function blocks can be transferred as arguments to

function blocks, which is a semantic can of worms, I am not sure the authors would like to

open.

There are many standard function blocks such as flip-flops and counters. Other function

blocks provide discretized versions of continuous-time operators such as integral and

derivatives. Integration, for example, is done at each cycle by adding the product of the

input and the size of the time step. Here, again, a careful understanding of the objects in

question (in this case, discrete time and continuous time signals and functions defined on

them) could contribute to clarifying the text [6].

As an example of blurring these distinctions, we can look at section 2.5.2.3.4, where

definitions of standard blocks called timers are given. They appear only graphically without

their definition in textual language. Moreover, for some of them it is specified explicitly that

they cannot be used in textual languages. Their “semantics” is exemplified in table 38 using

what appear to be continuous time signals.

The Languages

The Textual Languages IL and ST

The textual languages are Instruction List -- IL and Structured Text -- ST. Both are

essentially classical sequential and imperative languages, the first being a low-level

assembly language and the second a high-level Pascal-like language. Such languages are

fairly standard in computer science and we have only the following comments:

 Using the full expressive power of these languages (e.g.\ WHILE loops) it is possible to

write procedures whose execution time is not predicted, not bounded and even infinite.

Incorporating such programs in control application is, of course, not a healthy practice.

On the other hand, it is possible to impose syntactic restrictions which may guarantee

bounded response time. For example, one can allow only programs with no backward

jumps (in IL) or restrict FOR-loops to have constant delimiters (in ST) to guarantee this

property.

 These languages are inherently sequential which makes them inappropriate for writing

whole control applications, which almost always have parallelism. There is no explicit

parallel composition construct in ST, and parallelism is achieved either using the ad-hoc

solution of multi-tasking (as in ADA), or doing the parallel composition via other

languages (FBD and SFC) which can accept sequential modules as building blocks. This is

unlike a real-time imperative language such as Esterel, or formalisms such as CCS and

CSP, which admit an explicit parallel composition operator.

In any case, these languages are well-suited for writing modules by programmers having a

general computer science (rather than control) culture. The IL language can serve as a basis

for an abstract machine to which other language can compile.

Ladder Diagrams -- LD

Ladder diagrams is a graphical language designed for backward compatibility with the RLL

formalism, itself a result of backward compatibility with hardware relay technology.

Essentially what you want to write in LD are relations between the values of current state

and input variable and the values of next state and output variables, plus some suggestions

on the order of evaluation of the conditions involved. The technology of Boolean expressions

and Binary Decision Diagrams (BDD) seems to me much more suitable for this purpose then

the language of relays. In fact, relays resemble transistors, which are semantically more

complicated than Boolean gates. The use of transistors is justified in the design of digital

circuits where they are closer to the physical implementation medium than their Boolean

abstraction. But as a metaphor for decision making, which is later to be compiled into

software, there is no real reason to use the anachronistic relay metaphor, which can be

encoded using Boolean block diagrams. Of course, this is a subjective opinion and the death

of this dialect can be a very slow process...

Function Block Diagrams -- FBD

Function block diagram is a graphical formalism already discussed in the “common

elements” section. In software terminology, a function block is a module with its own

variables and data-structure and an interface with the outside world. Simple function blocks

can be composed together to form larger ones, encouraging a modular and hierarchical style

of program development. There are certain programming constructs which are not

comfortably expressible graphically. These include FOR loops and operations on arrays,

interrupts which lead to abortion and complex algorithms in general.

Function blocks diagrams resemble very much the data-flow language Lustre which underlies

the programming environment Scade, used in avionics and nuclear plant control. Due to the

safety-critical aspects of these applications, Lustre is based on a very precise semantics

(functional equations on sequences) and goes through a compilation process which includes

checking whether the program is well-defined (no causal loops) and a generation of an

optimized C code which runs all the program as a single loop (no multi-tasking).

Although many applications of PLC systems are not as safety-critical nor time-critical as

flight control [7], we believe that some of the insights gained in the Lustre experience, such

as simple sequence-based semantics, few primitives or explicit delay operator, can

contribute to the development of future versions of FBD and their corresponding semantics.

On the other hand, the idea of allowing certain blocks to be written in a well-behaving

subset of an imperative language, directly in the programming environment (unlike

connection to C routine in the linking phase) might be useful in cases where the data-flow

formalism is not adequate.

Sequential Function Charts -- SFC

Sequential function charts constitute a formalism which combines sequential and parallel

operations. It is based on Grafcet which can be roughly characterized as a synchronous and

labeled variant of Petri nets. There are many incompatible interpretations of this formalism

(again, the standard is rigorous about the orientation of connecting lines, but less so

concerning the operational semantics) and we will try to give the main principles of this

important formalism.

A basic entity in SFC is the STEP. In fact, it is not easy to understand and explain this notion

without having a clear distinction between the state of the PLC system and that of the

environment. Roughly, from the point of view of the PLC, a step is part of its state (when

there is no parallelism, the step is the state). When a PLC program is in a step it typically

implies that certain output variables controlled by the program (what is called "actions", see

below) are kept in a certain value. For example, a step "heat" in a PLC program might mean

that a a certain Boolean variable, whose value is actuated into the heating device, is in a

state ON. The actual physical process which underlies the step might be more complicated

and include lower-level feed-back loops, but at the level of the SFC it is represented by one

or more variables which stay constant during the period in which the step is active. This is

similar, to a certain extent, to the layered architecture used in communication networks,

where a what is viewed as a "transmit file" state at one layer is realized by a complex

dynamic process in the lower layer. Steps are represented graphically by rectangular boxes.

Two consecutive steps are separated by a TRANSITION, which is essentially a condition over

input variables (the condition can be written using various IEC languages, but this is not the

important point). When the transition condition is true, the first step terminates and the next

state starts. In the heating example, a condition might be “temperature more than 30”

which refers to a sensor reading of a variable influenced by the step (of course, from the PLC

point of view the two variables are unrelated -- it is only through the physical environment

that they become related). A transition condition can be any other external event triggered,

for example, by the operator. The termination of the first step is accompanied by "undoing"

some of what has been done by the first step, for example, turning the heater OFF. What is

reset and what is retained depends on the qualifiers of the actions which constitute the step

-- see later. Graphically, a transition is a bold horizontal line crossing the vertical line

connecting the two steps.

There are two special variables associated with every step. One is a Boolean variable

indicating whether the step is active or not (whether it has a token, in the Petri net

terminology). The other is a timer which measures the time elapsed since activation. This

variable can appear in transitions like any other variable and allows to specify time-bounded

behavior such as “heat for 5 minutes”.

So far we have described “straight-line programs” without choice. The mechanism to

implement choice is to use divergent paths, that is, to split the line leaving a step into two or

more lines, each with its associated transition condition and next step. The conditions need

not be mutually exclusive and they are evaluated using a default or a user-defined order to

decide which branch will be taken [8].

The notation is somewhat unfortunate because the bifurcation of the lines takes place before

the competing conditions and it may lead to some confusion with parallelism.

The parallel composition operator is represented graphically by a horizontal double line, from

which several parallel sequences can emanate. In that case the state of the system is the

set of the states of the parallel processes which proceed independently until they merge

again. Such a "synchronization" is represented by another horizontal double line to which all

the last steps of the involved processes converge, and the transition following that line

terminates these steps.

Using parallelism it is very easy to produce bugs and meaningless programs. One possibility

is to modify the same variable in two or more concurrent branches of the program. Another

possibility is to "synchronize" two branches which are exclusive (not concurrent). This will

cause a deadlock. Other forms of unsafe programming might create an unbounded number

of parallel steps. Most of these problems can be avoided by a discipline of programming

which restricts the syntax of programs which are accepted by the program development

environment.

So far we have avoided a discussion of the semantics of SFCs. At the theoretical level, the

appropriate objects are continuous-time signals, most of which are discrete-valued and the

rest are clocks. Assuming a non-Zeno behavior (values of external variables and conditions

do not change infinitely many times in a finite interval), SFC programs can be viewed as

signal transducers. In order to avoid ambiguity, one can assume that no two events happen

at the same time, and that every condition is fired as soon as it is true. This ideal semantics

is approximated by an implementation where the input variables are sampled periodically.

Here two events can happen at the same cycle, one making a condition true and the other

falsifying it. The interpretation rules of Grafcet are supposed to give an unambiguous

semantics to such cases.

As mentioned above, steps can be composed of a sequence of actions which can have

various qualifiers determining the duration of an action during the step lifetime. Some

actions can be active during the whole step, some can be “done” [9] only at the beginning

or the end of a step, some maybe delayed, etc. Personally, I feel this could be done more

elegantly using fewer action qualifiers and more steps. Some implementations allow

hierarchical design where an SFC is regarded as a step by a higher-level SFC and there is no

reason why steps with multiple action qualifiers cannot be broken into sequences of steps.

To summarize, SFC is a powerful formalism which seems to be natural for processes which

combine sequential and parallel aspects. I cannot avoid remarking that in theoretical

computer science, Petri nets are considered part of the theory of concurrency while from the

control point of view they are viewed as sequential, and indeed they are, compared to block

diagrams.

Potential Contributions of the Consortium

The contribution of the reactive systems community [10] to the enterprise of programming

industrial computers can be in the following inter-related domains:

 Giving a precise semantics to PLC programs and their physical environments. Concurrent

and distributed systems have been investigated by computer scientists for years and

exposing the useful essence (Note: That is, around 1\% of the publications.) of this

knowledge (mutual exclusion, synchrony vs. asynchrony, causality and so on) can do

good for both communities. More recent research on timed and hybrid systems may

clarify subtle issues concerning the interaction of the computer with its environment.

 Influencing the development of design methodologies, language standards and

programming environment toward the more rigorous side. This effort should be based on

the accumulated experience of developing and studying various languages and tools

(such as Lustre/Scade, StateCharts and Esterel) for other application domains. General

computer science know-how, such as compilation technology, which is not specific to the

reactive systems community can be useful as well.

The question of whether such a contribution is possible via interaction with users, technical

committees, hardware or software vendors is an empirical one. Hopefully it will be answered

by the end of the project.

Development of verification technology for PLC programming.

Controllers written in a well-defined language can be subject to formal verification which is

equivalent to exhaustive testing of the program in front of all admissible behaviors of the

external environment. For program properties which do not require modeling of the

environment, “classical” discrete verification is already applicable, as witnessed by some

work on case-studies 1 and 2. Transforming programs written in well-behaving subsets of

the IEC standard into formats used by existing verification tools is a standard exercise.

For time-dependent properties, the new technology of timed automata (Kronos, Uppaal) can

be applied, although a lot is still to be done in terms of modeling principles and more

efficient verification algorithms. More intricate properties require modeling of the

environment. Whether a heating step, whose termination condition is that the temperature

passes a certain threshold, indeed terminates, depends on the fact that the temperature is

monotonically increasing and diverging (at least in a certain range) when heat is on. More

detailed properties, such as quantitative estimation of the step durations, require finer level

of modeling, etc. Finding the most abstract level for describing the external physical

dynamics which is still sufficient for verification of interesting properties is a major challenge

for the rest of the project.

Conclusions

The programming of industrial computers is still shaped by languages used for old

technology and backward compatibility, but the first signs of an evolution toward a more

structured and high-level discipline of programming are already visible.

[1] While the scope of this report is the class of systems controlled by PLCs and

DCSs, some of the initial considerations are common to all computer that

control, sometimes referred to as “embedded”, “reactive”, or “real-time”

systems.

[2] Simple in the technical sense that all instances of the computation can be

performed within a-priori bounded time and space. These computations can be

very complicated in other senses.

[3] Compare again with the much simpler domain of business data-processing, in

which it took many years to develop the unifying concept of the data-base

management system, separating the logical from the physical in information

storage.

[4] This is part of a more general standard, supposed to define common

terminology in the chemical process control world, but we will concentrate on

the software. IEC stands for International Electro-technical Commission.

[5] These claims should not be interpreted as preference of I/O descriptions over

state-space descriptions. The only message here is that what function blocks

do is to transform input sequences to output sequences. A representation by a

program or an automaton can be as good and sometimes preferable to an I/O

description, as long as we remember what is the functionality of the object in

question.

[6] In MatrixX/Xmath, a popular block diagram package for control engineers, the

delay operator for discrete time signals is distinct from the delay operator on

sequences which is called there "shift register" although their functionality is

the same.

[7] On some popular packages for PLC programming, such programs are run via

an interpreter, and certain applications are slow enough to run even on

Windows NT!

[8] Of course, it is theoretically trivial to convert an ordered set of conditions into

an equivalent unordered and mutually exclusive set, but some users might

prefer this ELSE..IF construct.

[9] There is some confusion already in the name "action": is keeping the heater

ON an action in the same sense that incrementing a counter is?

[10] This broad term refers to computer scientists working on the semantics,

verification and programming methodologies for computers that interact with

an external environment.

