
2.6 Sequential Function Chart (SFC) elements

2.6.1 General

This subclause defines sequential function chart (SFC) elements for use in structuring

the internal organization of a programmable controller program organization unit,

written in one of the languages defined in this standard, for the purpose of performing

sequential control functions. The definitions in this subclause are derived from IEC

848, with the changes necessary to convert the representations from a documentation

standard to a set of execution control elements for a programmable controller

program organization unit.

The SFC elements provide a means of partitioning a programmable controller

program organization unit into a set of steps and transitions interconnected by

directed links. Associated with each step is a set of actions, and with each transition

is associated a transition condition.

Since SFC elements require storage of state information, the only program

organization units which can be structured using these elements are function blocks

and programs.

If any part of a program organization unit is partitioned into SFC elements, the entire

program organization unit shall be so partitioned. If no SFC partitioning is given for a

program organization unit, the entire program organization unit shall be considered to

be a single action which executes under the control of the invoking entity.

2.6.2 Steps

A step represents a situation in which the behavior of a program organization unit

with respect to its inputs and outputs follows a set of rules defined by the associated

actions of the step. A step is either active or inactive. At any given moment, the state

of the program organization unit is defined by the set of active steps and the values of

its internal and output variables.

As shown in table 40, a step shall be represented graphically by a block containing a

step name in the form of an identifier as defined in 2.1.2, or textually by a

STEP...END_STEP construction. The directed link(s) into the step can be

represented graphically by a vertical line attached to the top of the step. The directed

link(s) out of the step can be represented by a vertical line attached to the bottom of

the step. Alternatively, the directed links can be represented textually by the

TRANSITION... END_TRANSITION construction defined in 2.6.3.

The step flag (active or inactive state of a step) can be represented by the logic value

of a Boolean structure element ***.X, where *** is the step name, as shown in table

40. This Boolean variable has the value "1" when the corresponding step is active,

and "0" when it is inactive. The state of this variable is available for graphical

connection at the right side of the step as shown in table 40.

Similarly, the elapsed time, ***.T, since initiation of a step can be represented by a

structure element of type TIME, as shown in table 40. When a step is deactivated, the

value of the step elapsed time shall remain at the value it had when the step was

deactivated. When a step is activated, the value of the step elapsed time shall be reset

to t#0s.

The scope of step names, step flags, and step times shall be local to the program

organization unit in which the steps appear.

The initial state of the program organization unit is represented by the initial values of

its internal and output variables, and by its set of initial steps, i.e., the steps which are

initially active. Each SFC network, or its textual equivalent, shall have exactly one

initial step.

An initial step can be drawn graphically with double lines for the borders, and with

the ISO 646 character set shall be drawn as shown in table 40.

For system initialization as defined in 2.4.2, the default initial elapsed time for steps is

t#0s, and the default initial state is Boolean 0 for ordinary steps and Boolean 1 for

initial steps. However, when an instance of a function block or a program is declared

to be retentive (for instance, as in feature 3 of table 33), the states and (if supported)

elapsed times of all steps contained in the program or function block shall be treated

as retentive for system initialization as defined in 2.4.2.

Table 40 - Step features

No

.

REPRESENTATION DESCRIPTION

1 |
 +-----+
 | *** |
 +-----+
 |

Step - Graphical form

with directed links

"***" = step name

 |
 +=======+
 || *** ||

 || ||
 +=======+
 |

Initial step - Graphical form with directed

links

"***" = Name of initial step

(note 2)

2 STEP *** :
 (* Step body *)
END_STEP

Step - Textual form

without directed links (see 2.6.3)

"***" = Step name

 INITIAL_STEP *** :

 (* Step body *)
END_STEP

Initial step - Textual form

without directed links (see 2.6.3)

"***" = Name of initial step

3a

***.X
Step flag - General form

"***" = Step name

***.X = Boolean 1 when *** is active,

Boolean 0 otherwise

3b

 |
 +-----+
 | *** |----
 +-----+
 |

Step flag - Direct connection

of Boolean variable ***.X to

right side of step "***"

4

***.T

Step elapsed time - General form

"***" = Step name

***.T = A variable of type TIME

(See 2.6.2)

NOTES

1. When feature 3a, 3b, or 4 is supported, it shall be an error if the user program

attempts to modify the associated variable. For example, if S4 is a step name,

then the following statements would be errors in the ST language defined in 3.3:

S4.X := 1 ; (* ERROR *)

S4.T := t#100ms ; (* ERROR *)

2. The upper directed link is not required if the initial step has no predecessors.

2.6.3 Transitions

A transition represents the condition whereby control passes from one or more steps

preceding the transition to one or more successor steps along the corresponding

directed link. The transition shall be represented by a horizontal line across the

vertical directed link.

The direction of evolution following the directed links shall be from the bottom of the

predecessor step(s) to the top of the successor step(s).

Each transition shall have an associated transition condition which is the result of the

evaluation of a single Boolean expression. A transition condition which is always

true shall be represented by the symbol "1" or the keyword TRUE.

A transition condition can be associated with a transition by one of the following

means, as shown in table 41:

 1) By placing the appropriate Boolean expression in the ST language defined in

3.3 to the right of the vertical directed link.

 2) By a ladder diagram network in the LD language defined in 4.2, whose output

intersects the vertical directed link instead of a right rail.

 3) By a network in the FBD language defined in 4.3, whose output intersects the

vertical directed link.

 4) By a LD or FBD network whose output intersects the vertical directed link via a

connector as defined in 4.1.1.

 5) By a TRANSITION...END_TRANSITION construct using the ST language. This

shall consist of:

- The keywords TRANSITION FROM followed by the step name of the predecessor

step (or, if there is more than one predecessor, by a parenthesized list of

predecessor steps);

- The keyword TO followed by the step name of the successor step (or, if there is

more than one successor, by a parenthesized list of successor steps);

- The assignment operator (:=), followed by a Boolean expression in the ST

language, specifying the transition condition;

- The terminating keyword END_TRANSITION.

 6) By a TRANSITION...END_TRANSITION construct using the IL language defined

in 3.2. This shall consist of:

- The keywords TRANSITION FROM followed by the step name of the predecessor

step (or, if there is more than one predecessor, by a parenthesized list of

predecessor steps), followed by a colon (‘:’);

- The keyword TO followed by the step name of the successor step (or, if there is

more than one successor, by a parenthesized list of successor steps);

- Beginning on a separate line, a list of instructions in the IL language, the result of

whose evaluation determines the transition condition;

- The terminating keyword END_TRANSITION on a separate line.

 7) By the use of a transition name in the form of an identifier to the right of the

directed link. This identifier shall refer to a TRANSITION...END_TRANSITION

construction defining one of the following entities, whose evaluation shall result

in the assignment of a Boolean value to the variable denoted by the transition

name:

- A network in the LD or FBD language;

- A list of instructions in the IL language;

- An assignment of a Boolean expression in the ST language.

The scope of a transition name shall be local to the program organization unit in

which the transition is located.

It shall be an error in the sense of 1.5.1 if any "side effect" (for instance, the

assignment of a value to a variable other than the transition name) occurs during the

evaluation of a transition condition.

Table 41 - Transitions and transition conditions

No

.

EXAMPLE DESCRIPTION

1

 |
 +-----+
 |STEP7|
 +-----+
 |
 + %IX2.4 & %IX2.3
 |
 +-----+
 |STEP8|
 +-----+
 |

Predecessor step

Transition condition

using ST language

(see 3.3)

Successor step

2

 |
 +-----+
 |STEP7|
 +-----+
 | %IX2.4 %IX2.3 |
 +---||-----||--------+
 | |
 +-----+
 |STEP8|
 +-----+
 |

Predecessor step

Transition condition

using LD language

(see 4.2)

Successor step

3

 |
 +-----+
 |STEP7|
 +-------+ +-----+
 | & | |
%IX2.4---| |-----+
%IX2.3---| | |
 +-------+ +-----+
 |STEP8|
 +-----+
 |

Predecessor step

Transition condition

using FBD language

(see 4.3)

Successor step

(continued on following page)

Table 41 - Transitions and transition conditions (continued)

No

.

Example Description

4

 |
 +-----+
 |STEP7|
 +-----+
 |
 >TRANX>-------------+
 |
 +-----+

 |STEP8|
 +-----+
 |

Use of connector:

Predecessor step

Transition connector

Successor step

4a

4b

 | %IX2.4 %IX2.3
 +---||-----||---->TRANX>
 |
 +-------+
 | & |
 %IX2.4---| |-->TRANX>
 %IX2.3---| |
 +-------+

Transition condition:

Using LD language

(see 4.2)

Using FBD language

(see 4.3)

5

STEP STEP7: END_STEP

TRANSITION FROM STEP7 TO STEP8
 := %IX2.4 & %IX2.3 ;
END_TRANSITION

STEP STEP8: END_STEP

Textual equivalent

of feature 1

using ST language

(see 3.3)

6

STEP STEP7: END_STEP

TRANSITION FROM STEP7 TO STEP 8:
 LD %IX2.4
 AND %IX2.3
END_TRANSITION

STEP STEP8: END_STEP

Textual equivalent

of feature 1

using IL language

(see 3.2)

(continued on following page)

Table 41 - Transitions and transition conditions (continued)

No

.

Example Description

7

|
+-----+
|STEP7|
+-----+

|
 + TRAN78

|
+-----+

|STEP8|
+-----+

|

Use of transition name:

Predecessor step

Transition name

Successor step

7a

TRANSITION TRAN78:
 | |
 | %IX2.4 %IX2.3 TRAN78 |
 +---||-----||------()---+
 | |
 END_TRANSITION

Transition condition

using LD language

(see 4.2)

7b

TRANSITION TRAN78:
 +-------+

 | & |
 %IX2.4---| |--TRAN78
 %IX2.3---| |
 +-------+
END_TRANSITION

Transition condition

using FBD language

(see 4.3)

7c

TRANSITION TRAN78:
 LD %IX2.4
 AND %IX2.3
END_TRANSITION

Transition condition

using IL language

(see 3.2)

7d

TRANSITION TRAN78
 := %IX2.4 & %IX2.3 ;
END_TRANSITION

Transition condition

using ST language

(see 3.3)

NOTES

1. If feature 1 of table 40 is supported, then one or more of features 1, 2, 3, 4, or 7 of

this table shall be supported.

2. If feature 2 of table 40 is supported, then feature 5 or 6 of this table, or both, shall

be supported.

2.6.4 Actions

Zero or more actions shall be associated with each step. A step which has zero

associated actions shall be considered as having a WAIT function, that is, waiting for

a successor transition condition to become true.

An action can be a Boolean variable, a collection of instructions in the IL language

defined in 3.2, a collection of statements in the ST language defined in 3.3, a

collection of rungs in the LD language defined in 4.2, a collection of networks in the

FBD language defined in 4.3, or a sequential function chart (SFC) organized as

defined in this subclause (2.6).

Actions shall be declared via one or more of the mechanisms defined in 2.6.4.1, and

shall be associated with steps via textual step bodies or graphical action blocks, as

defined in 2.6.4.2. The details of action block representation are defined in 2.6.4.3.

Control of actions shall be expressed by action qualifiers as defined in 2.6.4.4.

2.6.4.1 Declaration

A programmable controller implementation which supports SFC elements shall

provide one or more of the mechanisms defined in table 42 for the declaration of

actions. The scope of the declaration of an action shall be local to the program

organization unit containing the declaration.

Table 42 - Declaration of actions

No

.

Feature

1 Any Boolean variable declared in a VAR or VAR_OUTPUT block, or their

graphical equivalents, can be an action.

 Example Feature

2l

+--+
| ACTION_4 |

+--+

	%IX1 %MX3 S8.X %QX17					
+---		-----		----		-----()---+
	+------+					
+----	EN ENO	%MX10				
	C--	LT	----------(S)---+			
	D--					
	+------+					
+--+

Graphical

declaratio

n

in LD

language

(see 4.2)

2s

+--+
| OPEN_VALVE_1 |

+--+
| | ... |
| +=================+ |
| || VALVE_1_READY || |

| +=================+ |
| | |
| + STEP8.X |
| | |
| +-----------------+ +---+-----------+ |
| | VALVE_1_OPENING |--| N |VALVE_1_FWD| |

| +-----------------+ +---+-----------+ |
| | ... |
+--+

Inclusion

of

SFC

elements

in action

2f

+--+
| ACTION_4 |

+--+
| +---+ |
%IX1--	&	
%MX3--		--%QX17
S8.X---------		
+---+ FF28		
+----+		
	SR	
+------+	Q1	-%MX10
C--	LT	--

| D--| | +----+ |
| +------+ |
+--+

Graphical

declaratio

n

in FBD

language

(see 4.3)

(continued on following page)

Table 42 - Declaration of actions (continued)

No

.

Example Feature

3s

ACTION ACTION_4:

 %QX17 := %IX1 & %MX3 & S8.X ;
 FF28(S1 := (C<D));
 %MX10 := FF28.Q;
END_ACTION

Textual

declaration

in ST

language

(see 3.3)

3i

ACTION ACTION_4:

LD S8.X

AND %IX1
AND %MX3
ST %QX17
LD C
LT D
S1 FF28
LD FF28.Q
ST %MX10
END_ACTION

Textual

declaration

in IL

language

(see 3.2)

NOTES

1 - The step flag S8.X is used in these examples to obtain the desired result that,

when S8 is deactivated, %QX17 := 0.

2 - If feature 1 of table 40 is supported, then one or more of the features in this table,

or feature 4 of table 43, shall be supported.

3 - If feature 2 of table 40 is supported, then one or more of features 1,3s, or 3i of this

table shall be supported.

2.6.4.2 Association with steps

A programmable controller implementation which supports SFC elements shall

provide one or more of the mechanisms defined in table 43 for the association of

actions with steps.

Table 43 - Step/action association

No

.

Example Feature

1

 |

 +----+ +-----+----------+---+
 | S8 |--| L | ACTION_1 |DN1|

 +----+ |t#10s| | |
 | +-----+----------+---+
 + DN1
 |

Action block

(see 2.6.4.3)

2

 |
 +----+ +-----+---------------------+---
+
 | S8 |--| L | ACTION_1
|DN1|

 +----+ |t#10s| |

|
 | +-----+---------------------+---
+
 +DN1 | P | ACTION_2 |
|

 | +-----+---------------------+---
+
 | | N | ACTION_3 |
|

 | +-----+---------------------+---
+

Concatenated

action blocks

3

STEP S8:

 ACTION_1(L,t#10s,DN1) ;

 ACTION_2(P) ;

 ACTION_3(N) ;

END_STEP

Textual

step body

4

 +-----+----------------------+---+
 ----| N | ACTION_4 | |---

 +-----+----------------------+---+
 | %QX17 := %IX1 & %MX3 & S8.X ; |
 | FF28 (S1 := (C<D)); |
 | %MX10 := FF28.Q; |
 +--------------------------------+

Action block

"d" Field

(see 2.6.4.3)

NOTE - When feature 4 is used, the corresponding action name cannot be used in any

other action block.

2.6.4.3 Action blocks

As shown in table 44, an action block is a graphical element for the combination of a

Boolean variable with one of the action qualifiers specified in subclause 2.6.4.4 to

produce an enabling condition, according to the rukes given in subclause 2.6.4.5, par

an associated action.

The action block provides a means of optionally specifying Boolean "indicator"

variables, indicated by the "c" field in table 44, which can be set by the specified

action to indicate its completion, timeout, error conditions, etc. If the "c" field is not

present, and the "b" field specifies that the action shall be a Boolean variable, then

this variable shall be interpreted as the "c" variable when required.

When action blocks are concatenated graphically as illustrated in table 43, such

concatenations can have multiple indicator variables, but shall have only a single

common Boolean input variable, which shall act simultaneously upon all the concat-

enated blocks.

As well as being associated with a step, an action block can be used as a graphical

element in the LD or FBD languages specified in clause 4. In this case, signal or

power flow through an action block shall follow the rules specified in 4.1.1.

Table 44 - Action block features

No

.

Feature Graphical form

1

2

3

4

5

6

7

"a" : Qualifier as per 2.6.4.4

"b" : Action name

"c" : Boolean "indicator"

 variables

"d" : Action using:

 IL language (3.2)

 ST language (3.3)

 LD language (4.2)

 FBD language (4.3)

+-----+--------------+-----+
---| "a" | "b" | "c"

|---
+-----+--------------+-----+
| "d" |
| |
+--------------------------+

No

.

Feature/Example

8 Use of action blocks in ladder diagrams (see 4.2):

 | S8.X %IX7.5 +---+------+---+ OK1 |
+--| |----| |----| N | ACT1 |DN1|--()--+
| +---+------+---+ |

9 Use of action blocks in function block diagrams (see 4.3):

 +---+ +---+------+-----+
 S8.X---| & |-----| N | ACT1 | DN1 |---OK1
 %IX7.5---| | +---+------+-----+
 +---+

NOTES

 1. Field "a" can be omitted when the qualifier is "N".

 2. Field "c" can be omitted when no feedback variable is used.

2.6.4.4 Action qualifiers

Associated with each step/action association defined in 2.6.4.2, or each occurrence of

an action block as defined in 2.6.4.3, shall be an action qualifier. The value of this

qualifier shall be one of the values listed in table 45. In addition, the qualifiers L, D,

SD, DS, and SL shall have an associated duration of type TIME.

NOTE - IEC 848 gives informal definitions and examples of the use of these

qualifiers. This standard formalizes these definitions, redefining the "S"

qualifier and introducing the "R" qualifier. The control of actions using these

qualifiers is defined in the following subclause, and additional examples of

their use are given in annex F.

Table 45 - Action qualifiers

No

.

Qualifier Explanation

1 None Non-stored (null qualifier)

2 N Non-stored

3 R overriding Reset

4 S Set (Stored)

5 L time Limited

6 D time Delayed

7 P Pulse

8 SD Stored and time Delayed

9 DS Delayed and Stored

10 SL Stored and time Limited

2.6.4.5 Action control

The control of actions shall be functionally equivalent to the application of the

following rules:
 1) Associated with each action shall be the functional equivalent of an instance of

the ACTION_CONTROL function block defined in figures 14 and 15. If the

action is declared as a Boolean variable, as defined in 2.6.4.1, the "Q" output

of this block shall be the state of this Boolean variable. If the action is declared

as a collection of statements or networks, as defined in 2.6.4.1, then this

collection shall be executed upon each invocation of the program organisation

unit (POU) in which the action is contained while the "Q" output of the

ACTION_CONTROL function block stands at Boolean 1. The statements or

networks shall be executed one final time after the falling edge of "Q".

 2) A Boolean input to the ACTION_CONTROL block for an action shall be said to

have an association with a step as defined in 2.6.4.2, or with an action block

as defined in 2.6.4.3, if the corresponding qualifier is equivalent to the input

name (N, R, S, L, D, P, SD, DS, or SL). The association shall be said to be

active if the associated step is active, or if the associated action block's input

has the value Boolean 1. The active associations of an action are equivalent to

the set of active associations of all inputs to its ACTION_CONTROL function

block.

A Boolean input to an ACTION_CONTROL block shall have the value Boolean 1 if it

has at least one active association, and the value Boolean 0 otherwise.

 3) The value of the T input to an ACTION_CONTROL block shall be the value of the

duration portion of a time-related qualifier (L, D, SD, DS, or SL) of an active

association. If no such association exists, the value of the T input shall be

t#0s.

4) It shall be an error in the sense of subclause 1.5.1 if one or more of the following

conditions exist:

 a) More than one active association of an action has a time-related qualifier (L, D,

SD, DS, or SL).

 b) The SD input to an ACTION_CONTROL block has the Boolean value 1 when the

Q1 output of its SL_FF block has the Boolean value 1.

 c) The SL input to an ACTION_CONTROL block has the Boolean value 1 when the

Q1 output of its SD_FF block has the Boolean value 1.

 5) It is not required that the ACTION_CONTROL block itself be implemented, but

only that the control of actions be equivalent to the preceding rules. Only

those portions of the action control appropriate to a particular action need be

instantiated, as illustrated in figure 16. In particular, note that simple MOVE

(:=) and Boolean OR functions suffice for control of Boolean variable actions if

the latter's associations have only "N" qualifiers.

 +----------------+
 | ACTION_CONTROL |

BOOL---|N Q|---

BOOL
BOOL---|R |
BOOL---|S |
BOOL---|L |
BOOL---|D |
BOOL---|P |
BOOL---|SD |
BOOL---|DS |
BOOL---|SL |
TIME---|T |
 +----------------+

Figure 14 - ACTION_CONTROL function block - External interface

(Not visible to the user)

+---+
 +---
O| & |---Q
 | +-----+
| |
N--|---| >=1 |-
-| |
 | S_FF | |
+---+

R--+ +----+ | |
 | | RS | | |
S--|----------------------|S Q1|-----------------| |

 +----------------------|R1 | | |
 | +----+ +---+ | |
L--|---------+--------------------| & |----------| |
 | | L_TMR +--O| | | |

	+-----+	+---+			
		TON			
+------	IN Q	---+ D_TMR			

 | +-------------|PT | +-----+ | |
 | | +-----+ | TON | | |
D--|--|-----------------------------|IN Q|------| |
 | +-----------------------------|PT | | |
 | | P_TRIG +-----+ | |

 | | +--------+ | |
 | | | R_TRIG | | |
P--|--|------------|CLK Q|--------------------| |
 | | SD_FF +--------+ SD_TMR | |

 | | +----+ +-----+ | |
 | | | RS | | TON | | |
SD-|--|---|S Q1|----------------|IN Q|----------| |
 +--|---|R1 | +------------|PT | | |
 | | +----+ | DS_TMR +-----+ DS_FF | |

 | +------------+ +-----+ +----+ | |
 | | | TON | | RS | | |
DS-|--|----------------|IN Q|----------|S Q1|---| |
 | +----------------|PT | +---|R1 | | |

 | | +-----+ | +----+ | |
 +--|-----------------------------+ | |
 | | SL_FF | |

 | | +----+ | |
 | | | RS | +---+ | |
SL-|--|--------|S Q1|--+------------------| & |--| |
 +--|--------|R1 | | SL_TMR +--O| | +-----+

 | +----+ | +-----+ | +---+
 | | | TON | |
 | +----|IN Q|---+
T-----+---------------------|PT |
 +-----+

Figure 15 - ACTION_CONTROL function block body

(not visible to the user)

 |
 +-----+ +---+------------+----------------+
 | S22 |---| N | HV_BREAKER | HV_BRKR_CLOSED |

 +-----+ +---+------------+----------------+
 | | S | START_INDICATOR |

 | +---+-----------------------------+
 + HV_BRKR_CLOSED

 |
 +-----+ +----+---------------+
 | S23 |---| SL | RUNUP_MONITOR |

 +-----+ |t#1m| |
 | +----+---------------+
 | | D | START_WAIT |

 | |t#1s| |
 | +----+---------------+
 + START_WAIT

 |
 +-----+ +-----+-----------------+-----------------
-+
 | S24 |---| N | ADVANCE_STARTER | STARTER_ADVANCED
|

 +-----+ +-----+-----------------+-----------------
-+
 | | L | START_MONITOR
|

 | |t#30s|
|
 | +-----+-----------------------------------
-+
 + STARTER_ADVANCED

 |
 +-----+ +-----+-----------------+-----------------
--+
 | S26 |---| N | RETRACT_STARTER |
STARTER_RETRACTED |

 +-----+ +-----+-----------------+-----------------
--+
 |

 |
 + STARTER_RETRACTED

 |
 +-----+ +-----+-----------------+
 | S27 |---| R | START_INDICATOR |

 +-----+ +-----+-----------------+
 | | R | RUNUP_MONITOR |

 | +-----+-----------------+

NOTE - The complete SFC network and its associated declarations are not

shown in this example.

Figure 16a - Action control example - SFC representation

S22.X---
HV_BREAKER

S24.X--
ADVANCE_STARTER

S26.X--
RETRACT_STARTER

 START_INDICATOR_S_FF

 +----+

 | RS |

S22.X-----------------------|S Q1|-----------------
START_INDICATOR

S27.X-----------------------|R1 |

 +----+

 START_WAIT_D_TMR

 +-----+

 | TON |

S23.X-----------------------|IN Q|---------------------
START_WAIT

t#1s------------------------|PT |

 +-----+

RUNUP_MONITOR_SL_FF

 +----+

 | RS | +---+

S23.X---|S Q1|--+-----------------------------| & |--
RUNUP_MONITOR

S27.X---|R1 | | RUNUP_MONITOR_SL_TMR +--O| |

 +----+ | +-----+ | +---+

 | | TON | |

 +---------|IN Q|---------+

t#1m----------------------|PT |

 +-----+

 +---+

S24.X------------+---------------------------| & |---
START_MONITOR

 | START_MONITOR_L_TMR +---O| |

 | +-----+ | +---+

 | | TON | |

 +--------|IN Q|-------+

t#30s---------------------|PT |

 +-----+

Figure 16b - Action control example - functional equivalent
2.6.5 Rules of evolution

The initial situation of a SFC network is characterized by the initial step which is in

the active state upon initialization of the program or function block containing the

network.

Evolutions of the active states of steps shall take place along the directed links when

caused by the clearing of one or more transitions.

A transition is enabled when all the preceding steps, connected to the corresponding

transition symbol by directed links, are active. The clearing of a transition occurs

when the transition is enabled and when the associated transition condition is true.

The clearing of a transition causes the deactivation (or "resetting") of all the

immediately preceding steps connected to the corresponding transition symbol by

directed links, followed by the activation of all the immediately following steps.

The alternation Step/Transition and Transition/Step shall always be maintained in

SFC element connections, that is:

- Two steps shall never be directly linked; they shall always be separated by a

transition.

- Two transitions shall never be directly linked; they shall always be separated by a

step.

When the clearing of a transition leads to the activation of several steps at the same

time, the sequences to which these steps belong are called simultaneous sequences.

After their simultaneous activation, the evolution of each of these sequences becomes

independent. In order to emphasize the special nature of such constructs, the

divergence and convergence of simultaneous sequences shall be indicated by a double

horizontal line.

Table 46 defines the syntax and semantics of the allowed combinations of steps and

transitions.

The clearing time of a transition may theoretically be considered as short as one may

wish, but it can never be zero. In practice, the clearing time will be imposed by the

programmable controller implementation. For the same reason, the duration of a step

activity can never be considered to be zero.

Several transitions which can be cleared simultaneously shall be cleared

simultaneously, within the timing constraints of the particular programmable

controller implementation and the priority constraints defined in table 46.

Testing of the successor transition condition(s) of an active step shall not be

performed until the effects of the step activation have propagated throughout the

program organization unit in which the step is declared.

Figure 17 illustrates the application of these rules. In this figure, the active state of a

step is indicated by the presence of an asterisk (*) in the corresponding block. This

notation is used for illustration only, and is not a required language feature.

The application of the rules given in this subclause cannot prevent the formulation of

"unsafe" SFCs, such as the one shown in figure 18a, which may exhibit uncontrolled

proliferation of tokens. Likewise, the application of these rules cannot prevent the

formulation of "unreachable" SFCs, such as the one shown in figure 18b, which may

exhibit "locked up" behavior. The programmable controller system shall treat the

existence of such conditions as errors as defined in 1.5.1.

Table 46 - Sequence evolution

No. Example Rule

1

|
+----+
| S3 |
+----+

|
 + c

|
+----+
| S4 |

+----+
|

Single sequence:

The alternation step-transition is

repeated in series.

Example:
An evolution from step S3 to step S4

shall take place if and only if step S3

is in the active state and the transition

condition c is true.

2a

 |
 +----+
 | S5 |
 +----+
 |
 +-----*----+--...
 | |
 + e + f
 | |
+----+ +----+
| S6 | | S8 |

+----+ +----+
 | |

Divergence of sequence selection:
A selection between several

sequences is represented by as many

transition symbols, under the

horizontal line, as there are different

possible evolutions. The asterisk

denotes left-to-right priority of

transition evaluations.

Example:
An evolution shall take place from

S5 to S6 only if S5 is active and the

transition condition "e" is true, or

from S5 to S8 only if S5 is active

and "f" is true and "e" is false.

2b

 |
 +----+
 | S5 |
 +----+

 |
 +-----*-----+--...

 |2 |1

 + e + f
 | |

 +----+ +----+
 | S6 | | S8 |
 +----+ +----+

 | |

Divergence of sequence selection:

The asterisk, followed by numbered

branches, indicates a user-defined

priority of transition evaluation, with

the lowest-numbered branch having

the highest priority.

Example:
An evolution shall take place from

S5 to S8 only if S5 is active and the

transition condition "f" is true, or

from S5 to S6 only if S5 is active,

and "e" is true, and "f" is false.

2c |
 +----+
 | S5 |
 +----+
 |
 +------+----+--...
 | |
 +e +NOT e
& f
 | |
 +----+ +----+
 | S6 | | S8 |
 +----+ +----+

 | |

Divergence of sequence selection:
The connection of the branch

indicates that the user must assure

that transitionconditions are

mutually exclusive, asspecified by

IEC 848.

Example:
S6 only if S5 is active and the

transition condition "e" is true, or

from S5 to S8 only if S5 is active

and "e" is false and "f" is true.

Table 46 - Sequence evolution (continued)

3

| |
+----+ +----+
| S7 | | S9 |
+----+ +----+

| |
 + h + j
| |

 +-----+-----+--...
|

+----+
|S10 |

+----+
|

Convergence of sequence

selection:

The end of a sequence selection is

represented by as many transition

symbols, above the horizontal line,

as there are selection paths to be

ended.

Example:
An evolution shall take place

from S7 to S10 only if S7 is active

and the transition condition "h" is

true, or from S9 to S10 only if S9 is

active and "j" is true.

4

|
+----+
|S11 |
+----+

|
 + b

|
 ==+=====+=====+==...

| |
+----+ +----+
| S12| | S14|
+----+ +----+

| |

Simultaneous sequences -

divergence:

Only one common transition symbol

shall be possible, immediately above

the double horizontal line of

synchronization.

Example:
An evolution shall take place from

S11 to S12, S14,... only if S11 is

active and the transition condition

"b" associated to the common

transition is true. After the

simultaneous activation of S12, S14,

etc., the evolution of each sequence

proceeds independently.

 | |
+----+ +----+
| S13| | S15|

+----+ +----+
| |

 ==+=====+=====+==...
|

 + d
|

+----+
|S16 |
+----+

|

Simultaneous sequences -

convergence:

Only one common transition symbol

shall be possible, immediately under

the double horizontal line of

synchronization.

Example:

An evolution shall take place from

S13, S15,... to S16 only if all steps

above and connected to the double

horizontal line are active and the

transition condition "d" associated to

the common transition is true.

Table 46 - Sequence evolution (continued)

No. Example Rule

5a

5b

5c

 |
 +-----+
 | S30 |
 +-----+

 |
 +---*---+
 | |

 + a +d
 | |

+-----+ |
| S31 | |
+-----+ |
 | |
 + b |
 | |
+-----+ |
| S32 | |
+-----+ |
 | |
 + c |
 | |
 +---+---+

 |
 +-----+
 | S33 |
 +-----+

 |

Sequence skip:

A "sequence skip" is a special case

of

sequence selection (Feature 2) in

which one or more of the branches

contain no steps. Features 5a, 5b,

and 5c correspond to the

representation options given in

features 2a, 2b, and 2c, respectively.

Example:

(Feature 5a shown)

An evolution shall take place from

S30 to S33 if "a" is false and "d" is

true, that is, the sequence (S31, S32)

will be skipped.

6a

6b

6c

|
+-----+
| S30 |
+-----+

|
 + a
|

 +---------+
 | |
 +-----+ |
 | S31 | |
 +-----+ |
 | |

 + b |
 | |
 +-----+ |
 | S32 | |
 +-----+ |
 | |
 *-----+ |
 | | |
 + c + d |
 | | |
 +-----+ +---+

| S33 |

+-----+
|

Sequence loop:

A "sequence loop" is a special case

of sequence selection (Feature 2) in

which one or more of the branches

returns to a preceding step. Features

6a, 6b, and 6c correspond to the

representation options given in

features 2a, 2b, and 2c, respectively.

Example:

(Feature 6a shown)

An evolution shall take place from

S32 to S31 if "c" is false and "d" is

true, that is, the sequence (S31, S32)

will be repeated.

Table 46 - Sequence evolution (concluded)

No. Example Rule

7

|
+-----+
| S30 |
+-----+

|
 + a

|
 +----<----+
 | |
 +-----+ |
 | S31 | |
 +-----+ |

 | |
 + b |
 | |
 +-----+ |
 | S32 | |
 +-----+ |
 | |
 *-----+ |
 | | |
 + c + d |
 | | |
 +-----+ +->-+

| S33 |

+-----+
|

Directional arrows:

When necessary for clarity, the "less

than" (<) character of the ISO 646

character set can be used to indicate

right-to-left control flow, and the

"greater than" (>) character to

represent left-to-right control flow.

When this feature is used, the

corresponding character shall be

located between two "-" characters,

that is, in the character sequence "-<-

" or "->-" as shown in the

accompanying example.

a) Transition

not enabled

(X = Don’t

care)

 | | | |
+------+ +-----+ +------+ +---
---+
|STEP10| |STEP9| |STEP13|
|STEP22|
| | | | | * | | *
|
+------+ +-----+ +------+ +---
---+
 | | | |
 + X
====+========+=========+====
 | |

+------+ + X
|STEP11| |
| | ====+====+===+====
+------+ | |
 | +------+ +------+
 |STEP15| |STEP16|
 | | | |
 +------+ +------+
 | |

b) Transition

enabled but

not cleared

(X = 0)

 | | | |
+------+ +-----+ +------+ +----
--+

|STEP10| |STEP9| |STEP13|
|STEP22|
| * | | * | | * | | *
|
+------+ +-----+ +------+ +----
--+
 | | | |
 + X
===+========+=========+====
 | |
+------+ + X
|STEP11| |
| | ====+====+====+====

+------+ | |
 | +------+ +------+
 |STEP15| |STEP16|
 | | | |
 +------+ +------+
 | |

c) Transition

cleared

 (X = 1)

 | | | |
+------+ +-----+ +------+ +---
---+
|STEP10| |STEP9| |STEP13|
|STEP22|
| | | | | | |
|
+------+ +-----+ +------+ +---
---+
 | | | |
 + X
====+========+=========+====
 | |

+------+ + X
|STEP11| |
| * | ====+====+===+====
+------+ | |
 | +------+ +------+
 |STEP15| |STEP16|
 | * | | * |
 +------+ +------+
 | |

NOTE - In this figure, the active state of a step is indicated by the presence of an asterisk (*) in the corresponding block. This
notation is used for illustration only, and is not a required language feature.

Figure 17 - SFC evolution rules

+----------------------+
| |
| +=====+
| || A ||
| +=====+
| |
| + t1
| |
| ======+==========+============+=======
| | |
| +-----+ +-----+
| | B | | C |
| +-----+ +-----+

| | |
| | *--------
+
| | |
|
| | + t2
+ t3
| | |
|
| | +---+ +-
--+
| | | D | |

E |
| | +---+ +-
--+
| | |
|
| ===+==========+============+===
|
| |
|
| + t4
+ t5
| |
|

| +---+ +-
--+
| | F | |
G |
| +---+ +-
--+
| |
|
| + t6
+ t7
| |
|
+----------------------+---------------------

+

Figure 18a - SFC errors: an "unsafe" SFC (see 2.6.5)

+----------------------+
| |
| +=====+
| || A ||
| +=====+
| |
| + t1
| |
| ======+==========+============+=======
| | |
| +-----+ +-----+
| | B | | C |
| +-----+ +-----+

| | |
| | *--------
+
| | |
|
| | + t2
+ t3
| | |
|
| | +---+ +-
--+
| | | D | |

E |
| | +---+ +-
--+
| | |
|
| ===+==========+============+===
|
| |
|
| + t4
+ t5
| |
|

| +---+ +-
--+
| | F | |
G |
| +---+ +-
--+
| |
|
|
====+==========+==========+===
| |
| + t6
| |

+---------------------------------+

Figure 18b - SFC errors: an "unreachable" SFC (see 2.6.5)

2.6.6 Compatibility of SFC elements

SFCs can be represented graphically or textually, utilizing the elements defined

above. Table 47 summarizes for convenience those elements which are mutually

compatible for graphical and textual representation, respectively.

Table 47 - Compatible SFC features

Table Graphical representation Textual representation

40 1, 3a, 3b, 4 2, 3a, 4

41 1,2,3,4,4a,4b,7,7a,7b 5, 6, 7c, 7d

42 1, 2l, 2s, 2f 3s,3i

43 1, 2, 4 3

44 1 to 9 --

45 1 to 10 1 to 10 (textual equivalent)

46 1 to 7 1 to 6

57 All --

2.6.7 Compliance requirements

In order to claim compliance with the requirements of 2.6, the elements shown in

table 48 shall be supported and the compatibility requirements defined in 2.6.6 shall

be observed.

Table 48 - SFC minimal compliance requirements

Table Graphical representation Textual representation

40 1 2

41 1 or 2 or 3 or (4 and (4a or 4b))

 or (7 and (7a or 7b or 7c or 7d))
5 or 6

42 1 or 2l or 2f 3s or 3i

43 1 or 2 or 4 3

45 1 or 2 1 or 2

46 1 and (2a or 2b or 2c) and 3 and 4 Same (textual equivalent)

57 (1 or 2) and (3 or 4) and (5 or 6) and

(7 or 8) and (9 or 10) and (11 or 12)
Not required

