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Abstract 

This report, which is part of the deliverable IP.1 of the Esprit project VHS (Verification of 

Hybrid Systems), analyzes some software engineering aspects of industrial computers such 

as PLCs (programmable logic controllers) and DCS (distributed control systems). The report 

starts with a comparison between the development of software engineering for general-

purpose computers and the programming of control computers. Then it critically surveys the 

five programming languages defined by the IEC 61131-3 standard which is intended to unify 

PLC programming languages. Finally several potential contributions of the consortium 

toward improving the state-of-the-art in this domain are suggested.  

 

Introduction: Industrial vs. General-purpose Computers 

Programming methodologies for the general-purpose computer have undergone tremendous 

improvements since the 50's. In few decades programming moved from machine code and 

assembly languages, via the first high-level languages, structured programming, data-types, 

cross-compilers and debuggers up to object libraries, graphical programming environments 

and inter-application interfaces. The outcome of all these developments (and many others 

not mentioned here) is that programming can be done at a more abstract and problem-

oriented fashion, letting the computer itself do the tedious tasks of handling the technical 

details of the specific hardware platform on which the program will eventually run. 

Consequently the cost-effectiveness and quality of software production has increased 

beyond what could be imagined in the early days of computers.  

 

So far the development of programming methodologies for special purpose industrial 

computers has been significantly slower [1]. Before we analyze this problem, its origins and, 

hopefully, some of its solutions, we have to characterize, even roughly, the type of systems 

we are talking about. First and foremost we are concerned with systems whose major role is 

to interact via sensors and actuators with a dynamic physical environment, in other words, 

computers that control. Of course, ordinary computers are connected as well to peripherals 

such as a mouse, a keyboard or a communication port, but this interaction is not their 

raison-d'être. The functionality of control computers is defined in terms of the performance 

of the physical processes with which they interact. In order to achieve this performance the 

control system monitors input signals which deliver information from the process, makes 

some calculations and produces output signals which are then amplified and transduced into 

actions that influence the process. The calculations done by the controller are usually simple 

[2] (compared to arbitrary algorithms which can be performed by general-purpose 

computers) but they must respect some timing constraints due to the interaction with a 

dynamic environment which does not wait for the controller to conclude its computations.  

 

One can distinguish between two types of signals, continuous and discrete. The former 

represent quantities such as temperature, velocity or water level while the latter can stand 

for on/off states of devices such as valves and furnaces, for threshold conditions on 

continuous quantities or for higher-level supervisory signals. In the pre-computer days 



calculations over continuous signals where done by analog means, first mechanically and 

later electrically by analog computers. This is the origin of the block diagram paradigm 

where input signal move through arithmetical components and integrators to produce output 

signals. Similarly the discrete "logical" input-output functions were computed initially by 

electro-magnetic and pneumatic relays and later by hardwired digital electronics, which can 

be viewed as a discrete version of block diagrams.  

 

The rapid progress in VLSI technology and the arrival of cheap micro-processors affected 

both types of control systems. For continuous control it turned out to be more cost-effective 

to replace analog noisy devices by digital calculations. The price of going digital is the 

replacement of "real" numbers, represented by magnitudes of physical quantities, by their 

binary encoded floating-point approximations and of continuous control by sampled 

piecewise-constant control. The nature of continuous processes (sampling theorems) 

combined with the speed and accuracy of digital computers guarantee the dominance of 

digital control. Discretized versions of continuous blocks such as integrators and PID 

controllers are widely used. On the discrete control side, the replacement of the hardwired 

(and later programmable) logic controller by a general-purpose microprocessor was even 

more natural. With a microprocessor inside, one would expect that control computers will 

converge toward general-purpose computers and benefit from the progress in software 

engineering but some technical, conceptual and sociological factors are slowing-down this 

convergence.  

 

To analyze the situation let us see what is still special about computers that control.  

Closed and Open Architectures 

The major feature of control computers is the need to interact with many I/O signals coming 

from various types of devices. From the computer hardware point of view this means that 

the processor board is augmented with specialized I/O boards whose function is to connect 

physical signals with the computer memory using A/D and D/A conversion, amplification of 

output signals in order to drive actuators, and communication with the processor. In 

addition, these computers are supposed sometimes to work in hard physical conditions and 

be more solid and reliable. Hence the processor and its software constituted a secondary 

concern relative to measurement technology and other electrical and mechanical engineering 

considerations. The intimate connection with the physical world explains the lag in 

development of more high-level programming culture in this domain. In fact, the situation is 

similar to that of operating systems programming two decades ago, where “systems” 

programming was dominated by assembly languages and low-level primitives to handle I/O 

devices and improve performance.  

 

The diversity of plants to be controlled, such as airplanes and missiles, refineries, CNC 

machines, production lines at various scales, railway systems, washing machines, alarm 

systems, and what not, made it hard to reach a general abstract concept encompassing the 

common features of all these phenomena [3]. As a result, real-time programming (also 

known as embedded systems, computer enabled control, etc.) is one of the most eclectic 

and confused parts of computer science. In some safety-critical domains such as avionics, or 

nuclear plant monitoring, there was a concentration of a critical mass of software engineers 

working on the same application using the same hardware and software platform. However, 

in many industrial domains, software developpers work in relative isolation, they are not the 

dominant sub-community in the enterprise, and their productivity is not the determining 

factor in hardware selection decisions. Consequently, they are often locked in the specific 

programming environment supplied by hardware vendors, and need to stay with the same 

vendor in order to reutilize already developed software. This situation was very convenient 



for the major hardware vendors.  

 

In contrast, the general-purpose market converged mostly into the open architectures of the 

personal computer or workstation where hardware vendors compete with each other, 

offering a variety of choices in motherboards, processors, I/O cards, modems, monitors, etc. 

This open “plug-and-play” architecture encourages competition among vendors, resulting in 

price reduction and can be viewed as one of the driving forces behind the proliferation of 

computers in contemporary society. The quest for a similar standard interface is now taking 

place in the consumer electronics market (IEEE 1394), and will probably change the 

landscape of this domain as well. As for software, albeit the dominance of Microsoft on the 

Intel architecture, users have a choice in almost any application domain (including operating 

systems) and there are numerous programming environments, including several competing 

compilers for every useful programming language.  

 

Inspired by this state-of-affairs, users and developers of industrial control systems started to 

push toward an open hardware and software architecture for industrial computers, based on 

a PC-like computer with modern programming environment, as is offered by, for example, 

by the Siemens S7 system. The advantage of such PC-like systems is their easy integration 

with other software used by the enterprise. This connection is achieved either by interfacing 

the PLC operating system with a commonly-used operating system, or by using the concept 

of a Soft PLC, which is a regular PC equipped with an emulator for the PLC hardware and its 

operating system. At the hardware level, compatibility is to be achieved by the use of one or 

more out of several standard buses and communication protocols already being used in the 

industry (some field bus standard already exist for DCS). In order to create a common 

software base, an organization (PLCopen) and several technical committee have been 

formed, resulting in the so-called IEC 1131-3 standard (now called IEC 61131-3), published 

in 1993.[4]  

 

The IEC 61131-3 Standard 

 
Introduction 

The IEC 61131-3 standard (hereafter "the standard") is an attempt to unify, at least at the 

syntactic level, the main types of languages used in practice for PLC programming around 

the world. Before getting into the details, some general comments about theory and practice 

are in order. From a theoretical point of view it is somewhat strange to read a document 

that speaks with the same importance about details such as character sets, and about how 

to connect and evaluate function blocks: the former being a theoretically-trivial question 

while the latter is a deep semantic issue on which numerous papers have been written. 

Neither does a theoretician feel comfortable with a document starting as a legal contract 

with a list of 79 terms and their meaning in the text. These terms are of various sorts 

including absolute time, bistable function block, generic data-type, resource, task, carriage 

return, and semantics. These sentiments are not particular to the IEC standard and one can 

feel the same toward formalisms such as VHDL (hardware definition language), SDL (a 

language for specifying distributed systems) and UML, which is supposed to be a “universal” 

modeling formalism, supported by software industry giants. All these formalisms seem to 

put too much attention to notation and features (to satisfy all committee members), while 

neglecting the semantics, that is, what is the meaning of the specification or the program 



written in them.  

However, let us not forget that:  

 Theoretically-trivial questions such as compatibility of character sets (or electronic plugs, 

for that matter) are prerequisites for any possibility of connecting devices and software 

units together. 

 The engineer needs to solve problems in real-time and produce solutions for concrete 

problems today. The esthetics, generality and scalability of the solutions are of 

secondary importance. People started to communicate with each other long before 

having any abstract ideas about grammar or meaning. 

 Theoreticians have a tendency to want to start everything from scratch. However in real 

life, backward compatibility is very important, even if the price is carrying with you some 

of the anachronisms of previous solutions. Moreover, practitioners tend to hold on to 

formalisms and tools they are used to (see Fortran or Cobol) as long as they feel they 

solve their problems. 

 

Having this in mind, together with the fact that before the standard, many PLC vendors 

provided more or less the same functionalities but with different syntax, one can appreciate 

the enormous progress which the standard has brought, although some aspects of the 

standard will be criticized from a theoretical standpoint in the sequel. Five classes of 

languages are covered by the standard:  

1. Instruction List (IL): An assembly language inspired by languages used in various 

existing hardware platforms. 

2. Structured Text (ST): A Pascal-like imperative general-purpose programming language. 

3. Ladder Diagram (LD): Essentially the popular graphical RLL formalism used mostly in the 

US. Ladder diagrams are essentially yet another way to write Boolean switching functions 

based on the metaphpor of relays. 

4. Function Block Diagrams (FBD): a data-flow formalism for describing a network of 

function blocks connected by signals. 

5. Sequential Function Charts (SFC): A graphical formalism inspired by the French 

(standard) formalism Grafcet, based on a variation of a class of Petri nets. This 

formalism allows a combination of sequential and parallel activities and is popular in 

Europe. The standard is adopted mostly from an older standard called IEC 848 defined in 
1988. 

As one can see, the languages come from various origins. IL and ST are in the computer 

science tradition of sequential programming, while LD and FBD imitate the structure of their 

predecessors, that is, hardware implementation of discrete and continuous controllers, which 

are essentially parallel by nature. SFC combines sequentiality with parallelism.  

 

The standard does not try to define compatibility relations between these formalisms. It 

allows (without a guarantee of meaningfulness) to combine elements from different 

languages. For example, relay diagrams may connect to function blocks, some of which may 

be written in a textual language. Many lexical, syntactical and graphical conventions are 

shared by all these languages.  

  



Common Features 

The standard starts with a description of the hardware and systems software environments 

(configuration and resource) on which programs are supposed to be run. The simplest and 

most generic case is a single control program running on single PLC. Such a program reads 

its input, calculates its state and writes its output. The details of how a specific PLC performs 

I/O and memory management operation are not part of the standard, which is based on a 

layered architecture. It is assumed that the PLC sensor readings and actuator values are 

passed through machine-specific memory locations, and the application software need not 

be concerned with these details. This part of the standard also links the programming 

standard with higher-level parts of the IEC-61131 standard for which PLC systems are 

among the building blocks.  

 

The standard has constructs for allowing different programs to be loaded and run on the 

same PLC (separately or under multi-tasking) and for several PLCs running in parallel and 

communicate via “access paths” which are abstractions of communication protocols. 

 

A program is built from a number of different software elements, written in any of the five 

languages (typically function blocks), which may exchange data among themselves. These 

software elements are composed in parallel and are not invoked by themselves unless they 

are assigned to a task and the task is either triggered by an event or configured to execute 

periodically.  

 

All languages share the same character sets and conform to ISO standards and conventions 

for encoding time stamps. The standard defines elementary data-types, declaration of 

compound data-types, initializations, etc. Variables can have local or global scopes. This is 

standard stuff in modern programming.  

 

In addition to the usual abstract variables, there are “directly represented” variables which 

are addresses in the input, output and internal memory locations. There is also a distinction 

between normal and "retainable" variables, where the latter are supposed to keep their 

value after a physical shutdown of the computer.  

Functions and Function Blocks 

Function blocks are one of the basic elements of the standard, a special case of which are 

the (memory-less) functions which we discuss first. These are functions that have no 

internal variables that persist between two invocation, and hence produce the same output 

for the same input each time they are called. Basic built-in functions can be composed 

together in an a-cyclic fashion to yield new functions. This is a well-known and non-

problematic practice in sequential programming and in the design of combinatorial circuits.  

 

Functions can be written either in the textual ST language (standard Pascal-like definition) or 

in a graphical formalism used for the FBD language. The syntax of the latter is defined using 

a mixture of text and ASCII graphics whose origin is probably related to backward 

compatibility with existing programming environments.  

 

Someone more aware to the distinction between syntax and semantics and between internal 

and graphical representation, would have probably offered a cleaner formulation based on 

an abstract mathematical representation of a network of functions (along with its isomorphic 

internal computer representation), a compilation of textual programs into this format, and a 

graphic editor which can extract the structure of the network from a user-drawn graphical 

layout. This is in fact what is done today by IEC-61131-3-based tools.  



The standard offers numerous built-in functions including, type conversions, numerical 

operations, boolean functions and string manipulation and selection functions. In general, 

functions do not seem to pose any serious semantical problems as long as combinatorial 

loops are avoided.  

 

Function blocks, which are function with memory, constitute the major software element of 

the standard. Here, we believe, a better understanding of the theoretical issues involved, 

would have improved the standard. The objects described by function blocks are as well 

functions, but not functions on "static" data-types such as Reals, or Integers or Booleans or 

some aggregations of those, but rather functions on sequences of elements taken from 

these domains. For example, the function block DEBOUNCE appearing in Figure 10 of the 

standard is not a function from BOOL times TIME to BOOL times TIME but a functions that 

maps sequences of BOOL times TIME to other sequences of this domain. In theoretical 

terminology this is a sequential function or a transducer, which can be represented by an 

automaton or by a circuit with latches. Of course, memory-less functions, described in the 

previous paragraph, such as AND which maps pairs of Booleans to Booleans can be extended 

naturally to functions on sequences, but since at each time instance the current output 

depends only on the current input, this point of view does not contribute much. For functions 

with memory, this insight is indispensable, and is in the heart of the distinction between 

transformational and reactive systems [5].  

 

Function block declaration are syntactically similar to functions, except for having internal 

variables which can be updated at every invocation and retain their value after each 

invocation (this is an indirect way to speak of sequences). In fact, the declaration of a 

function block is viewed in the standard as declaring a type, and then instances of this type 

are declared as variables. In principle function blocks can be transferred as arguments to 

function blocks, which is a semantic can of worms, I am not sure the authors would like to 

open.  

 

There are many standard function blocks such as flip-flops and counters. Other function 

blocks provide discretized versions of continuous-time operators such as integral and 

derivatives. Integration, for example, is done at each cycle by adding the product of the 

input and the size of the time step. Here, again, a careful understanding of the objects in 

question (in this case, discrete time and continuous time signals and functions defined on 

them) could contribute to clarifying the text [6].  

 

As an example of blurring these distinctions, we can look at section 2.5.2.3.4, where 

definitions of standard blocks called timers are given. They appear only graphically without 

their definition in textual language. Moreover, for some of them it is specified explicitly that 

they cannot be used in textual languages. Their “semantics” is exemplified in table 38 using 

what appear to be continuous time signals.  

 

The Languages 

The Textual Languages IL and ST 

The textual languages are Instruction List -- IL and Structured Text -- ST. Both are 

essentially classical sequential and imperative languages, the first being a low-level 

assembly language and the second a high-level Pascal-like language. Such languages are 

fairly standard in computer science and we have only the following comments:  



 Using the full expressive power of these languages (e.g.\ WHILE loops) it is possible to 

write procedures whose execution time is not predicted, not bounded and even infinite. 

Incorporating such programs in control application is, of course, not a healthy practice. 

On the other hand, it is possible to impose syntactic restrictions which may guarantee 

bounded response time. For example, one can allow only programs with no backward 

jumps (in IL) or restrict FOR-loops to have constant delimiters (in ST) to guarantee this 

property. 

 These languages are inherently sequential which makes them inappropriate for writing 

whole control applications, which almost always have parallelism. There is no explicit 

parallel composition construct in ST, and parallelism is achieved either using the ad-hoc 

solution of multi-tasking (as in ADA), or doing the parallel composition via other 

languages (FBD and SFC) which can accept sequential modules as building blocks. This is 

unlike a real-time imperative language such as Esterel, or formalisms such as CCS and 

CSP, which admit an explicit parallel composition operator. 

 

In any case, these languages are well-suited for writing modules by programmers having a 

general computer science (rather than control) culture. The IL language can serve as a basis 

for an abstract machine to which other language can compile.  

Ladder Diagrams -- LD 

Ladder diagrams is a graphical language designed for backward compatibility with the RLL 

formalism, itself a result of backward compatibility with hardware relay technology. 

Essentially what you want to write in LD are relations between the values of current state 

and input variable and the values of next state and output variables, plus some suggestions 

on the order of evaluation of the conditions involved. The technology of Boolean expressions 

and Binary Decision Diagrams (BDD) seems to me much more suitable for this purpose then 

the language of relays. In fact, relays resemble transistors, which are semantically more 

complicated than Boolean gates. The use of transistors is justified in the design of digital 

circuits where they are closer to the physical implementation medium than their Boolean 

abstraction. But as a metaphor for decision making, which is later to be compiled into 

software, there is no real reason to use the anachronistic relay metaphor, which can be 

encoded using Boolean block diagrams. Of course, this is a subjective opinion and the death 

of this dialect can be a very slow process...  

Function Block Diagrams -- FBD 

Function block diagram is a graphical formalism already discussed in the “common 

elements” section. In software terminology, a function block is a module with its own 

variables and data-structure and an interface with the outside world. Simple function blocks 

can be composed together to form larger ones, encouraging a modular and hierarchical style 

of program development. There are certain programming constructs which are not 

comfortably expressible graphically. These include FOR loops and operations on arrays, 

interrupts which lead to abortion and complex algorithms in general.  

 

Function blocks diagrams resemble very much the data-flow language Lustre which underlies 

the programming environment Scade, used in avionics and nuclear plant control. Due to the 

safety-critical aspects of these applications, Lustre is based on a very precise semantics 

(functional equations on sequences) and goes through a compilation process which includes 

checking whether the program is well-defined (no causal loops) and a generation of an 

optimized C code which runs all the program as a single loop (no multi-tasking).  

 



Although many applications of PLC systems are not as safety-critical nor time-critical as 

flight control [7], we believe that some of the insights gained in the Lustre experience, such 

as simple sequence-based semantics, few primitives or explicit delay operator, can 

contribute to the development of future versions of FBD and their corresponding semantics. 

On the other hand, the idea of allowing certain blocks to be written in a well-behaving 

subset of an imperative language, directly in the programming environment (unlike 

connection to C routine in the linking phase) might be useful in cases where the data-flow 

formalism is not adequate.  

Sequential Function Charts -- SFC 

Sequential function charts constitute a formalism which combines sequential and parallel 

operations. It is based on Grafcet which can be roughly characterized as a synchronous and 

labeled variant of Petri nets. There are many incompatible interpretations of this formalism 

(again, the standard is rigorous about the orientation of connecting lines, but less so 

concerning the operational semantics) and we will try to give the main principles of this 

important formalism.  

 

A basic entity in SFC is the STEP. In fact, it is not easy to understand and explain this notion 

without having a clear distinction between the state of the PLC system and that of the 

environment. Roughly, from the point of view of the PLC, a step is part of its state (when 

there is no parallelism, the step is the state). When a PLC program is in a step it typically 

implies that certain output variables controlled by the program (what is called "actions", see 

below) are kept in a certain value. For example, a step "heat" in a PLC program might mean 

that a a certain Boolean variable, whose value is actuated into the heating device, is in a 

state ON. The actual physical process which underlies the step might be more complicated 

and include lower-level feed-back loops, but at the level of the SFC it is represented by one 

or more variables which stay constant during the period in which the step is active. This is 

similar, to a certain extent, to the layered architecture used in communication networks, 

where a what is viewed as a "transmit file" state at one layer is realized by a complex 

dynamic process in the lower layer. Steps are represented graphically by rectangular boxes.  

 

Two consecutive steps are separated by a TRANSITION, which is essentially a condition over 

input variables (the condition can be written using various IEC languages, but this is not the 

important point). When the transition condition is true, the first step terminates and the next 

state starts. In the heating example, a condition might be “temperature more than 30” 

which refers to a sensor reading of a variable influenced by the step (of course, from the PLC 

point of view the two variables are unrelated -- it is only through the physical environment 

that they become related). A transition condition can be any other external event triggered, 

for example, by the operator. The termination of the first step is accompanied by "undoing" 

some of what has been done by the first step, for example, turning the heater OFF. What is 

reset and what is retained depends on the qualifiers of the actions which constitute the step 

-- see later. Graphically, a transition is a bold horizontal line crossing the vertical line 

connecting the two steps.  

 

There are two special variables associated with every step. One is a Boolean variable 

indicating whether the step is active or not (whether it has a token, in the Petri net 

terminology). The other is a timer which measures the time elapsed since activation. This 

variable can appear in transitions like any other variable and allows to specify time-bounded 

behavior such as “heat for 5 minutes”.  

 

So far we have described “straight-line programs” without choice. The mechanism to 

implement choice is to use divergent paths, that is, to split the line leaving a step into two or 



more lines, each with its associated transition condition and next step. The conditions need 

not be mutually exclusive and they are evaluated using a default or a user-defined order to 

decide which branch will be taken [8]. 

 

The notation is somewhat unfortunate because the bifurcation of the lines takes place before 

the competing conditions and it may lead to some confusion with parallelism.  

 

The parallel composition operator is represented graphically by a horizontal double line, from 

which several parallel sequences can emanate. In that case the state of the system is the 

set of the states of the parallel processes which proceed independently until they merge 

again. Such a "synchronization" is represented by another horizontal double line to which all 

the last steps of the involved processes converge, and the transition following that line 

terminates these steps. 

 

Using parallelism it is very easy to produce bugs and meaningless programs. One possibility 

is to modify the same variable in two or more concurrent branches of the program. Another 

possibility is to "synchronize" two branches which are exclusive (not concurrent). This will 

cause a deadlock. Other forms of unsafe programming might create an unbounded number 

of parallel steps. Most of these problems can be avoided by a discipline of programming 

which restricts the syntax of programs which are accepted by the program development 

environment.  

 

So far we have avoided a discussion of the semantics of SFCs. At the theoretical level, the 

appropriate objects are continuous-time signals, most of which are discrete-valued and the 

rest are clocks. Assuming a non-Zeno behavior (values of external variables and conditions 

do not change infinitely many times in a finite interval), SFC programs can be viewed as 

signal transducers. In order to avoid ambiguity, one can assume that no two events happen 

at the same time, and that every condition is fired as soon as it is true. This ideal semantics 

is approximated by an implementation where the input variables are sampled periodically. 

Here two events can happen at the same cycle, one making a condition true and the other 

falsifying it. The interpretation rules of Grafcet are supposed to give an unambiguous 

semantics to such cases.  

 

As mentioned above, steps can be composed of a sequence of actions which can have 

various qualifiers determining the duration of an action during the step lifetime. Some 

actions can be active during the whole step, some can be “done” [9] only at the beginning 

or the end of a step, some maybe delayed, etc. Personally, I feel this could be done more 

elegantly using fewer action qualifiers and more steps. Some implementations allow 

hierarchical design where an SFC is regarded as a step by a higher-level SFC and there is no 

reason why steps with multiple action qualifiers cannot be broken into sequences of steps. 

 

To summarize, SFC is a powerful formalism which seems to be natural for processes which 

combine sequential and parallel aspects. I cannot avoid remarking that in theoretical 

computer science, Petri nets are considered part of the theory of concurrency while from the 

control point of view they are viewed as sequential, and indeed they are, compared to block 

diagrams.  

Potential Contributions of the Consortium  

The contribution of the reactive systems community [10] to the enterprise of programming 

industrial computers can be in the following inter-related domains:  

 



 Giving a precise semantics to PLC programs and their physical environments. Concurrent 

and distributed systems have been investigated by computer scientists for years and 

exposing the useful essence (Note: That is, around 1\% of the publications.) of this 

knowledge (mutual exclusion, synchrony vs. asynchrony, causality and so on) can do 

good for both communities. More recent research on timed and hybrid systems may 

clarify subtle issues concerning the interaction of the computer with its environment. 

 Influencing the development of design methodologies, language standards and 

programming environment toward the more rigorous side. This effort should be based on 

the accumulated experience of developing and studying various languages and tools 

(such as Lustre/Scade, StateCharts and Esterel) for other application domains. General 

computer science know-how, such as compilation technology, which is not specific to the 

reactive systems community can be useful as well. 

 

The question of whether such a contribution is possible via interaction with users, technical 

committees, hardware or software vendors is an empirical one. Hopefully it will be answered 

by the end of the project.  

Development of verification technology for PLC programming. 

Controllers written in a well-defined language can be subject to formal verification which is 

equivalent to exhaustive testing of the program in front of all admissible behaviors of the 

external environment. For program properties which do not require modeling of the 

environment, “classical” discrete verification is already applicable, as witnessed by some 

work on case-studies 1 and 2. Transforming programs written in well-behaving subsets of 

the IEC standard into formats used by existing verification tools is a standard exercise.  

 

For time-dependent properties, the new technology of timed automata (Kronos, Uppaal) can 

be applied, although a lot is still to be done in terms of modeling principles and more 

efficient verification algorithms. More intricate properties require modeling of the 

environment. Whether a heating step, whose termination condition is that the temperature 

passes a certain threshold, indeed terminates, depends on the fact that the temperature is 

monotonically increasing and diverging (at least in a certain range) when heat is on. More 

detailed properties, such as quantitative estimation of the step durations, require finer level 

of modeling, etc. Finding the most abstract level for describing the external physical 

dynamics which is still sufficient for verification of interesting properties is a major challenge 

for the rest of the project.  

 

Conclusions 

The programming of industrial computers is still shaped by languages used for old 

technology and backward compatibility, but the first signs of an evolution toward a more 

structured and high-level discipline of programming are already visible.  

[1]  While the scope of this report is the class of systems controlled by PLCs and 

DCSs, some of the initial considerations are common to all computer that 

control, sometimes referred to as “embedded”, “reactive”, or “real-time” 

systems. 

 

 

[2] Simple in the technical sense that all instances of the computation can be 



performed within a-priori bounded time and space. These computations can be 

very complicated in other senses. 

 

[3] Compare again with the much simpler domain of business data-processing, in 

which it took many years to develop the unifying concept of the data-base 

management system, separating the logical from the physical in information 

storage. 

[4] This is part of a more general standard, supposed to define common 

terminology in the chemical process control world, but we will concentrate on 

the software. IEC stands for International Electro-technical Commission. 

[5] These claims should not be interpreted as preference of I/O descriptions over 

state-space descriptions. The only message here is that what function blocks 

do is to transform input sequences to output sequences. A representation by a 

program or an automaton can be as good and sometimes preferable to an I/O 

description, as long as we remember what is the functionality of the object in 

question. 

[6] In MatrixX/Xmath, a popular block diagram package for control engineers, the 

delay operator for discrete time signals is distinct from the delay operator on 

sequences which is called there "shift register" although their functionality is 

the same. 

[7] On some popular packages for PLC programming, such programs are run via 

an interpreter, and certain applications are slow enough to run even on 

Windows NT! 

[8] Of course, it is theoretically trivial to convert an ordered set of conditions into 

an equivalent unordered and mutually exclusive set, but some users might 

prefer this ELSE..IF construct. 

[9] There is some confusion already in the name "action": is keeping the heater 

ON an action in the same sense that incrementing a counter is? 

[10] This broad term refers to computer scientists working on the semantics, 

verification and programming methodologies for computers that interact with 

an external environment. 

 


