PLCopen’

for efficiency in automation

PLCopen Software Creation Guidelines:

Creating PLCopen Compliant Libraries

PLCopen Technical Document
Version 1.0 — Official Release

DISCLAIMER OF WARANTIES

The name ‘PLCopen®’ is a registered trade mark and together with the PLCopen logos owned by the
association PLCopen.

THIS DOCUMENT IS PROVIDED ON AN °‘AS IS’BASIS AND MAY BE SUBJECT TO FUTURE
ADDITIONS, MODIFICATIONS, OR CORRECTIONS. PLCOPEN HEREBY DISCLAIMS ALL
WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, FOR THIS DOCUMENT. IN
NO EVENT WILL PLCOPEN BE RESPONSIBLE FOR ANY LOSS OR DAMAGE ARISING OUT
OR RESULTING FROM ANY DEFECT, ERROR OR OMISSION IN THIS DOCUMENT OR FROM
ANYONE’S USE OF OR RELIANCE ON THIS DOCUMENT. ANY PROGRAM EXAMPLES SHOW
HERE ARE JUST LISTED AS AN EXAMPLE, AND ARE NOT TESTED IN PRACTICE AND CAN
BE INCORRECT AND NOT BE USEFULL FOR YOUR APPLICATION. THIS MEANS THAT THE
CODE SHOULD JUST BE SEEN AS A LEARNING BASIS AND NOT AS IMPLEMENTATION
BASIS.

Copyright © 2017 by PLCopen. All rights reserved.

Date: May 4, 2017

Total number of pages: 89

PLCopen’

for efficiency in automation

The following paper

Creating PLCopen Compliant Libraries
is an official PLCopen white paper.

It summarises the results of the Task Force “Creating PLCopen Compliant Software Libraries” under the
activity Software Creation Guidelines as part of PLCopen Promotional Committee 2 — Training.

The present specification was written thanks to the following members:

Name Company

Peter Erning ABB

Andrew Hollom ABB

Bert van der Linden ATS

Roland Wagner B&R Automation
Bernhard Werner CODESYS

Wolfgang Doll CODESYS

Rolf Hanisch Fraunhofer Fokus
Wolfgang Zeller Hochschule Augsburg
Denis Chalon Itris

Geert Vanstraelen Macq

Barry Butcher Omron

Hiroshi Yoshida Omron

Andreas Weichelt Phoenix Contact Software
Kevin Hull Yaskawa

Eelco van der Wal PLCopen

Change Status L.ist:

Version Date Change comment

number

V0.1 October 21, 2015 As results of several proposals and webmeetings

V0.2 October 23, 2015 As a result of a webmeeting with 3S as preparation

V0.3 October 28, 2015 As result of input and the webmeeting

V0.4 November 11, 2015 | As result of input and the webmeeting on Nov. 11

V 0.5 June 15, 2016 As result of the webmeeting on June 9 and feedback

V 0.6 June 30, 2016 As input of the webmeeting

V 0.61 July 15, 2016 Document a little more restructured

V0.7 Aug. 15, 2016 As result of the earlier webmeeting and feedback

V0.8 Aug. 25, 2016 As a result of the webmeeting and additional feedback

V 0.99 Sept. 30, 2016 As a result of the webmeeting on Sept. 29

V 0.99A |March 14, 2017 As result of the feedback and the webmeeting of Dec 8 as
well as inclusion of other feedback material

V10 May 4, 2017 Official release with reference to the source code

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

© PLCopen (2017)

May 4, 2017 page 2/89

PLCopen’

for efficiency in automation

Contents

S [N 27001603 i (] PR 5
1.1. NAMING CONVENTIONS FOR THIS DOCUMENTcciiitrieeeiitrreeeiiireeeessitreeesssssseessssssesssssnsssseesns 5
1.2. NOTES ON THE EXAMPLES AND USAGE OF EN/ENOcvviiiiiiiii e 5

2. COMMONALITIES IN EXISTING PLCOPEN SPECIFICATIONS ..ottt 6
2.1. MOTION CONTROL, SAFETY AND COMMUNICATIONceiiuriieeiiirieeeeiitrreeesaitreeessinsneeesssrseeenns 6
2.2. FUNCTION BLOCK IMODELS.......cuttiiiiiiiiiiiiiiiieiie e e e s st er e s e s s s s s sabbba e e s s s e s s s s ssaababaeesasesssassreres 6
2.3. MOTION CONTROL: GENERAL STRUCTUREuvteiiiittiiieiitrreeeiirreeessirseesssssseesssssssssesssssssessns 6
Example of a Motion Control FUNCtion BIOCKcooiiiiiiiiiee e, 7
Y Y = = I RS OURRRPRORPR 8
EXGMPIe Of @ SATELY FBoiiiiiiiieieee ettt 8
2.5. SPECIFICATIONS IN COMMUNICATIONuviiiiiitrieeeiitreeeesitreeessisreeeessisssssssassssssssssesssssssssseenns 8
Example of @ ComMMUNICALION FBc.ooiiiiiiiiiieeee e 9
2.0, CONCLUSION......oiuttit et ittt e e s ittt e s s et e e e s ettt e e st b eeeesabbaeeesabbaeeessabaeeesabbaeeesasbbseessssbaseessbraneeans 9

3. INTRODUCTION OF THE PLCOPEN FUNCTION BLOCK CONCEPTScoccovviiieeieeieereeeeee e, 10
3.1. RELATION OF EXECUTE AND ENABLE INPUTS TO LEVEL AND TRIGGER INPUTS ..vvvvvvreeennnne 10
3.2. INTRODUCTION TO EDGE TRIGGERED FUNCTION BLOCKS ...uvvvieiiiiiieeiiirieeesiinreeeesssneeeessnns 10
3.3. INTRODUCTION TO LEVEL CONTROLLED FUNCTION BLOCKS.........seevrreiereeeesssirsrrreeeeeeesnins 11
3.4. COMMON PROPERTIES OF THESE TYPES OF FUNCTION BLOCKSvvvieiiiiieeeiiiiieeeseiriee e 12
3.5. ERROR DOMAINS AND ERROR CODESc.iiicttteiiiiie e e s s sitrtter e e e e s s s sssbtbeees s s e s s ssssssbssesssasessens 13
3.6, HOW TOHANDLE THE STATE ENUM DATA TYPE .oiiiiiii ittt ettt e e siabrren e s e e 15
3.7. COOPERATION OF VARIOUS FUNCTION BLOCKS ...eviiieeiieitrrtreeiieeessssssrreeesssessssssssssesssessssins 15
Extending the Example to a Complete EChOSEIVETcocov i 16
Transformation to a Multithreaded ECROSEIVENcocvviiiiiiiiie e 17
4. INTRODUCTION IN THE OBJECT ORIENTED FEATURES OF IEC 61131-3coiiieeeeeeeeeeeeeen 19
5. EXPLANATION OF RISING EDGE TRIGGERED FBS......cootiiieeeeeeee et 20
o0 N I = 7N (o o = S = = L 20
Example of the ST Program for the FB ETrig With OOccccooveiiiiiicece e 21
5.2. ADDING THE ABORTING FUNCTIONALITY TO THE BASIS .vvvviiiiieeiisiiiieieiiie e e s s sssssveseneseeesens 25
Example 0f @ SFC PrOQIamooioiiiieieee sttt ettt sre e re e saeenae e nre s 27
5.3, ADDING TIMER FUNCTIONALITY wuutttttitieeetiiiitrreerseresssssssssseeesssssssssssssssssssesesssssssssssesssessssins 28
What does UdITIMELIMIT O, e e e bbee e e eanes 28
AV gF Lo (o LT (o [W A T=TO LU Ao [0 1R 28
Examples with timers Without ADOITINGcooviiii i 28
Examples with ADOrtING @nd TIMETSoiviiiiiieiieee e 28
Detailed description of the Function BIOCK ETHIGATITOooiviiiiiiiiicecceceese e 29
5.4. EXAMPLE OF THE ST PROGRAM FOR ETRIGATLTO ..ot iccttiiiiiiie ettt 30

6. EXPLANATION OF A LEVEL CONTROLLED FB ..ottt 31
6.1. BASIC LEVEL CONTROLLED FB ...utviiiiiiiiiiiiiiie ettt babrren e 31
State Diagram Basic Level Controlled FB...........cccooiiiiiiiiiiiiese e 31
6.2. EXAMPLE OF THE ST PROGRAM FOR THE FUNCTION BLOCK LCON INOO.......cccvvvevvreeenne 32
5.3, ADDING TIMERS......occttteiiiiieeiiiiiitbttettse e e s s s st b b e e eeseeesssss bbb b et eessessssssbbbrberasesssssssbbbrseessaeessins 36
EXAMPIE OF LCONT ...ttt ettt et st esbeenbeenee e 36
State Diagram LCONTITO ...ocveiieie ettt sre et e e steenaeeneenreenneenes 37
Example of @n SFC QIAaQIamooiiiiiiiiieee ettt ae b nreas 39
APPENDIX 1 DATASHEETS OF THE EDGE TRIGGERED AND LEVEL CONTROLLED FBS................ 40
APPENDIX 1.1 GENERAL COMMENTS ABOUT THE SAMPLE PROGRAMS.......ccceiivrieeeiiirreeeeiirreeeens 40
APPENDIX 1.2 OVERVIEW OF THE FUNCTIONALITIES ..uvtttiiiieieiiiiittieiee s e e e s ssisbsreee s s s s ssansvaneseeas 41
APPENDIX 1.3 OVERVIEW EDGE TRIGGERED FBScoiitiiiiiiiiii et 42

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 3/89

PLCopen’

for efficiency in automation

APPENAIX 1.3.1 BTG e cutitiieiteiteie ettt bbbttt 43
APPENAIX 1.3.2 ETHIGT L eiiiieiiieieceese ettt ettt te e e sreesteennesneenne e 46
APPENDIX 1.3.3 ETHIGT O o eitiitiiiiiiietieee ettt 49
APPENAIX 1.3.4 ETFIGTITO 1oivieie ettt ettt be e ane e nte e sneenne e 52
APPENTIX 1.3.5 ETFIGA oot bbbt 55
APPENIX 1.3.6 ETHIGAT oottt e te e re e ae e 58
APPENTIX 1.3.7 EIFIGATO oottt 61
APPENdIX 1.3.8 ETTIGATITO oottt st ste e naenne e 64
APPENDIX 1.4 OVERVIEW LEVEL CONTROLLED FBScoiiiiiiiiiiiie e 67
APPENAIX 1.4. 1 LCON 1ottt ettt e st e te e s e s te e beeneesreenteenneaneenneens 68
APPENTIX 1.4.2 LCONTI ..ottt bbbt 70
APPENAIX 1.4.3 LCONTO cviiiieie ettt ettt e et e s bt e s et e e be e e e sraesteenneaneenneens 72
APPENTIX 1.4.4 LCONTITO c.eiitiitiiieiieiee et bbbt 74
APPENAIX 1.4.5 LCONC ..ottt ettt et e e e st e e be et esraesteeneesneenneens 76
APPENTIX 1.4.6 LCONTIC ...t 78
APPENDIX 2 EXAMPLE WITHOUT USING OBJECT ORIENTED FEATURESccccoovvviviirsreisiesionn, 80
APPENDIX 3 EXAMPLE OF AN INTERMEDIATE INTERFACEccooviiiieieissee s 85
APPENDIX 4 BEHAVIOUR OF INPUTS AND OUTPUTS IN PLCOPEN MOTION CONTROL FBS......... 86

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 4/89

PLCopen’

for efficiency in automation

1. Introduction

One of the best outcomes of the PLCopen specifications for Motion Control, Safety and Communication,
(see www.PLCopen.org) is the definition provided for function block input and outputs. This provides a
clear and concise shell as a starting point when considering the type of application level function to be
created. For this two main function block categories are specified: the Execute and the Enable model. The
goal now is to extend these to fit other application areas, and helping users to specify and implement
consistent sets of FB libraries for their own usage.

For this reason a working group was started within the PLCopen activity on Software Construction
Guidelines defining the guidance for creating PLCopen compliant Function Block Libraries.

By strictly following a few key features of the PLCopen specification, application level function blocks
can provide a high degree of robustness, usability and predictability. The behavior described makes it
very easy to incorporate and debug functions in an application. Errors and ErrorIDs can be elevated to the
calling functions. Interlocks are easier to create. Linking activities becomes easier.

1.1. Naming conventions for this document

In line with the PLCopen Coding Guidelines, the following naming conventions are used in this
document:

| Prefix yes or no | Used both in text (for readability) and in examples (when applicable) \

With prefix there is a difference between xError, eError and iError, compared to no prefixing with names
like Error and ErrorID. It is decided to use unique names even without pre-fixing. Meaning that in this
document xError and eErrorlD are used in examples and Error and ErrorID can be used in the text.
Also it is advised to use the same capitalization for every object instance, even if the tool/compiler doesn't
mandate it. The following guidelines are proposed:

e Use UPPER_SNAKE_CASE for CONSTANTS and user defined datatypes and keywords (like

BOOL, FOR, TYPE and END_TYPE).

e Use UpperCamelCase for all other multi-word items
Variable names will be written in Courier New font size 11, while states will be written in the
normal font in italic.

1.2. Notes on the examples and usage of EN/ENO

Any programs listed in this document are just examples, are not tested in practice and can be incorrect
and not be useful for your application. This means that the code should just be seen as a learning basis
and not as an implementation basis.

Any code in this document should be considered as an example only. There is no need to implement the
functionality exactly as proposed, just the interfaces of the function blocks and the state diagrams are
necessary for compliance.

The Enable /Execute constructs are on top of the usage of EN/ENO constructs (see Ch. 6.6.1.5. Execution
Control (EN, ENO) of the IEC 61131-3 standard 3" edition).

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 5/89

http://www.plcopen.org/

PLCopen’

for efficiency in automation

2. Commonalities in existing PLCopen specifications

2.1. Motion Control, Safety and Communication

This chapter is created to provide an overview of the current specification of PLCopen Function blocks
over the different working groups: Motion, Safety and Communication. This is only done in short form,
and for more specific explanation one is referred to the original specifications.

The proposal for the generic function blocks is explained in the next chapters, especially Chapter 5 -
Explanation of Rising Edge triggered FBs and Chapter 6 - Explanation of a Level Controlled FB.

2.2. Function Block Models

There are two basic function block models as described below. These functions are shown with the
minimum inputs and outputs. Notice that Execute pairs with Done, and that Enable pairs with valid.
This aids the visual appeal of the code structure in FBD format when contacts and coils are connected to
the function block.

Enable_Function_Block Execute_Function_Block
BOOL - Enable mmmmmmm) Vald |- BOOL BOOL - Execute mmmmssm) Done |- BOOL
Busy 4~ BOOL
Error +— BOOL Error -~ BOOL
ErrorlD - UINT ErrorlD —— UINT

Programming to account for the variants will be described in detail in the following sections. All
implementations will include added inputs and outputs for an actual application as shown in blue below.

Enable_FunctionBlock Execute_Function_Block
Some Datatype —-My.Varl _ _ _ __ _ _ _ My Varl| = some Datatype My Varl My Varl
. Some Datatype +— =— — — — — — — — — — — &= — —|— Some Datatype
BOOL — Enable Valid — BOOL
BOOL — Execute Done — BOOL
Some Datatype — My_Var2 My_Var4 [— BOOL
- - Some Datatype — MyVar2 Busy (— BOOL
Some Datatype — My_Var3 Error |— BOOL
- Some Datatype — My_Var3 CommandAborted F— BOOL
ErroriD |— UINT BOOL
MyVar5 |— Some Datatype Error
ErroriD [— UINT
MyVars [— Some Datatype

2.3. Motion Control: General structure

PLCopen has created a suite of specifications for motion control. Within this suite an effort was made to
have a consistent specification and layout of the function blocks.

This chapter provides an overview of the commonalities in the specifications of the FBs. For more details
check Appendix 4 Behaviour of inputs and outputs in PLCopen Motion Control FBs.

The definition of the PLCopen FBs for motion control consists of an activation related section and a
status related section.
To activate an FB one originally had two options
1. Execute as input, triggering the execution of the FB, and Done (or InVelocity, InGear, InTorque
or InSync) as related output showing when the FB has finalized the command;

2. Enable as input, level sensitive, and valid as related output

With the release of Version 2.0 of Part 1, the input ‘Continuous Update’ was added to combine both.
e Ifitis TRUE, when the function block is triggered (rising ‘Execute’), it will - as long as it stays
TRUE — make the function block use the current values of the input variables and apply it to the
ongoing movement.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 6/89

PLCopen’

for efficiency in automation

e [If ‘ContinuousUpdate’ is FALSE with the rising edge of the ‘Execute’ input, a change in the input
parameters is ignored during the whole movement and the original behavior of previous versions
is applicable.

For the status the following outputs are defined:
e Busy - The FB is not finished and new output values are to be expected
e Active - Indicates that the FB has control of the axis
e CommandAborted - ‘Command’ is aborted by another command
e Error - Signals that an error has occurred within the Function Block
e ErrorID - Erroridentification

Example of a Motion Control Function Block
As an example of a PLCopen Motion Control FB, a graphical representation of the FB
MC_MoveAbsolute is shown here.

FirstFB
MC_MoveAbsolute
— | Axis Axis —
— : Execute Done = Finish
- Con}inuousUpdate Bu_sy =l
10000— (Position Active , —
2000 — : Velocity CommandAborted | —
10 — : Acceleration Error | —
10 — ; Deceleration ErrorlD | —
0 — ; Jerk
— Direction
— BufferMode

\
1
Execute ‘
[

Busy

Active

Done

Error

CommandAborted

i

{
{
{

Case 1 Case 2 Case 3

Figure 1: The behavior of the ‘Execute’ / ‘Done’ in relevant FBs

The behavior of the ‘Execute’ / ‘Inxx’ style FBs is as follows:

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 7/89

PLCopen’

for efficiency in automation

Execute

Busy

Active

\

\

I

\ \

\ \

| |

\ \

INXxx } |— l

\ \

\ \

\ \

[[
\

Error

CommandAborted

Case 1 Case 2 Case 3

-

Figure 2: The behavior of the ‘Execute’ / ‘Inxx’ in relevant FBs

2.4. Safety

PLCopen has created a suite of specifications for safety. Also within this suite an effort was made to have
a consistent specification and layout of the function blocks, in line with motion control.

This chapter provides a short overview of the commonalities of the specifications of the safety FBs.

Due to the safety related character of this part of the specification a reduction in the datatypes and
functionalities is applicable, as well as the introduction of a Safe datatype. This means that there is a
smaller overlap in outputs with the motion specification. Also the combination Execute/Done IS
replaced by Activate/Ready due to a slightly different behavior.

Example of a Safety FB

SF_EmergencyStop
BOOL _ | Activate Ready [BOOL
SAFEBOOL __ | S_EStopln S_EStopOut | SAFEBOOL
SAFEBOOL | S_StartReset Error | BOOL
SAFEBOOL | S_AutoReset DiagCode | WORD
BOOL | Reset

2.5. Specifications in Communication

Together with the OPC Foundation, PLCopen has created FBs for the communication via OPC UA,
Unified Architecture. This chapter gives a short overview of the specification.

Also here the combination Execute/Done is applicable, as well as Busy, Error and ErrorID with
functionalities equal to the PLCopen Motion Control specification.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 8/89

PLCopen’

for efficiency in automation

Example of a Communication FB

2.6.

BOOL
STRING
STRUCT _|

TIME _|

UA_Connect
Execute ConnectionHdl
ServerEndpointUrl Done
SessionConnectinfo Busy
Timeout Error

ErroriD :

Conclusion

DWORD

[~ BOOL

BOOL
BOOL
DWORD

Overall there are 2 levels of commonality specified over the different PLCopen specifications:

e Basic level with Execute/Done (Or Activate/Ready) and Busy, Error and ErrorID,

although the ErrorID can be an INTEGER, @ WORD Of a DWORD.

e Extended Level with the addition of active and Commandaborted

MC_MoveAbsolute
MC_MoveAbsolute

Execute
ContinuousUpdate
Position

Velocity
Acceleration
Deceleration

Jerk

Direction

Buffermode

CommandAborted

Busy
Active

Error
ErrorlD

Figure 3: Common behaviour parameters

Overview of related parameters in different libraries.

Library MC v1.0 MC v2.0 Safety Communication
Enable Execute Enable/Execute

Execute X X X

ContinuousUpdate X

Enable X X

Activate X

Ready X

Valid X X

Enabled X

Done X X X

Busy X X X X

Active X X X

CommandAborted X X

Error X X X X X

ErrorlD X X X X

DiagCode X

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)

page 9/89

PLCopen’

for efficiency in automation

3. Introduction of the PLCopen Function Block concepts

In this chapter the basic concepts of the PLCopen Function Blocks are explained. These concepts can also
be called PLCopen Common Behaviour Model. There are 2 main groups identified: Edge Triggered and
Level Controlled. The details are listed in Chapter 5 and 6 as well as in Appendix 1.

3.1. Relation of Execute and Enable inputs to Level and Trigger inputs

In the specifications of PLCopen FBs as described above, the inputs Enable and Execute are used to
start the FB. However, further in this document a more generic description is used:

e Edge Triggered Function Blocks — which are coupled to the Execute input;
e Level Controlled Function Blocks — which are coupled to the Enable input.

Sometimes it is important to choose a level-controlled model rather than an edge-triggered model. For the
detection of a rising edge in a function block, two PLC cycles are necessary. Thus, if the requirement is to
be able to process a new value in each cycle, an edge-triggered model cannot serve as a solution. In this

case, a level-controlled function block model is the preferred way to implement the required functionality.

3.2. Introduction to Edge Triggered function blocks

As an example of an edge triggered function block the ETrigA (Edge Triggered with Abort functionality)
is shown here, both the graphical representation and the state diagram.

Invocation Complete
Ready AND
Condition xResetRequest OR NOT xExecute

»{ Done

ETrigA
—xExecute xDone —
—|xAbort *xBusy— niacation Conplete
xError— xResetRequest OR NOT xExecute
xAborted —
eErrorlD— Tnvacation Complete T
|
|

AND
xResetRequest OR NOT xExecute

T Aborted

Edge Triggered function blocks in the context of this document are defined as follows:

e The input variable xExecute is the defining feature for this type of function block.

e Avrrising edge detected at the input variable xExecute (start condition) starts the operation
defined by this particular edge triggered function block.

o All inputs other than xExecute and the eventually present variable xabort are sampled with this
rising edge. These two inputs will be stored locally. Thus, later changes of these inputs cannot
influence the defined operation while it is running [1].

e The input variable xExecute can be set to FALSE after the status TRUE was seen on the output
variable xBusy.

o Afalling edge detected at the input variable xExecute will not abort the defined operation. The
defined operation is running normally to its ready condition, abort condition or error condition.

Sometimes it is necessary to have additional input variables which can influence the internal work flow. In this case, the
special behavior of these variables should be clearly documented.

(1]

2] Sometimes it is necessary to have additional output variables with a valid status while xDone is not set to TRUE. In this
case, the special behavior of these variables should be clearly documented.

Sometimes it is necessary to have additional output variables which a valid only in combination with the status of some
other output variables. In this case, the special behavior and relationship of these variables should be clearly documented.

(3]

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 10/89

PLCopen’

for efficiency in automation

Only if the status TRUE is detected on the (eventually present) input variable xAbort the defined
operation is cancelled (abort condition).

If the input variable xAbort is present and the input variable xExecute have the same value
TRUE the abort condition is reached immediately.

Only one of the output variables xbone, xBusy, xError or the output variable x2Aborted (if
present) can have the status TRUE at the same time.

If an abort condition was detected, the output variable xaborted is set to TRUE after setting the
output variable xBusy t0 FALSE.

With the falling edge of xBusy the input variable xExecute is sampled and its inverted value is
stored as a reset request inside the FB.

The state of the output variables will be valid for a minimum of one invocation even though the
state of the xExecute input variable is already set to FALSE. In this case (reset request) the
internal state of the function block is automatically reinitialized. In the other case (xExecute is
still TRUE) the function block is waiting for a falling edge of the input variable xExecute before
reinitializing the function block (standard handshake).

The status of the output variables other than xDone, xBusy, xError, xAborted Of eErrorID
are valid only while xDone has the status TRUE [2][3].

With an active reset request and after the status TRUE of one of the output the variables xDone,
xError Of xAborted Was seen, the input variable xExecute can be set to TRUE again and the
function block will restart its defined operation (quick handshake).

See the detailed descriptions of the reference implementation for the different edge triggered function
blocks in the appendix:
ETrig | ETrigTl | ETrigTo | ETrigTITo | ETrigA | ETrigATI | ETrigATo | ETrigATo | ETrigATITo

3.3. Introduction to Level Controlled function blocks

As an example of a level controlled function block the LCon (Level Controlled function block) is shown
here, both the graphical representation and the state diagram.

Ready

—xEnable

Condition

LCon
xDone—

Invocation Complete
AND
xResetRequest OR NOT xEnable

xBusy—
xError—

Resetting

eErrorlD—

\,
\
\
\
.

The input variable xEnable is the defining feature for this type of function block.

The status TRUE detected on the input variable xEnable (start condition) starts the operation
defined by this particular level controlled function block. The defined operation is running to its
ready condition or error condition while the input variable xEnable is TRUE. The status FALSE
detected on the input variable xEnable is interpreted as an abort (abort condition). This means
the internal state of the function block and all output variables will be reinitialized and it is then
ready for a new start (standard handshake).

The input variables will not be stored locally and can so influence the current work flow of the
defined operation.

Only one of the output variables xbone, xBusy 0Or xError can have the status TRUE at the same
time.

The status of all output variables is valid as long as the status of the output variables xBusy or
xDone IS TRUE [3].

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines

© PLCopen (2017)

May 4, 2017 page 11/89

PLCopen’

for efficiency in automation

With the falling edge of xBusy the input variable xEnable is sampled and its inverted value is
stored as a reset request.

The state of the output variables will be valid for a minimum of one invocation even though the
state of the xEnable input variable is already set to FALSE. In this case (reset request is TRUE)
the internal state of the function block is automatically reinitialized. This can especially happen
after an error condition while aborting the defined operation.

The status of the output variables other than xDone, xBusy, xError Of eErrorID are valid only
while xDone has the status TRUE [2][3].

With an active reset request and after the status TRUE of one of the output variables xDone or
xError was seen, the input variable xEnable can be set to TRUE again and the function block
will restart its defined operation (quick handshake).

Sometimes it is necessary to have a behavior model which never reaches its ready condition. An example
is the MC_Power motion control function block. Also, the TCPServer function block as shown in Par. 3.7
Cooperation of various function blocks is an example which needs a clear start condition but will never
finishes the defined operation.

Such a Level Controlled function block has no xDone output variable and no bone state. This behaviour
is defined as a Continuous Behaviour.

In the context of this document we refer to this kind of behavior models as LConC and LConTIC.

See the detailed descriptions of the reference implementation for the different level controlled function
blocks in the appendix (for LCon, LCONTI, LConTo, LConTITo, LConC and LCONTIC).

3.4. Common properties of these types of function blocks

If a specific invocation of a function block detects a start condition, the output variable xBusy is
set immediately to the status TRUE.

As long as the defined operation of a function block is running, the output variable xBusy has the
value TRUE.

If the ready condition is reached, the output variable xDone is set to TRUE and the output variable
xBusy IS Set to FALSE.

If the error condition is reached, the output variable xError is set to TRUE and the output
variable xBusy is set to FALSE. Additionally the output variable eError1D will set to an error
code other than ERROR.NO ERROR. The eErrorID is defined here as an ENUM although users can
also define this as INTEGER, WORD, DWORD or other datatype.

If the defined operation can be fully processed in one invocation, the ready condition or the error
condition is reached immediately and the TRUE status of the output variable xBusy is never be
seen.

With the rising edge of xDone, the status of all output variables will be frozen.

As long as one of the output variables xDone, xBusy Or xError has the status TRUE the defined
operation of this function block has not yet completed, so a further invocation is necessary.

Timing constraints of these function blocks:

udiTimeLimit ([ps], 0 = no operating time limit):

A function block could, for example, complete a complex task in a loop. The larger the task is, the
more time that is consumed in the current invocation of this function block. The udiTimeLimit
parameter can define how much time per invocation is permitted for consumption in the respective
function block. Function blocks with an udi TimeLimit input variable are implemented in such

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 12/89

PLCopen’

for efficiency in automation

a way that the current invocation is exited when the task is complete (Ready Condition), or when
the consumed time for this invocation has exceeded the settings from udiTimeLimit.

e udiTimeOut ([ps], 0 = no operating time limit):
When processing its defined operation, a function block could be forced for example to wait for an
external event. It can do this in an internal loop (Busy Wait) or it can check in each invocation
whether its task can be completed in full. The udiTimeout parameter can define then how much
time is permitted for consumption for the defined operation. Function blocks with the
udiTimeOut input variable are implemented in such a way that the current invocation is exited
towards an error condition (xError = TRUE and eError1d = ERROR.TIME_OUT) when the
time interval as defined by udiTimeOut has been exceeded.

3.5. Error Domains and Error Codes

Every library provides its own error domain (Error Domain = Library namespace).
Every library provides a set range of possible values for an Error1D output variable (Error Codes =
ERROR enum data type).

All Function Blocks in this document have a Boolean output xError to indicate that an error condition
has been reached. In that case the related information will be signaled with the value of the output
eErrorID. The eErrorID represents an Integer, indicating the reason of the error. In many cases this
integer value is used as input for an additional FB which converts the number to a related localized string
in an applicable language. The set of values for a specific eError1ID are application dependent. In case
several libraries are combined (several domains), there can be an overlap in the numbers of the
eErrorID, meaning that the same number identifies a different error in a different domain. For this
reason a value range definition for eError1D per library must be done.

The error handling of a function block should be designed in a way that only error codes are returned,
which are documented in the affected library. It is very convenient but not recommended simply to return
untreated error codes from sub libraries. This would result in a bad user experience. It is recommended to
map foreign error codes to the error range of the affected library.

In the following example we take a closer look to the relationship between two libraries, each with a
specific domain of error codes. The first library may be called the “Memory Block Manager library” and
IS built in the namespace MBM. The second library may be called the “Function Block Factory” and is built
in the namespace FBF. Each library defines its own ERROR enum data type.

attribute 'qualified_only'}

TYPE ERROR :
NO_ERROR := @, // The defined o
NO_MEMORY := 18 /S The
HAMDLE_INVALID := 28, //
WROMNG_ALIGNMENT := 28

END_TYPE

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 13/89

PLCopen’

for efficiency in automation

{attribute 'qualified_only'}
TYPE ERROR :
NO_ERROR := @, // T

TIMEQUT := 1, // The speci
INVALID_PARAM := 18, /, o o
NO_MEMORY := 20, // The extensi

END_TYPE

o Two libraries are isolated with a namespace (in this example FBF and MBM).
« Each error Enum declaration should respect two predefined error codes.
o NO ERROR = 0 (Zero)
o TIME OUT = 1(One)
o Ifthe TIME OUT error code has no usage in a specific domain the value should not be reused for
another error code.
o Any error code needs a short description about the background of its error condition.
e Anenum data type should be isolated from other enum data types with its own namespace
(fattribute 'qualified only'}). FBF.ERROR.NO MEMORY has a completely different
meaning as MBM.ERROR .NO MEMORY.

Working together with sub libraries brings up the need for mapping the different error domains to the one
local domain. The next example demonstrates the possible design of an error code mapping function. It
handles the error codes (from cs.ERROR and cO.ERROR) of two sub libraries and tries to map these to
the one local Error Enum (CANOPEN KERNEL ERROR) (All enum data types in this example have the
base type INT).

FUNCTION MapError : CANOPEN_KERNEL_ERROR

VAR_INPUT
iError : INT;
END_VAR
MapError = CANOPEN_KERMEL_ERROR.CANOPEN_KERMEL _UNKNOWMN_ERROR;

IF iError = CS.ERROR.NO_ERROR THEN
MapError := CANOPEN_KERNEL_ERROR .CANOPEN_KERMEL_NO_ERROR;

ELSIF iError > CS.ERROR.FIRST_ERROR AND iError ¢ CS.ERROR.LAST_ERROR THEN
CASE iError OF

CS5.ERROR.TIME_OUT * MapError := CANOPEN_KERNEL_ERROR.CANOPEN_KERMNEL _TIMEOUT;
C5.ERROR.REQUEST_ERROR i MapError := CANOPEN_KERMEL_ERROR.CANOPEN_REQUEST_ERROR;

C5.ERROR.WRONG_PARAMETER i MapError := CANOPEN_KERMEL_ERROR.CANOPEN_WRONG_PARAMETER;
C5.ERROR. NODEID_UNKNOWN i MapError := CANOPEN_KERMEL_ERROR.CANCQPEN_NODEID_UNKNOWN;

CS.ERROR.SDOCHANNEL_UNKNOWN : MapError := CANOPEN_KERNEL_ERROR.CANOPEN_SDOCHANNEL_UNKNOWN;
ELSE
MapError := CANOPEN_KERNEL_ERROR.CANOPEN_KERNEL_OTHER_ERROR;
END_CASE
ELSIF iError > CO.ERROR.FIRST_ERROR AND iError < CO.ERROR.LAST_ERROR THEN
CASE iError OF
CO.ERROR.TIME_OUT : MapError :
CO.ERROR.NO_MORE_MEMORY : MapError
CO.ERROR.WRONG_PARAMETER: MapError :
CO.ERROR.NODEID_UNKNOWN : MapError :
CO.ERROR.NETID_UNKNOWN : MapError :
ELSE
MapError := CANOPEN_KERNEL_ERROR.CANOPEN_KERNEL_OTHER_ERROR;
END_CASE
END_IF

CANOPEN_KERNEL_ERROR.CANOPEN_KERNEL_TIMEOUT;
CANOPEN_KERNEL_ERROR.CANOPEN_NO_MORE_MEMORY;
CANOPEN_KERNEL_ERROR . CANOPEN_WRONG_PARAMETER;
CANOPEN_KERNEL_ERROR . CANOPEN_NODEID_UNK NOWN
CANOPEN_KERNEL_ERROR . CANOPEN_NETID_UNKNOWN;

This design assumes CS.ERROR.NO ERROR has the same value as CO.ERROR.NO ERROR and the rest of
the value range of cS.ERROR and CO.ERROR Is disjunct.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 14/89

PLCopen’

for efficiency in automation

3.6. How to handle the STATE enum data type

The example implementations of the different behaviour models in this document depend strongly on the
processing of a central state machine and its handling of the sTATE enum data type. For each
implementation there is a specific simplified picture of the STATE enum data type included, which is
purely for readability and ease of comprehension. In a real library which may be implementing all the
different behaviour models as specific function blocks we will find only one STATE enum data type. This
data type will define all possible states in relation to all kinds of function blocks in the PLCopen
behaviour model function block family.

TYPE STATE :

DORMANT, 7/
EXECUTING, /.
DONE, /
ERROR,
ABORTING,
ABORTED,
RESET TING

)i
END_TYPE

POUs v & X [£) ETrigaTiTo X
=) PLCopen Common Behaviour Model t]! - 1 REPEAT
= I Enums : xAgain := FALSE;
<% ERROR (ENUM) =8 3 CASE eState 0
o’: STATE (ENUM) § STATE.DORMANT: HandleDormantState(xAgain=>xAgain);
=12 Function Blocks 5 STATE.EXECUTING: HandleExecutingState(xAgain=>xAgain);
+.[8) ETrig (F8) STATE.DONE: HandleDoneState(xAgain=>xAgain);
|E] ETrigA (FB) 7 STATE.ERROR: HandleErrorState(xAgain=>xAgain);

|E] ETrigaT! (FB) E STATE.ABORTING: HandleAbortingState(xAgain=>xAgain);

|E] ETrigATITo (FB) 3 STATE.ABORTED: HandleAbortedState(xAgain=>xAgain);

[£) ETrigaTo (FB) 1 STATE.RESETTING: HandleResettingState(xAgain=>xAgain);
[E) eTrion () 1 END_CASE

[§) eTrigro (F8) 1z UNTIL NOT xAgain

|Z] eTrigTo (FB) 12 END_REPEAT;

) [
=
[a)
Q
3
af
2

é] LConTiTo (FB)
EI LConTo (FB)
+ g TimingController (FB)
m Library Manager
B Project Information
G’ Project Settings

T S SR SR SR S SR SN I S S

3.7. Cooperation of various function blocks

The cooperation of various function blocks each follow one of the previous described behaviour models.
Here an example is shown of this cooperation.

If the design of function block interfaces consistently takes into account this PLCopen Common
Behaviour Model then complex relationships between instances of them can easily be expressed and
understood, in particular in graphical languages. This example demonstrates the opportunities which are
resulting from the use of the PLCopen Common Behaviour Model.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 15/89

PLCopen’

for efficiency in automation

TCP Reader Example

Server o)
TCP_Server —|
—{xEnable xBusy| Connection N
—{ipAddr xError— TCP_Connection —
—{uiPort eErrorlD— xEnable xBusy—
itfServer itfServer xError— Reader (2] QWrite z
eErrorlD— TCP_Reader — EnQueue

xActive, xEnable xBusy xEnable xBusy

itfConnection l udiTimeLimit xError— itfQueue xError]

itfConnection eErrorlD— ’— itfMessage eErrorlD

MessagePool ittPool itfMessage

| MessageQueue i

A TCP Server (LconcC) listens at a specific endpoint. This endpoint is defined with a tuple consisting of
an IP address and a related port number. After a connection to a TCP client has been established, the
related Connection (L.conc) will be activated. With the help of a Reader (L.conT1C), a message
structure is allocated out of a MessagePool. This structure is then used to store the information received
from the client. For further processing, the message is then handed over to function block QWrite (L.Con)
that interfaces a queue.

Extending the Example to a Complete EchoServer

Server E
TCP_Server
—xEnable xBusy Connection En
—fipAddr xError— TCP_Connection —
—uiPort eErrorlD— xEnable xBusy—
itfServer| itfServer xError— Reader (7] QWrite =
eFrrorlDi— TCP_Reader = EnQueue
xActiv xEnable xBusy xEnable xBusy
itfConnection|—- —{udiTimeLimit xErrorf— itfQueue xError|
itfConnection eErrorlD— ,— itfMessage eErrorlD
M gePool itfPool itfM ge
MessageQueue i
L QRead E Wriler- 5
DeQueue TCP_Writer
xExecute xDone xExecute xDone
—udiTimeOut xBusy— —{udiTimeLimit xBusy,
itfQueue xError— —udiTimeOut xError|
eErrorlDi— itfConnection eErrorlD
ittMessage itfMessage

A Writer (ETrigT1To) isworking now at the end of the original Queue and is requesting (dequeuing)
the stored messages. This message is sent back over the original Connection to the client. So every
received message will be sent back to the original sender, the client. With this small modification, a
complete Echo Server is created.

Note:

The rReader function block in the example above must have the possibility to provide a new

message in each cycle. If there is no new message available in the current cycle, the output variable

is set to null. So in this case, a level-control model was chosen.

Sending a message with the help of the Writer function block in the example above can last more

than one cycle. So it is important to choose an edge-triggered model.

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation

Guidelines

May 4, 2017

© PLCopen (2017)

page 16/89

PLCopen’

for efficiency in automation

In order to combine these two function blocks into an efficient working team, a queue mechanism

IS necessary.

Note the connection between the xBusy output variable of the Writer and the negated xExecute
input variable of the QReader as handshake: in this way no extra cycle is necessary and no data will

be lost, making it very efficient.

Transformation to a Multithreaded EchoServer
Step 1: Encapsulate the “Reader — Queue — Writer” logic into a function block called EchoHandler

Handler
EchoHandler
—xEnable xBusy
pS— —itfServer xError|
..""/.- & —itfPool eErrorlD
- £ —itfQueue
~
(J’-
Server e Connection (7] ;"J
TCP_Server — TCP_Connection —
—xEnable xBusy Enable xBusyg—
—ipAddr xError— itfServer xErrorg— Reader (3] QWrite 3
—uiPort eFErrorlDi— eFErrorlDf— TCP_Reader — EnQueue
itfServer| xACtiv Enable xBusy] Enable xBus
itfConnectionf— —JudiTimeLimit xErrorg— itfQueue xErro
itfConnection eErrorlDf— ’tlithessage eErrorl D
MessagePool itfPool ittMessag
Queue
QRead (5] Writer 'y
DeQueue — TCP_Writer —
ixExecute xDone| Execute xDonef—
—JudiTimeOut xBusyf— —fudiTimeLimit xBusy]
itfQueue xErrorg— —JudiTimeOut xErrorf—
eErrorlDf— itfConnection eErrorlDf—
ittMessag ittMessage
Content of the new EchoHandler function block:
Connection o
TCP_Connection —
xEnable xEnable xBusy—
itfServer itfServer xError— Reader (7] QWrite 2
eErrorlD[— TCP_Reader — EnQueue
xActiv xEnable xBusy xEnable xBusy
itfConnection —— —udiTimeLimit xError— itfQueue xError|
itfConnection eErrorlDi— ,7 ittMessage eErrorlD
itfPool itfPool ittMessage
itfQueue
L QRead (37 Writer 7
DeQueue — TCP_Writer
xExecute xDone xExecute xDone
—fudiTimeOut xBusy— —fudiTimeLimit xBusy
itfQueue xError— —udiTimeOut xError|
eErrorlDi— itfConnection eErrorlD
ittMessage, ittMessage

Step 2: Declare a number of EchoHandler instances and assign these instances to different tasks.

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 17/89

PLCopen’

for efficiency in automation

Server (o]
TCP_Server —

—xEnable xBusy
—ipAddr xError
—uiPort eErrorlD

Handler_3

ittfServer

MessagePool |

EchoHandler
xEnable xBusy
ittServer xError]
itfPool gErrorlD
itfQueue

Handler_2 B

MessageQueue |

EchoHandler
xEnable xBusy
itfServer xError]
itfPool eErrorlD
itfQueue

Handler_1

EchoHandler
xEnable xBusy
itfServer xError|
ittPool eErrorlD
itfQueue

The result is a complete multi-threaded EchoServer.

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 18/89

PLCopen’

for efficiency in automation

4. Introduction in the object oriented features of IEC 61131-3

The 3" Edition of the IEC 61131-3 introduces object oriented features to the standard. In particular, the
standard defines methods, classes, interfaces, inheritance, etc. In this document those features are not
further explained in detail. Those concepts are considered to be known to the reader.

This document makes careful use of those features. Only protected and private methods are used to
structure the code of the resulting function blocks.

These function blocks define a set of state machines, that are considered to be very common in their
behaviour. These function blocks are not supposed to be used directly in an application, but as base
function blocks for further usage. To make use of such a function block, a new function block could be
derived from the appropriate base function block by inheritance. The protected methods should be
overridden to implement the specific behaviour.

However, no feature of the 3" Edition is really necessary to create compliant function blocks. Every
method call in the code of this document can be replaced by the code of the method. The base function
blocks can then be considered as templates. To make use of the base function block, a new function block
could be created by copying the base function block. The calls to the protected methods should be
replaced to implement the specific behaviour.

The basic FBs ETrig and LCon can be extended via inheritance to the FBs ETrigA, ETrigATI, ETrigATo,
ETRIigATITo, ETrigTITo, ETRigTo, ETRigTIl and LConTlI, LConTo, LConTITo respectively.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 19/89

PLCopen’

for efficiency in automation

5. Explanation of Rising Edge trigoered FBs

5.1. The basic FB: ETrig

This is the functionality in its most simple form with only an Execute as input, both in textual as well as
in graphical representation.

Textual representation Graphical representation

FUNCTION BLOCK ETrig

VAR_INPUT BO4 E
xExecute: BOOL; E1]1g

END VAR

VAR OUTPUT —xExecute xDone—

~xDone: BOOL; XBUS}I"—

xBusy: BOOL;
xError: BOOL; xError—
eErrorID: INT; iErroriDi—

END_ VAR

To describe the functionality and behaviour of this FB one can make use of a state diagram, describing
the different states as well as the transitions as a result of an activity.

Basically there are 4 states: Dormant, Busy and Done, combined with Reset and Error. See hereunder.
Listed are also the transitions including error behaviours’.

Reset
xExecute = FALSE Done
Reset is finalized Other Inputs ignored xExecute
xBusy = FALSE Task completed Other Inputs ignored
xDone = FALSE successfully XBusy = FALSE
(iError), XxError = FALSE xDone = TRUE
(il Cluifies (ot (iError), xError = FALSE
Other Outputs frozen xExecuteto FALSE
(Falling edge)
OR
Wait 1 cycle, if
Executeis already
Idle = Dormant Busy Error FALSE
XExecute = FALSE XExecute = TRUE (1%t cycle) XExecute
Other Inputs ignored xE.x_ecuteto TRUE Other inputs read in 1st cycle Erroroccurred Other Inputs ignored
xBusy = FALSE (Rising edge) xBusy = TRUE XBusy = FALSE
xDone = FALSE xDone = FALSE xDone = FALSE
(iError), xError = FALSE (iError), xError = FALSE (iError), xError = TRUE
Other Outputs reset Other Outputs valid Other Outputs frozen

Figure 4: Basic State Diagram

After a rising edge was detected at the input xExecute the internal state is switched from Dormant to
Busy while in that invocation all the inputs are sampled and stored. The output xBusy will be set to TRUE.
The defined operation will be started.
While working on the defined operation, a number of conditions can appear that lead to the exit from the
Busy state. This means the value of the output variable xBusy will be set to FALSE and the internal state
will be switched from Busy to one of the states Done or Error. This change will be mirrored to one of the
output variables xDone or xError. Only one output variable of this set of variables can have the status
TRUE at the same time.
Ready Condition: If the operation has reached its ready condition without any error and timing
constraints the output variable xDone is set to TRUE. This means the internal state is switched
from Busy to Done.
Error Condition: If an error condition was detected, the output variable xError is set to TRUE.
This means the internal state is switched from Busy to Error. In addition, one of the defined error

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 20/89

PLCopen’

for efficiency in automation

codes (one value out of the local enumeration type ERROR) will be assigned to the output variable
eError.
The values TRUE of one of the output variables xDone or xError has to be stable for minimum one
cycle.
After a FALSE status for the input variable xExecute is detected, the internal state will be switched to
Reset.
All Outputs will be initialized to their default status (Reset Outputs). All claimed resources will be freed.
Especially the output variables xDone and xError will be set to FALSE.
After doing this reinitialization work, the internal state will be switched from Reset to Dormant.
(Note: One has to make sure that the state TRUE of one of the output variables xDone or xError must be
stable for a minimum of one cycle, e.g. add a sub-state Sync.)

Example of the ST Program for the FB ETrig with OO

For this example the Object Oriented features are used. For an example in the classical approach refer to
Appendix 2 Example without using Object Oriented features.

The following methods are used in the code: prvResetOutputs(), prvStart() and prvCyclicAction()

The STATE Enumeration:

TYPE STATE :
(

DORMANT, // Waiting for Start

EXECUTING, // CyclicAction is running
DONE, // CyclicAction is complete
ERROR, // Error condition reached

RESETTING // ResetAction is running
)i
END TYPE

The ERROR Enumeration:

TYPE ERROR :

(
NO_ERROR :=0
TIME OUT :=

(*...%)

’
1

) ;
END_TYPE

Implementation of the Function Block ETrig:

FUNCTION BLOCK ETrig

VAR INPUT
// Rising edge starts defined operation
// FALSE = reset the defined operation
// after ready condition was reached
xExecute: BOOL;

END VAR

VAR OUTPUT
// ready condition reached
xDone: BOOL;
// operation is running
xBusy: BOOL;
// error condition reached
xError: BOOL;
// error code describing error condition
eErrorID : ERROR;

END VAR

VAR

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 21/89

PLCopen’

for efficiency in automation

eState : STATE;

xfIRSTiNVOCATION : BOOL := TRUE;
xResetRequest : BOOL;
END_VAR
VAR TEMP
xAgain : BOOL;
END_VAR
REPEAT
xAgain := FALSE;
CASE eState OF
STATE .DORMANT : HandleDormantState (xAgain=>xAgain) ;
STATE .EXECUTING: HandleStartState (xAgain=>xAgain) ;
STATE .DONE : HandleDoneState (xAgain=>xAgain) ;
STATE .ERROR: HandleErrorState (xAgain=>xAgain) ;
STATE.RESETTING: HandleResettingState (xAgain=>xAgain) ;
END CASE

UNTIL NOT xAgain
END REPEAT;

The Handler for the pormant State

METHOD PRIVATE FINAL HandleDormantState
VAR OUTPUT

xAgain : BOOL;
END VAR

IF xExecute THEN

xBusy := TRUE;
eState := STATE.EXECUTING;
xAgain := TRUE;

END IF

The Handler for the Executing State

METHOD PRIVATE FINAL HandleExecutingState
VAR OUTPUT
xAgain : BOOL;
END VAR
VAR
xComplete : BOOL;
END VAR

CyclicAction (
xComplete=>xComplete,
eErrorID=>eErrorID

)i

IF eErrorID <> ERROR.NO ERROR THEN

eState := STATE.ERROR;
xAgain := TRUE;

ELSIF xComplete THEN
eState := STATE.DONE;
xAgain := TRUE;

END IF

The Handler for the pone State

METHOD PRIVATE FINAL HandleDoneState
VAR OUTPUT

xAgain : BOOL;
END VAR

IF xDone AND (xResetRequest OR NOT xExecute) THEN
eState := STATE.RESETTING;
xAgain := TRUE;

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines May 4, 2017

© PLCopen (2017)
page 22/89

PLCopen’

for efficiency in automation

ELSE
xBusy := FALSE;
xDone := TRUE;
xResetRequest := NOT xExecute;
xAgain := FALSE; (* !!!l *)
END IF

The Handler for the error State

METHOD PRIVATE FINAL HandleErrorState
VAR OUTPUT
xAgain : BOOL;

END VAR
IF xError AND (xResetRequest OR NOT xExecute)
eState := STATE.RESETTING;
xAgain := TRUE;
ELSE
xBusy := FALSE;
xError := TRUE;
xResetRequest := NOT xExecute;
xAgain := FALSE; (* !!!l *)
END IF

The Handler of the Resetting State

METHOD PRIVATE FINAL HandleResettingState
VAR OUTPUT
xAgain : BOOL;
END VAR
VAR
xComplete : BOOL;
END VAR

ResetAction (xComplete=>xComplete) ;

IF xComplete THEN

xBusy := FALSE;
xDone := FALSE;
xError := FALSE;
eErrorID := ERROR.NO ERROR;
eState := STATE.DORMANT;
xFirstInvocation := TRUE;
xAgain := xResetRequest; (* !!! *)
xResetRequest := FALSE;
END IF

Example implementation of the application specific Methods

THEN

This code is listed here just as an example. The content needs to be adapted to the real requirements of a

specific application.

The Implementation of the cyclicaction
METHOD PROTECTED CyclicAction
VAR OUTPUT
xComplete : BOOL;
eErrorID : ERROR;
END VAR

IF xFirstInvocation THEN
(* Starting ¥*)

// for the first (!) invocation,
// sample the input variables
xFirstInvocation := FALSE;

END IF

(* Executing ¥*)

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines May 4, 2017

© PLCopen (2017)

page 23/89

PLCopen’

for efficiency in automation

// working to reach the ready condition

// = xComplete := TRUE

// 1if an error condition is reached

// = set eErrorID to a value other than ERROR.NO ERROR

xComplete := TRUE;
eErrorID := ERROR.NO ERROR;

IF xComplete OR eErrorID <> ERROR.NO ERROR THEN
(* Cleaning ¥*)
// 1f possible free as much allocated resources
// as possible

END IF

The Implementation of the resetaAction

METHOD PROTECTED ResetAction
VAR OUTPUT

xComplete : BOOL;
END VAR

// free all allocated resources
// reinitialize instance variables

xComplete := TRUE;

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines May 4, 2017

© PLCopen (2017)
page 24/89

PLCopen’

for efficiency in automation

5.2. Adding the Aborting Functionality to the basis

The next step is to add the aborting functionality to the basic function block. With aborting the on-going
functionality is interrupted with another command. For this we need an input (xAbort), to initiate the
aborting functionality, and an output (xAborted) to reflect the status: it is SET when the FB is aborted.
(Note that this representation is different from the PLCopen Motion Control Specification where the
aborting functionality is hidden while shown here as an input)

Textual representation Graphical representation
FUNCTION BLOCK ETrigA
VAR INPUT ETrigA
xExecute: BOOL;
xAbort: BOOL; —xExecute xDone—
END_VAR —xAbort xBusy—
VAR _OUTPUT
xDone: BOOL; xError—
xBusy: BOOL;
xError: BOOL; xAborted —
xAborted: BOOL; eErrorlD—
eErrorID: INT
END VAR

With this added functionality, the state diagram gets more complex since there is a state Abort added:

xExecute
Invocation Complete

Ready
Condition

xResetRequest OR NOT xExecute

»(Done
N

xExecute

Invocation Complete
AND
xResetRequest OR NOT xExecute

Error
Condition

xExecute
Error

Condition

xAbort Resetting

xExecute
NOT xExecute

1 ‘\
I
[}

Aborting

Invocation Complete

AND
Aborted xResetRequest OR NOT xExecute

Figure 5: The State Diagram of ETrigA

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines May 4, 2017

© PLCopen (2017)
page 25/89

PLCopen’

for efficiency in automation

Cone
wEwsrute
Enmoyuts complsts whibart
Cither Inputs gnared
whury = FALSE

[aErreriDi, xErrer = FALSE
kAparted = FALSE

Diormant Executing Error

KESECULE = FALSE wEmecute = TRUE |17 oycle| Eerute

whbart = EALSE IlL-clmIlInIl!L: wibort = FALSE whibort

CtRar inputs ignored [Riiingadge) I mad : Cithar inputs ignared SERmOson Dy FALSE
wlfiuiy = FALSE xRury = FALSE [Faling scigs)
xDene = FALSE aDiona = FALEE PR aDizna = FALSE f'\“” .

|Errae|D), sEror = FALSE [#ErreeiLi, sErrer = FALLE gD, sEmee = TRUE I
wAbaried = FALSE wldborted = FALSE whibaorted = FALSE

iy FALEE
Oher Cupt puts renet ey

whboet= TRUE

Aborting Aborted
wlwecute aboring wlwmcite
=whbort = THUE R whiport
Other Inputd ignansd Cthar Inpuls ignared
%Biry = FALSE
sl = FALSE sDonie = FALSE

[eErrediDi]. ¥EFror & FALSE [eErmariCi. <Errar = FALSE
whborted = FALSE whborted = TS

Figure 6: State Diagram of ETrigA with output status
Note that the Resetting State in this picture is included in the Dormant state.

After a rising edge was detected at the input XExecute the internal state is switched from Dormant to
Executing while in that invocation all the inputs are sampled and stored.
The output xBusy will be set to TRUE. This means the internal state is switched to Busy.
The defined operation will be started (CyclicAction).
While working on the defined operation a number of conditions can appear, that lead to the exit from the
Busy state. This means the value of the output variable xBusy will be set to FALSE and the internal state
will be switched from Busy to one of the states Done, Error or Aborted. This change will be mirrored to
one of the output variables xDone, xError Or xAborted. Only one output variable of this set of
variables can have the status TRUE at the same time.
Ready Condition: If the operation has reached its ready condition without any error and timing
constraints the output variable xDone is set to TRUE. This means the internal state is switched from
Busy to Done.
Error Condition: If an error condition was detected, the output variable xError is set to TRUE.
This means the internal state is switched from Busy to Error. In addition, one of the defined error
codes (one value out of the local enumeration type ERROR) will be assigned to the output variable
eErrorID.
Abort Condition: If a status of TRUE was detected for the xAbort input variable, the abort
condition is reached. This means the internal state is switched from Busy to Abort. Any current
action of the defined operation will be aborted. After this is done the output variable Aborted will
be set to TRUE and the internal state is switched from Abort to Aborted.
The value of TRUE of one of the output variables xDone, xError Or xAborted has to be stable for
minimum one cycle.
After a FALSE status for the input variable xExecute is detected, the internal state will be switched to
Reset.
All Outputs will be initialized to their default status (Reset Outputs). All claimed resources will be freed.
Especially the output variables xDone, xError and xAborted will be set to FALSE.
After doing this reinitialization work, the internal state will be switched from Reset to Dormant.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 26/89

PLCopen’

for efficiency in automation

Example of a SFC Program

Hereunder an example of the implementation in Sequential Function Chart, SFC of the state diagram of
Figure 5: The State Diagram of ETrigA. The different states are clearly identifiable in the Steps, linked to
the related Action Blocks with the Action Qualifiers. The transition conditions between the Steps are
linked to the transitions in the State Diagram.

Deenank B4

Exesating -

Dens ki xhuRy Keorking — W Abarthotion Eezas —F xBuzy

ADaTEed L Bkl

Rasatting | R whany

Figure 7: Example of the ETrigA State Diagram in SFC

Note to the used Action qualifiers:

N Non-stored, executes while associated step is active
R Resets a stored action
S Sets an action active, i.e. stored

For more details refer to the IEC 61131-3 standard.

For an example of the code and the timing diagrams, refer to Appendix 1 Datasheets of the Edge
Triggered and Level Controlled FBs Par. Appendix 1.3.5 ETrigA.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 27/89

PLCopen’

for efficiency in automation

5.3. Adding timer functionality

On top of the abort functionality or without this functionality one can add timers to make the functionality
more robust. Basically there are 3 options for timers:

1. TimeOut (To): the overall operating time of the defined operation should be lower than the time
(in ps) as specified by the input value udiTimeOut;

2. TimeLimit (TI): here the time limit is set that the operation stays within the cycle time. In that
way a longer operation can be divided over several cycles;

3. And the combination of them both (TITo).

What does udiTimeLimit do?
A function block could, for example, complete a complex task in a loop. The larger the task is, the more

time that is consumed in the current task of this function block. The udiTimeLimit parameter can
define how much time per invocation is permitted for consumption in the respective function block.
Function blocks with udiTimeLimit input must implement their CyclicAction in such a way that this
method is exited when the task is complete (ReadyCondition, xComplete :=TRUE) or when the
consumed time in this cycle has exceeded the settings from udiTimeLimit (xComplete:=FALSE).

What does udiTimeOut do?

When processing its cycle action, a function block for example could be forced to wait for an external
event. It can do this in an internal loop (BusyWait) or it can check in each cycle whether its task can be
completed in full. The udiTimeOut parameter can define then how much time is permitted for
consumption in the Busy state.

Function blocks with the udiTimeOut input must implement their CyclicAction in such a way that this
method is exited towards xError (eError := ERROR.TIME OUT) when the time interval as defined by
udiTimeOut has been exceeded.

Examples with timers without Aborting

B0O3 (5 B0O? BO1
6 (5] [4]
ETrigTo '— ETrigTl . ETrigliTo |
—|Execute Done— —Execute Done— —Execute Doner—
— TimeOut Busy— —TimeLimit Busyl— —TimeLimit Busy—
Error— Error— —TimeOut Error—
Error— ErrorlD— ErrorlD—
Note: the inputs and outputs are listed here without prefixes in the names
Examples with Aborting and timers
B13 5 B12 oy B11 0]
1 - 0
ETrighTo ETrigATl ETrigATlTo '—
— Execute Done— —|Execute Done— —Execute Done
— Abort Busy— —Abort Busy— — Abort Busy
— TimeQut Error— —TimeLimit Error— — TimeLimit Error
Aborted Aborted — — TimeQut Aborted
ErrorlD ErrorlD ErrorlD

Note: the inputs and outputs are listed here without prefixes in the names

For the state diagram let us look at the most extended version: ETrigATITo. The condition TimeoOut
results in a transition to the state Error. The condition TimeLimit is applicable in Executing.

© PLCopen (2017)
page 28/89

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines May 4, 2017

PLCopen’

for efficiency in automation

xExecute

Invocation Complete
AND
xResetRequest OR NOT xExecute
Ready
Condition

xExecute

Invocation Complete
AND
XResetRequest OR NOT xExecute

Error
Condition

TimeLimit
Pty

TimeOQut
Condition

xExecute

Resetting

Error
Condition

xExecute
NOT xExecute

Invocation Complete

. AND
Abortlng __________ Aborted xResetRequest OR NOT xExecute

Figure 8: State Diagram for ETrigATITo

Note: there are no R_Trig or F_Trig in this state diagram. The values of the parameters are relevant here. For
example from Dormant to Executing one checks the value of xExecute

Detailed description of the Function Block ETrigATITo

1. The function block is called inside of a POU one time per task cycle without any conditions. This
is called an invocation.

2. After arising edge has been detected at the input variable xExecute, the internal state is switched
from Dormant to Executing.

3. The status of all other input variables then xExecute and xabort will be sampled and stored
locally (see xFirstInvocation inside CyclicAction). Thus, later changes of these inputs
cannot influence the defined operation while it is running 0.

4. The output xBusy will be set to TRUE.

At this point in time it would be possible to set the input variable xExecute to the status FALSE
(quick handshake).

5. The defined operation will be started (see the comments inside CyclicAction).

If the operating time for the current invocation is higher than the time (in pus) as specified by the

input value xTimeLimit, the operation will be interrupted and continued in the next invocation

(see xTimeLimit IN CyclicAction).

7. While working on the defined operation, a number of conditions can appear that lead to the exit
from the Executing state. This means the value of the output variable xBusy will be set to FALSE
and the internal state will be switched from Executing to one of the states Done, Error or Aborted.
This change will be mirrored to one of the output variables xDone, xError 0r xAborted. Only
one output variable of this set of variables can have the status Truk at the same time. With the
falling edge of xBusy the input variable xExecute is sampled and its inverted value is stored as a
reset request (see xResetRequest in the methods HandleDoneState, HandleErrorState
and HandleAbortedState).

a. Ready Condition:
If the operation has reached its ready condition without any error and timing constraints
(see xComplete In CyclicAction), the output variable xDone is set to TRUE. This
means the internal state is switched from Executing to Done.

b. Error Condition:
If an error condition was detected (See eErrorID inin CyclicAction), the output
variable xError is set to TRUE. This means the internal state is switched from
Executing to Error. In addition, one of the defined error codes (one value out of the
local enumeration type ERROR) Will be assigned to the output variable eErroriD.

o

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 29/89

PLCopen’

for efficiency in automation

c. Timeout Condition:
If the overall operating time of the defined operation is higher than the time (in ps) as
specified by the input value udiTimeOut, a timeout condition will detected causing the
output variable xError to be set to TRUE. This means the internal state is switched from
Executing to Error. Furthermore, the output variable eError1D is set to a special error
code (ERROR.TIME OUT).

d. Abort Condition:
If a status of TRUE was detected for the xabort input variable, the abort condition is
reached. This means the internal state is switched from Executing to Aborting. Any current
action of the defined operation will be aborted. After this is done (see xComplete inside
AbortAction), the output variable xAborted will be set to Truk and the internal state is
switched from Aborting to Aborted. If an error condition was detected (See eErrorID in
in AbortAction), the output variable xError is set to TRUE. This means the internal
state is switched from Aborting to Error.

8. As areaction to the rising edge of one of the output variables xDone, xError Or xAborted it
would be possible to set the status of the input variable xExecute again to TRUE (quick
handshake).

9. The value of TRUE of one of the output variables xDone, xError or xAborted must be stable for
a minimum of one invocation. This means the internal states Done, Error or Aborted must be
active for a minimum of one invocation. This property guarantees that the values of the output
variables are valid and stable for a minimum of one invocation.

10. The status of output variables other than xDone, xBusy, xError, xAborted Of eErrorID are
valid only while xDone has the status TRUE.

11. After a FALSE status for the input variable xExecute is detected (standard handshake) or a reset
request is active (quick handshake), the internal state will be switched from Done, Error or
Aborted to Resetting.

12. All outputs will be initialized to their default statuses (ResetAction). All claimed resources will
be freed. Specifically, the output variables xDone, xError and xAborted will be set to FALSE.
After executing the code of the ResetAction the function block should be prepared for a new
switch of the internal state from Dormant to Executing.

13. After doing this reinitialization work, the internal state will be switched from Resetting to
Dormant (see xComplete inside ResetAction).

5.4. Example of the ST Program for ETrigATITo
An example of a possible ST program is shown in Appendix 1.3.8 ETrigATITo.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 30/89

PLCopen’

for efficiency in automation

6. Explanation of a Level Controlled FB

6.1. Basic Level Controlled FB
This is the equivalent of the previous most simple FB, but now as level controlled.

Textual representation Graphical representation
FUNCTION BLOCK LCon
VAR INPUT LCon
xEnable: BOOL;
END VAR —xEnable xDone—
VAR OUTPUT
xDone: BOOL;
xBusy: BOOL; xError—

xError: BOOL; E |D—
eErrorID: INT; ecrror

END VAR

xBusy—

State Diagram Basic Level Controlled FB

This state diagram also has 5 states: Dormant, Executing, Done, Error and Aborting, although for clarity
we added one state in Figure 9: Overview State Diagram Level Controlled FB to show clearly the
transition back to the state Resetting. In Figure 10: Example of the state diagram for a basic level
controlled FB this state is again incorporated in the Dormant state.

xEnabTle

Ready

NOT xEnable
Condition

Error

Invocation Complete
Condition

xResetRequest OR _NOT xEnable

Error
Condition

NOT xEnable
NOT xEnable

Aborting JF---mmmmmm e Resetting

Figure 9: Overview State Diagram Level Controlled FB (LCon)

Darmant Executing Errar

B il 10 FALSE
wbnable= FaLsE il ta TRLUE sEnabis = TRUE wEnable = TRUE [Falling sdige)
Other Inputs ignored [Risieg adigul AputE o L Other inputi ignaned

alames FALEE xlene = FALSE wlene = FALSE
wBusy = FALSE = E P— aBisy = FALSE
(eErneriD], sEmor = FALEE |eErrasd D], xErrer = FALSE i [#EsranD), sErrer = TRUE

Crher Dutpats neses Ceher Dutputs net valid

Exeouti Corrgd il Error ccurnad
Done Aborting
sEnable = TR zEnabbe to PALLE xlnable = FaLSE
Oither inputs ignored i Fallirg wlgw Other Inparts ignoned
TRLIE wlang = FALSE
uEmableno FALSE wilusy = FALSE TH Al

|Faling edgpa| |eErnoeiDif, sError = FALSE |eErroeiDi], sEnror = FALSE compkabad
t tput Other Outputs reset

Figure 10: Example of the state diagram for a basic level controlled FB (LCon)

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 31/89

PLCopen’

for efficiency in automation

6.2. Example of the ST Program for the Function Block LCon in OO

The sTATE Enumeration:

TYPE STATE

(
DORMANT, // Waiting for xEnable
EXECUTING, // CyclicAction is running
ABORTING, // AbortAction is running
DONE, // Ready condition reached
ERROR, // Error condition reached
RESETTING // ResetAction is running

)i

END TYPE

The errorR Enumeration
TYPE ERROR :
(

NO ERROR := 0,
TIME OUT := 1
(* ... *)

)i

END TYPE

Implementation of the Function Block LCon:

FUNCTION BLOCK LCon
VAR INPUT
// TRUE = activate the defined operation
// FALSE = abort/reset the defined operation
xEnable: BOOL;
END VAR
VAR OUTPUT
// ready condition reached
xDone: BOOL;
// operation is running
xBusy: BOOL;
// error condition reached
xError: BOOL;
// error code describing error condition
eErrorID : ERROR;
END VAR
VAR
eState : STATE;
xResetRequest : BOOL;
END VAR
VAR TEMP
xAgain :BOOL;
END VAR

REPEAT
xAgain := FALSE;
CASE eState OF
STATE.DORMANT: HandleDormantState (xAgain=>xAgain);
STATE.EXECUTING: HandleExecutingState (xAgain=>xAgain);
STATE.DONE: HandleDoneState (xAgain=>xAgain);
STATE.ERROR: HandleErrorState (xAgain=>xAgain);
STATE.ABORTING: HandleAbortingState (xAgain=>xAgain) ;
STATE.RESETTING: HandleResettingState (xAgain=>xAgain);
END_CASE
UNTIL NOT xAgain
END REPEAT;

The Handler for the Dormant State:

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines May 4, 2017

© PLCopen (2017)

page 32/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState
VAR OUTPUT

xAgain : BOOL;
END VAR

IF xExecute THEN

xBusy := TRUE;
eState := STATE.EXECUTING;
xAgain := TRUE;

END IF

The Handler for the Executing State:

METHOD PRIVATE FINAL HandleExecutingState
VAR OUTPUT
xAgain : BOOL;
END VAR
VAR
xComplete : BOOL;
xTimeOut : BOOL;
END VAR

IF xEnable THEN
CyclicAction (
xComplete=>xComplete,
eErrorID=>eErrorID
);
END IF

IF eErrorID <> ERROR.NO ERROR THEN

eState := STATE.ERROR;
xAgain := TRUE;

ELSIF NOT xEnable THEN
eState := STATE.ABORTING;
xAgain := TRUE;

ELSIF xComplete THEN
eState := STATE.DONE;
xAgain := TRUE;

END IF

The Handler for the Aborting State:

METHOD PRIVATE FINAL HandleAbortingState
VAR OUTPUT
xAgain : BOOL;
END VAR
VAR
xComplete : BOOL;
END VAR

AbortAction (
xComplete=>xComplete,
eErrorID=>eErrorID

)

IF eErrorID <> ERROR.NO ERROR THEN

eState := STATE.ERROR;
xAgain := TRUE;

ELSIF xComplete THEN
eState := STATE.RESETTING;
xAgain := TRUE;

END_IF

The Handler for the Done State:

METHOD PRIVATE FINAL HandleDoneState
VAR OUTPUT

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines May 4, 2017

© PLCopen (2017)
page 33/89

PLCopen’

for efficiency in automation

xAgain : BOOL;
END VAR

IF xDone AND NOT xEnable THEN

eState := STATE.RESETTING;
xAgain := TRUE;
ELSE
xBusy := FALSE;
xDone := TRUE;
xAgain := FALSE; (* !!! *)
END_IF

The Handler for the Error State:

METHOD PRIVATE FINAL HandleErrorState
VAR_OUTPUT

xAgain : BOOL;
END VAR

IF xError AND (xResetRequest OR NOT xEnable) THEN

eState := STATE.RESETTING;
xAgain := TRUE;
ELSE
xBusy := FALSE;
xError := TRUE;
xResetRequest := NOT xEnable;
xAgain := FALSE; (* !!!l *)
END IF

The Handler of the Resetting State:

METHOD PRIVATE FINAL HandleResettingState
VAR OUTPUT
xAgain : BOOL;
END VAR
VAR
xComplete : BOOL;
END VAR

ResetAction (xComplete=>xComplete) ;

IF xComplete THEN

xBusy := FALSE;
xDone := FALSE;
xError := FALSE;
eErrorID := ERROR.NO ERROR;
eState := STATE.DORMANT;
xAgain := xResetRequest; (* !!! *)
xResetRequest := FALSE;
END IF

Exemplary Implementation of the Application specific Methods
This code is listed here just as an example. The content needs to be adapted to the real requirements of a
specific application.

The Implementation of the CyclicAction:
METHOD PROTECTED CyclicAction
VAR OUTPUT
xComplete : BOOL;
eErrorID : ERROR;
END VAR

IF xEnable THEN
(* Executing ¥*)

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 34/89

PLCopen’

for efficiency in automation

// for every invocation,
// sample the input variables

// working to reach the ready condition

// = xComplete := TRUE

// if an error condition is reached set

// eErrorID to a value other than ERROR.NO ERROR

xComplete := TRUE;
eErrorID := ERROR.NO ERROR;
END IF

IF NOT xEnable OR xComplete OR eErrorID <> ERROR.NO ERROR THEN
(* Cleaning ¥*)
// 1if possible free as much allocated resources
// as possible

The Implementation of the AbortAction:

METHOD PROTECTED AbortAction
VAR_OUTPUT
xComplete : BOOL;
eErrorID : ERROR;
END VAR

// abort all running operations
// 1if an error condition is reached set
// eErrorID to a value other than ERROR.NO ERROR

xComplete := TRUE;
eErrorID := ERROR.NO ERROR;

The Implementation of the ResetAction:

METHOD PROTECTED ResetAction
VAR_OUTPUT

xComplete : BOOL;
END_VAR

// free all allocated resources
// reinitialize instance variables

xComplete := TRUE;

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 35/89

PLCopen’

for efficiency in automation

6.3. Adding Timers
Also here one can add timer functionalities:

1. TimeOut (To): the overall operating time of the defined operation should be lower than the time
(in ps) as specified by the input value udiTimeOut;

2. TimeLimit (TI) (and TIC — TimeLimit without Done output): here the time limit is set that the
operation stays within the cycle time. In that way a longer operation can be divided over several
cycles;

3. And the combination of them both (TI1To)

B3 E B2 E
LConTo LConTI

Enable Done— —Enable Done—
TimeOut Busy— —TimeLimit Busy—
Error— Error—
ErrorlD— ErrorlD—

B1 i

B02 oy LConTITo —
LConTIC ' —Enable Done—
—Enable Busy— — TimeLimit Busy—
— TimeLimit Error— — TimeOut Error—
ErrorlD— ErrorlD—

Figure 11: Representation of the added Timers to the level controlled FB

Note: the inputs and outputs are listed here without prefixes in the names

Example of LConTI

Ready NOT xEnable

Condition

TimeLimit
PECI

Invocation Complete

xResetRequest OR _NOT xEnable

NOT xEnable
Resetting

Aborting

Figure 12: State diagram LConT]

© PLCopen (2017)

Creating PLCopen Compliant Libraries V 1.0 - Official Release
page 36/89

Software Creation Guidelines May 4, 2017

PLCopen’

for efficiency in automation

Barmani B
LiZenTi

1 e il -

*udiTimal st wikmry

aEmoiD

Farstting & F

Figure 13: Example of implementation of the state diagram LConTl in SFC

The implementation of LConT]I in Sequential Function Chart, SFC, is straightforward. The different states
are clearly identifiable in the Steps, linked to the related Action Blocks with the Action Qualifiers. The
transition conditions between the Steps are linked to the transitions in the State Diagram.

State Diagram LConTITo
An example of the state diagram for LConTITo, so a level controlled FB with time limit and time out, is

shown hereunder:
________ L S _@,}::)7 T_xEnail
/ --\---\-1\"\\. ull :ﬂ:'ﬂ- Erreacat |:||||’LI oaplete

ExEu:Jtl g - .'-m: Ic'i.'- - - \
”":'.3- Erear " T 1
MAT xEnable T r.r_n “Enahle [.--.-||| [
E_} Er T -—-immrt ng)'_ e ———————ee @
I/\\jcrmantf){ — -

Figure 14: State Diagram for LConTITo

Detailed description of the Function Block LConTITo
1. The function block is called inside of a POU one time per task cycle without any conditions. This
is called an invocation.
2. After a TRUE status has been detected at the input xEnable, the internal state is switched from
Dormant t0 Executing.
3. The status of all inputs will not be sampled. They influence the current operation in every
invocation (see CyclicAction).
4. The output xBusy will be set to TRUE.
The defined operation will be started (see the REPEAT-Lo0p inside CyclicAction).
6. If the operating time for the current invocation is higher than the time (in ps) as specified by the
input value xTimeLimit, the operation will be interrupted and continued in the next invocation
(see xTimeLimit IN CyclicAction).

o1

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 37/89

PLCopen’

for efficiency in automation

7. While working on the defined operation, a number of conditions can appear that lead to the exit
from the Executing state. This means the value of the output variable xBusy will be set to FALSE
and the internal state will be switched from Executing to one of the states Done or Error. This
change will be mirrored to one of the output variables xDone or xError. Only one output
variable of this set of variables can have the status TRUE at the same time. With the falling edge of
xBusy the input variable xEnable is sampled and its inverted value is stored as a reset request
(see xResetRequest in the method HandleErrorState).

a. Ready Condition 2:
If the operation has reached its ready condition without any error and timing constraints
(see xComplete IiN CyclicAction), the output variable xDone is set to TRUE. This
means the internal state is switched from Executing to Done.

b. Error Condition:
If an error condition was detected (See eErrorID inin CyclicAction), the output
variable xError is set to TRUE. This means the internal state is switched from Executing
to Error. In addition, one of the defined error codes (one value out of the local
enumeration type ERROR) Will be assigned to the output variable eErrorID.

c. Timeout Condition:
If the overall operating time of the defined operation is higher than the time (in ps) as
specified by the input value udiTimeOut, a timeout condition will detected causing the
output variable xError to be set to TRUE. This means the internal state is switched from
Executing to Error. Furthermore, the output variable eError1D is set to a special error
code (ERROR. TIME OUT).

d. Abort Condition:
If a status of FATL.SE was detected for the xEnable input variable, the abort condition is
reached. This means the internal state is switched from Executing to Aborting. Any current
action of the defined operation will be aborted. After this is done (see xComplete inside
AbortAction), the internal state is switched from Aborting to Resetting. If an error
condition was detected (See eErrorID in AbortAction), the output variable xError is
set to TRUE. This means the internal state is switched from Aborting to Error (See error
condition).

8. As areaction to the rising edge of the output variable xError it would be possible to set the
status of the input variable xEnable again to TRUE (quick handshake).

9. The value TRUE of one of the output variables xDone or xError must be stable for a minimum of
one invocation. This means the internal states Done or Error must be active for a minimum of
one invocation. This property guarantees that the values of the output variables are valid and
stable for a minimum of one invocation.

10. After a FALSE status for the input variable xEnab1e is detected (standard handshake) or a reset
request is active (quick handshake), the internal state will be switched from Done or Error to
Resetting.

11. All outputs will be initialized to their default statuses (Resetaction). All claimed resources will
be freed. Specifically, the output variables xDone and xError will be set to FALSE. After
executing the code of the ResetAction the function block should be prepared for a new switch
of the internal state from Dormant to Executing.

2 Sometimes a function block without an xbone output variable is required. In this case, please select the
LConC or the LconT1cC types. The state machine of this kind of function blocks will never switch to the
Done state. An example of this is the MC_Power function block for motion control or the TCPServer
function block as used in 3.7 Cooperation of various function blocks.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 38/89

PLCopen’

for efficiency in automation

12. After doing this reinitialization work, the internal state will be switched from Resetting to
Dormant (see xComplete inside ResetAction).

Example of an SFC diagram

Diaesank Bi
LZonTITa
sEnabin sl ko
wchi T sl irnii by
udsT malig sk

Paratting | I

Figure 15: Example of a state diagram of LConTITo in SFC
An example of the implementation of LConTITo in ST is shown in Appendix 1.4.4 LConTITo.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 39/89

PLCopen’

for efficiency in automation

Appendix 1 Datasheets of the Edge Triggered and Level Controlled FBs

In this chapter an overview of examples is provided, including source code, of possible implementations
of both the edge as well as level controlled function blocks as part of the PLCopen Behaviour Model. The
source code itself is available on the PLCopen website www.PLCopen.org in the same section and in
different formats (with and without prefixes and with enum) and the files can be opened in any text editor
and with a simple copy&paste added to your own environment.

Appendix 1.1 General comments about the sample programs
Some parts of the code for the different function blocks are very similar. Some parts are critical for a
proper functionality according to the specification other parts are provides just as an example and should
be adapted to the real requirements of a specific application.
Methods marked with “PRIVATE FINAL” are a crucial part of the implementation.
Methods marked with “PROTECTED” are a kind of template, they should be adapted to the real
requirements of a specific application.
Here is a list of the critical parts:

e The order of the evaluation of the variables xExecute, xComplete, eErrorID and xAbort
defines the behaviour in the case that these variables are set at the same time. A different order
results in a different behaviour.

e The handling of the variable xResetRequest defines the behaviour of the function block if a
quick handshake operation is necessary.

e The handling of the TimingController determines the behaviour of the function block in case
an ERROR.TIME OUT has to occur or at which exact point in time a specific function block will
suspend the processing of its CyclicAction and return to its caller (xTimeLimit).

e If an Abort Condition or an Error Condition was reached then it is not possible to return to a
normal Ready Condition. An Abort Condition can be changed to an Error Condition. In an Error
Condition only the eErrorID can be modified but not to the value ERROR.NO ERROR.

e An Error Condition that is not caused by a Timeout Condition (eErrorID # ERROR.TIME OUT)
has the higher priority and must never be overwritten by ERROR. TIME OUT.
e Every state with a name ending with -ing like Executing or Resetting can run more than one
invocation. In fact they will be executed as long as they need to reach their local Ready Condition,
Abort Condition, Timeout Condition or Error Condition.
Any state machine implementation of the PLCopen Behaviour Model has to consider these kinds of
things to keep the conformance according to this document!
In order to restrict any further interpretation as much as possible, in addition to the source code of each
function block a set of timing diagrams for each function block was provided.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 40/89

http://www.plcopen.org/

PLCopen’

for efficiency in automation

Appendix 1.2 Overview of the functionalities

Inputs Outputs
Q
£ = E T @ E 8
=
S 9|z 28|5|5(2]5
= | E|lg|=s|le|®a| |2
L - = g <
d
ETrig X X X X
ETrigTI X X X | x| x
ETrigTo X X X X X
ETrigTITo X X X X | x| x
ETrigh X X X X X X
ETrigATI X X X X | x| x X
ETrighTo X X X X X X X
ETrigATITo X X X X X | x| x X
Inputs Outputs
2
. £ 5
w | 5 g
g5l &8)|¢
sl E|El2]| |8
i e E 5
= =
)
LCon X X X X
LConTIl X X X | x X
LConTo X X X X ES
LConTiTo X X e X X X
LConC X X X
LConTIC X X X | x

Description

Rising Edge triggered FB

Rising Edge triggered FB with TimeLimit

Rising Edge triggered FB with TimeOut

Rising Edge triggered FB with TimeOut and TimeLimit
Rising Edge triggered FB with Aborting

Rising Edge triggered FB with Aborting and TimeLimit
Rising Edge triggered FB with Aborting and TimeQut

Rising Edge triggered FB with Aborting and TimeQut and TimeLimit

Level Controlled FB

Level Controlled FB with TimeLimit

Level Controlled FB with TimeOut

Level Controlled FB with TimeOut and TimeLimit
Level Controlled FB, Continuous (never done)

Level Controlled FB with TimeLimit, Continuous (never done)

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
May 4, 2017 page 41/89

Software Creation Guidelines

PLCopen’

for efficiency in automation

Appendix 1.3 Overview edge triggered FBs
ETrig ETrigTl
—xExecute xDone— —xExecute xDone—
xBusy— —udiTimeLimit xBusy—
xError— xError—
eErrorlD— eErrorlD—
ETrigTo ETrigTiTo
—xExecute xDone— —xExecute xDone—
—udiTimeOut xBusy— —udiTimeLimit xBusy—
xError— —judiTimeOut xError—
eErrorlD— eErrorlD—
ETrigA ETrigATI
—xExecute xDone— —xExecute xDone —
—xAbort xBusy— —xAbort xBusy—
xError— —udiTimeLimit xError—
xAborted — xAborted —
eErrorlD— eErrorlD—
ETrigATo ETrigATITo
—xExecute xDone— —xExecute xDone—
—xAbort xBusy— —xAbort xBusy—
—udiTimeOut xError— —udiTimeLimit xError—
xAborted — —judiTimeOut xAborted —
eErrorlD— eErrorlD—

Note: In practice the types STATE and ERROR will be defined only once in a library and not in every FB
as is done in the examples shown here.

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines May 4, 2017

© PLCopen (2017)

page 42/89

PLCopen’

for efficiency in automation

Appendix 1.3.1

ETrig

ETrig (Edge Triggered | Not Abortable | Not Time Limited | Not Time Out Constraint)

State Chart:

xExecute

Invecation Complete
Ready
Condition

xResetRequest OR NOT xExecute

xExecute

Invocation Complete

NOT xExecute Error

Condition

xResetRequest OR NOT xExecute

xExecute

Resetting

Executing: = CyclicAtion is running until xComplete is TRUE, xBusy = TRUE

Done: xDone = TRUE, xBusy = FALSE

Error: XError = TRUE, eErrorID # ERROR.NO_ERROR, xBusy = FALSE

Resetting: = ResetAction i5 running until xComplete is TRUE

ETrig Implementation

8] Emig Fe)

= (22 BehaviourModel
i CycicAction =
‘1" ! ETrig
[ResetActon

= £ StateMachine —xExecute xDone

HandeDoneState xBusy/|

[HandeDormantstate “Er
[HandeErrorState
M eErrorlD

gState

|[j HandleResettingState

TYPE STATE :

DORMANT,
EXECUTING,
DONE, /
ERROR,
RESETTING

)H
END_TYPE

TYPE ERROR :
(

NO_ERROR := 0,
TIME_OUT :=

)i
END_TYPE

FUNCTION_BLOCK ETrig
VAR_INPUT

XExecute: BOOL;
END_VAR
VAR_OUTPUT

BOOL;

or condti

BOOL;
// error code describing error condition
eErrorID : ERROR;

END_VAR

VAR
eState : STATE;
xFirstInvocation : BOOL := TRUE;
xResetRequest : BOOL;

END_VAR

VAR_TEMP
xAgain :BOOL;

END_VAR

REPEAT
xAgain := FALSE;
CASE eState OF
STATE.DORMANT: HandleDermantState(xAgain=>xAgain);
STATE.EXECUTING: HandleExecutingState(xAgain=>xAgain);
STATE.DONE: HandleDoneState(xAgain=>xAgain);
STATE.ERROR: HandleErrerState(xAgain=>xAgain);
STATE.RESETTING: HandleResettingState(xAgain=>xAgain);
END_CASE
UNTIL NOT xAgain
END_REPEAT;

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 43/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantsState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xExecute THEN
TRUE;

STATE. EXECUTING;
TRUE;

METHOD PRIVATE FINAL HandleExecutingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

cyclicAction(
xComplete=>xComplete,
eErrorID=>eErrorlD

bH

IF eErrorID <> ERROR.NO_ERROR THEN
eState := STATE.ERROR;

xAgain := TRUE;
ELSIF xComplete THEN

estate STATE.DONE;

xAgain := TRUE;
END_IF

METHOD PRIVATE FINAL HandleDonestate

VAR_OUTPUT
xAgain : BOOL;
END_VAR

IF XDone AND (xResetRequest OR NOT xExecute) THEN

estate
xagain
ELSE

XBusy i= FALSE]

xDone := TRUE;
xResetReguest

xAgain := FALSE; (

END_IF

STATE .RESETTING;
TRUE;

NOT xExecute;

METHOD PRIVATE FINAL HandleErrorState

VAR_OUTPUT
xAgain : BOOL;
END_VAR

IF xError AND (xResetRequest OR NOT xExecute) THEN

eState
xAgain
ELSE

XBusy := FALSE;
TRUE;

xError
xResetRequest

xAgain = FALSE; (

END_IF

TATE
TRUE;

-RESETTING;

NOT xExecute;

METHOD PRIVATE FINAL HandleResettingState

VAR_OUTPUT

xAgain : BOOL;
END_VAR
VAR

xComplete : BOOL;

END_VAR

ResetAction(xComplete=>xComplete);

IF xComplete THEN

xBusy :i= FALSE;

xDone
XError
eErrorID

ERROR.NO_ERROR;

eState := STATE.DORMANT;
xFirstInvocation := TRUE;

xAgain := xResetRequest; (* /! *)
xResetRequest := FALSE;
END_IF

METHOD PROTECTED CyclicAction
VAR_OUTPUT
xComplete : BOOL;
eErrorID : ERROR;
END_VAR

IF xFirstInvocation THEN

xFirstInvocation
END_IF

xComplete := TRUE;
eErrorID := ERROR.NO_ERROR;
IF xComplete OR eErrorID <> ERROR.NO_ERROR THEN

ted resources

METHOD PROTECTED ResetAction

VAR_OUTPUT

xComplete : BOOL;

END_VAR

free all alloc

xComplete := TRUE;

Invocation

xExecute (I)
xDone (O)
xBusy (O)
xError (O)

eErrorlD (O)
eState (V) Domant_{ Evecuting{ Done Xﬂ&wngXDommE

Action (M) ——{(o }—ATrew —Aom

The status of Inputs (1), Outputs (O), locale Variables (V) and Methods (M) for every invocation.

Invocation
xExecute (1)
xDone (O)
xBusy (O)
xError (O)
eErrorlD (0)
eState (V)
Action (M)

T S S (29 (25 0 O

Dormant x Executing

—.—(Cyelic

x Done xResellmgx Executing

)—(Reset X Cyelic

The status of Inputs (1), Outputs (O), locale Variables (V) and Methods (M) for every invocation.

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 44/89

PLCopen’

for efficiency in automation

Invocation 1 2 X v Ynri) w2 nt3Ynra) m Ymit mi2\me3 mta mss
xExecute _/—"-—\—/__...—/ _j
xDone /
xBusy 4/_—\\—/_—\ /—\
xError /—\—_/—\—
eErrorlD ,{ Code k { Code)
eState Domant { Executing X' Enor YReserting{ Dommant | Executing Y Error Y Resetting[Evecuting) Done E

Action _(Cyclic)—(Reset }—(Cyclic)—(Reset X Cyclic Res

The status of Inputs (1), Outputs (O), locale Variables (V) and Methods (M) for every invocation

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 45/89

PLCopen’

for efficiency in automation

Appendix 1.3.2 ETrigTlI
ETrigTI (Edge Triggered | Not Abortable | Time Limited | Not Time Out Constraint)

ETrigTI State Chart

xExecute

Invecation Complete

Ready

Condition xResetRequest OR NOT xExecute

TimeLimit xExecute
T

4

Invocation Complete
NOT xExecute

Error
Condition

xResetRequest OR NOT xExecute

xExecute

Resetting

Executing: = CyclicAtion is running until xComplete is TRUE, xBusy = TRUE
Done: xXDone = TRUE, xBusy = FALSE
Error: XError = TRUE, eErrorID # ERROR.NO_ERROR, xBusy = FALSE

Resetting: = ResetAction i5 running until xComplete is TRUE

ETrigTIl Implementation

|E] emrign (Fa) FUNCTION_BLOCK ETrigTl
= {2 BehaviourModel VAR_INPUT
i CycicAction =
da ETrigTl
[Resetaction
= 2 stateMachne —xExecute xDone —
(4 HandeDonestate —udiTimeLimit xBusy—
|4 HandieDormantState xError— udiTimeLimit: UDIN
I HandeErrorState Coiild
£ eErrorlD— VAR_OUTPUT
[HandieExecutingState ’ read
[l HandeResettingState
TYPE STATE : iy e’ et
eErrorID : ERROR
DORMANT, END_VAR
EXECUTING, VAR
DONE tcTimingController : TimingController;
ERROF’!‘ eState : STATE;
RESETTING xFirstInvocation : BOOL := TRUE;
% XResetRequest : BOOL;
END_TYPE END_VAR
VAR_TEMP
XAgain :BOOL;
END_VAR
REPEAT

FEEENERRORRS xAgain := FALSE;

(CASE eState OF
STATE.DORMANT: HandleDormantState(xAgain=>xAgain);
STATE.EXECUTING: HandleExecutingstate(xAgain=>xAgain);
STATE.DONE: HandleDoneState(xAgain=>xAgain);
STATE.ERROR: HandleErrorState(xAgain=>xAgain);
STATE.RESETTING: HandleResettingstate(xAgain=>xAgain);

END_CASE
UNTIL NOT xAgain
END_REPEAT;

NO_ERROR :=
TIME_OUT :=

)3
END_TYPE

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 46/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantsState METHOD PRIVATE FINAL HandleDonestate
VAR_OUTPUT VAR_OUTPUT
xAgain : BOOL; xAgain : BOOL;
END_VAR END_VAR
IF xExecute THEN IF xDone AND (xResetRequest OR NOT xExecute) THEN
RUE; estate := STATE.RESETTING;
STATE. EXECUTING; xAgain := TRUE;
TRUE; ELSE
XBusy := FALSE;
xDone := TRUE;
xResetRequest := NOT xExecute;
xAgain := FALSE; (* !/
END_IF
METHOD PRIVATE FINAL HandleExecutingstate
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR METHOD PRIVATE FINAL HandleErrorState
xComplete : BOOL; VAR_OUTPUT
xTimeLimit : BOOL; xAgain : BOOL;
END_VAR END_VAR
teTimingController.StartInvocationTimer(); IF XError AND (xResetRequest OR NOT XExecute) THEN
eState := STATE.RESETTING;
CyclicAction(xAgain := TRUE;
xComplete=>xComplete, ELSE
eErrorID=>eErrorID XBusy i= FALSE;
¥; XError := TRUE;
xResetRequest := NOT xExecute;
IF eErrorID <> ERROR.NO_ERROR THEN xAgain := FALSE; (* /] *)
eState := STATE.ERROR; END_IF
ain := TRUE;
ELSIF xComplete THEN
estat STATE.DONE;
xAgain ;
ED_XF METHOD PRIVATE FINAL HandleResettingstate
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR
ResetAction(xComplete=>xComplete);
IF xComplete THEN
FALSE;
H
LSE;
eErrorID := ERROR.NO_ERROR;
eState := STATE.DORMANT;
xFirstInvocation := TRUE;
xAgain := xResetRequest; (* J
xResetRequest := FALSE;
END_IF
METHOD PROTECTED CyclicAction METHOD PROTECTED ResetAction
VAR_OUTPUT VAR_OUTPUT
xComplete : BOOL; xComplete : BOOL;
eErrorID : ERROR; END_VAR
END_VAR
VAR // free all
xTimeLimit : BOOL; reinit
END_VAR

xComplete := TRUE;
IF xFirstInvocation THEN

* Starting *)

variables

sample the t s
tcTimingController. TimeLimit := udiTimeLimit;

xFirstInvocation := FALSE;
END_IF
REPEAT

(* Executing *)
I/ worki

to a value other th
tcTimingController.CheckTiming(
xTimeLimit=>xTimeLimit

NO_ERROR

e

xComplete := TRUE;
€ErrorID i= ERROR.NO_ERROR;

UNTIL xComplete OR xTimeLimit OR
eErrorID <> ERROR.NO_ERROR
END_REPEAT

IF xComplete OR eErrorID <> ERROR.NO_ERROR THEN
(* Clean 3

free as much allocated resources

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 47/89

PLCopen’

for efficiency in automation

ETrigT!l Timing Diagram

Invocation L 2 X n Yosifnral m Kmed
xExecute (T) — - .

xDone (O) - / \ H

xBusy (Q) / S S

xError (O)

eErrorlD (O)

X Daone XR&UmgXDurman\ E

eState (V) Dormant t X Executing

Action (M) — Cyilic

)—{ Reset)—E

The status of Inputs (1), Outputs (O), locale Variables (V) and Methods (M) for every invocation.

Invocation
xExecute (I)
xDone (O)
xBusy (Q)
xError (O)
eErrorlD (O)
eState (V)
Action (M)

1 x 2 x n x“+lxu+2x m Xm—1
_‘ _..._._‘ . _..._
—— e e] o e

,_..._\—"'_/_..._

Dormant { Evecuting)} Done Y Resetting} Executing

—(Cyilic)—(Reset X Cyclic

The status of Inputs (1), Outputs (O), locale Variables (V) and Methods (M) for every invocation.

Invocation

1 x 2 X n er+1Xu+‘2Xn—3Xn+4X m Xm—lxm+2xm.+liXm+{Xm+5

xExecute S T U S S T O S A _/

xDone

—

e J:::_\—/_:::_\

xError

eErrorlD

(e)

‘ Code k

eState

Dormant x Executing x = xResellmgXDorm;n(x Executin

X Error XRESEItIngXExecuﬂngx Done lreese

Action — Gt ——{reee ——

Cyelic

)—(Reset X Cyclic Res

The status of Inputs (I), Outputs (O), locale Variables (V) and Methods (M) for every invocation

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 48/89

PLCopen’

for efficiency in automation

Appendix 1.3.3

ETrigTo

ETrigTo (Edge Triggered | Not Abortable | Not Time Limited | Time Out Constraint)

ETrigTo State Chart

Ready
Condition

NOT xExecute xExecute

Executing: = CyclicAtion is running until xComplete is TRUE, xBusy = TRUE
Done: xDone = TRUE, xBusy = FALSE
Error: xError = TRUE, eErrorID # ERROR. NO_ERROR, xBusy = FALSE

Resetting: = ResetAction is running until xComplete is TRUE

ETrigTo Implementation

Error
Condition

xExecute

xExecute

XResetRequest OR NOT xExecute

Inveocation Complete

xResetRequest OR NOT xExecute

Invocation Complete

Resetting

8] EmrigTo (FB)
= (2D BehaviourModel

[CydicAction

(5 Resetacton ETrigTo

= 2 stateMachine —{xExecute xDone
(@4 HandeDonestate —udiTimeOut xBusy!
_'*.z‘ HandieDormantState ey
[#4 HandieErrorstate I —

W Har utingState

L[HandleResettingState

TYPE STATE :

DORMANT,
EXECUTING,

ABORTING,
ABORTED,
RESETTING

)3
END_TYPE

TYPE ERROR :
(

NO_ERROR
TIME_OUT

END_TYPE

FUNCTION_BLOCK ETrigTo
VAR_INPUT

udi’
END_VAR
VAR_OUTPUT

XError: BO
error c

eErrorID :

END_VAR

VAR
tcTimingController @ TimingController;
eState : STATE;
XFirstInvocation : BOOL := TRUE;
xResetRequest : BOOL;

END_VAR

ERRO!

VAR_TEMP
xAgain :BOOL;
END_VAR
REPEAT
xAgain := FALSE;

CASE estate OF
STATE.DORMANT: HandleDormantState(xAgain=>xAgain);
STATE.EXECUTING: HandleExecutingState(xAgain=>xagain);
STATE.DONE: HandleDoneState(xAgain=;xAgain);
STATE.ERROR: HandleErrorstate(xAgain=>xAgain);
STATE.RESETTING: HandleResettingState(xAgain=>xAgain);

END_CASE

UNTIL NOT xAgain
END_REPEAT;

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)

Software Creation Guidelines

May 4, 2017

page 49/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState

xAgain : BOOL;

IF xEnable THEN
tcTimingController. StartOperationTimer();
xBusy
estate :
xAgain

END_IF

STATE. EXECUTING;
TRUE;

METHOD PRIVATE FINAL HandleExecutingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
xTimeout : BOOL;
END_VAR

cyclicaction(
xComplete=>xComplete,
eErrorib=seErrorid

teTimingController. CheckTiming(xTimeout=>xTimeOut);

IF xTimeQut AND eErrorID = ERROR.NO_ERROR THEN
eErrorID := ERROR.TIME_OUT;
END_IF

IF eErrorID <> ERROR.NO_ERROR THEN
estate := STATE.ERROR;
xAgain i= TRUE;
ELSIF xComplete THEN
estate := STATE.DONE;
xAgain := TRUE;
END_IF

METHOD PRIVATE FINAL HandleDoneState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xDone AND (xResetRequest OR NOT xExecute) THEN
eState := STATE.RESETTING;
xAgain := TRUE;
ELSE
XBusy i= FALSE;
xDone 1= TRUE;
xResetRequest
xAgain := FALS
END_IF

NOT xExecute;

METHOD PRIVATE FINAL HandleErrorState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xError AND (xResetRequest OR NOT xExecute) THEN

estate STATE.RESETTING;
xhgain := TRUE;
ELSE
XBusy := FALSE;
XError := TRUE;
xResetRequest := NOT xExecute;

xAgain :i= FALS
END_IF

METHOD PRIVATE FINAL HandleResettingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

ResetAction(xComplete=>xComplete);

IF xComplete THEN
FALSE;

ERROR.NO_ERROR;
STATE . DORMANT ;
xFirstInvocation := TRUE;

xAgain := xResetRequest; (* //! %)
xResetRequest := FALSE;
END_IF

METHOD PROTECTED CyclicAction

VAR_OUTPUT
xComplete : BOOL;
eErrorID : ERROR;

END_VAR

VAR

XTimeOut : BOOL;
END_VAR

IF xFirstInvocation THEN

e input iables

tcTimingController. TimeOut udiTimeOut;
xFirstInvocation := FALSE;
END_IF

xecuting *)

/ E to a v € o

tcTimingController.CheckTiming(
xTimeOut=>xTimeout

bH

xComplete TRU
eErrorID := ERROR.NO_ERROR;

IF xTimeOut AND eErrorID = ERROR.NO_ERROR THEN
eErrorID ERROR.TIME_OUT;
IF

END_:

IF xComplete OR eErrorID <> ERROR.NO_ERROR THEN

(an

METHOD PROTECTED ResetAction
VAR_OUTPUT

xComplete : BOOL;
END_VAR

ze

free a

reinit

xComplete := TRUE;

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 50/89

PLCopen’

for efficiency in automation

ETrigTo Timing Diagram

Invocation LY 2 f n Yazi)nt2) m fm+l
xExecute (1) _/__.L_/_
wone (0) .. [\
xBusy (O) / __ f
xError (O)
eErrorlD (O)
eState (V) Dormant_J__bxecuing__ | _Done | Reseting | Dormant fevec
Action (M) ——{ o p—A{Trem —oe

The status of Inputs (1), Outputs (), locale Variables (V) and Methods (M) for every invocation.

Invocation L L 2 K n fetifns2) m fm+l
xExecute (1) _/___._/____
xDone (0) /—___
xBusy (0O) — ___/__

(

(
xError (O)

(

(

eErrorlD (O) —
eState (V) Domant) Bxecuting | Done fResetting) Executing

Action (M) e T e e

The status of Inputs (1), Qutputs (O), locale Variables (V) and Methods (M) for every invocation.

Invocation 1 X 2 X n Xn+1Xr!+‘2Xn—-3Xn+4X m Xm.—lxm+2):m.+3Xm+{Xiu+5

xExecute ey —\—/_L_/ _/

xDone

—

xBusy 4/_::_\—/_:::_\ /_\
xError / -] |

eErrorlD ‘ Code)\

‘ Code h

Executin x XReseuin x X Executin X XResemn XExecut'm X X:
eState D X ul Error g p Dormant 4 Error g gl Done JRese

Action ——{ ode A rea p——{ e ——{ Rem | Ol Res

The status of Inputs (1), Qutputs (O), locale Variables (V) and Methods (M) for every invocation

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)

Software Creation Guidelines May 4, 2017

page 51/89

PLCopen’

for efficiency in automation

Appendix 1.3.4 ETrigTITo
ETrigTITo (Edge Triggered | Not Abortable | Time Limited | Time Out Constraint)

ETrigTITo State Chart

xExecute

Invocation Complete

Ready

Condition XResetRequest OR

NOT xExecute

TimeLimit
P

xExecute

Error
Condition

Inveocation Complete
NOT xExecute xExecute
xResetRequest OR NOT xExecute

Resetting

Executing: = CyclicAtion is running until xComplete is TRUE, xBusy = TRUE
Done: xDone = TRUE, xBusy = FALSE
Error: xError = TRUE, eErrorID # ERROR. NO_ERROR, xBusy = FALSE

Resetting: = ResetAction is running until xComplete is TRUE

ETrigTITo Implementation

g ETrigTTo (FB) FUNCTION_BLOCK ETI‘ingTn
= 12 BehaviourModel
B CycicAction

[Resetaction ETrigTITo
= StateMachine —xExecute xDone—
3 HandeDonestate —{ydiTimeLimit xBusy—
Pandebomantiate - _udiTimeOut xError—
HandleErrorState
[HandieExecutngState eErrorlD—

Uiy HandleResettingState

TYPE STATE @
DORMANT,
EXECUTING, e
DONE, ; eErrorld :
ERROR, END_VAR
VAR

RESETTING - ..
tcTimingController : TimingController;

g;«n TYPE estate : STATE;
- xFirstInvocation : BOOL := TRUE;
xResetRequest : BOOL;

END_VAR
VAR_TEMP
xAgain :BOOL;
TYPE ERROR : ot
Ll Heit, % REPEAT

xAgain := FALSE;

CASE eState OF

H STATE.DORMANT: HandleDormantState(xAgain=»>xAgain);

END_TYPE STATE.EXECUTING: HandleExecutingState(xAgain=>xAgain);
STATE.DONE: HandleDoneState(xAgain=>xAgain);
STATE.ERROR: HandleErrorState(xAgain=>xAgain);
STATE.RESETTING: HandleResettingState(xAgain=>xAgain);

END_CASE
UNTIL NOT xAgain
END_REPEAT;

TIME_OUT

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 52/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xEnable THEN
tcTimingController.StartoperationTimer();

xBusy 5
eState := STATE.EXECUTING;
xAgain := TRUE;

END_IF

METHOD PRIVATE FINAL HandleExecutingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
xTimeout : BOOL;
END_VAR

teTimingController.StartInvocationTimer();
CyelicAction(
xComplete=s>xComplete,
eErrorID=>eErrorID
¥
teTimingController. CheckTiming(xTimeOut=>xTimeOut);
IF xTimeOut AND eErrorID = ERROR.NO_ERROR THEN
eErrorID i= ERROR.TIME_OUT;
END_IF

IF eErrorID <> ERROR.NO_ERROR THEN

eState STATE.ERROR;
ain := TRUE;
ELSIF xComplete THEN
STATE.DONE;
TRUE;

METHOD PRIVATE FINAL HandleDoneState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xDone AND (xResetRequest OR NOT xExecute) THEN
STATE.RESETTING;
TRUE;

XBusy := FALSE;

TRUE;

xResetReguest := NOT xExecute;

xAgain := FALSE; (* !!! *)
END_TF

METHOD PRIVATE FINAL HandleErrorState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF XError AND (xResetRequest OR NOT xExecute) THEN
STATE ., RESETTING;
TRUE;

XBusy :i= FALSE;
xError := TRUE;
xResetReguest := NOT xExecute;
xAgain = FALSE; (* !!! %)
END_TF

METHOD PRIVATE FINAL HandleResettingState

VAR_OUTPUT

xAgain : BOOL;
END_VAR
VAR

xComplete : BOOL;
END_VAR

ResetAction(xComplete=>xComplete);

IF xComplete THEN
FALSE;

XError
eErrorlD ERROR.MNO_ERROR;
estate := STATE.DORMANT;
xFirstInvocation := TRUE;
xAgain := xResetRequest; (* I/
xResetRequest := FALSE;

END_TF

METHOD PROTECTED CyclicAction
VAR_OUTPUT
xComplete : BOOL;
eErrorID : ERROR;
END_VAR
VAR
xTimeout : BOOL;
xTimeLimit : BOOL;
END_VAR

IF xFirstInvocation THEN

(* Starting *)
For the fFirst

ample the input varial
tcTimingController. TimeLimit := udiTimeLimit;
tcTimingController. TimeOut := udiTimeOut;
xFirstInvocation := FALSE;

END_IF

REPEAT
dition
time is reached

is reached

reached
eErrorid to a value other
cTimingController.CheckTiming(
XTimeOut=>xTimeOut,
xTimeLimit=>xTimelimit

b

xComplete :
eErrorId

ERROR . NO_ERROR;

UNTIL xComplete OR xTimeOut OR xTimeLimit OR
eErrorID <> ERROR.NO_ERROR
END_REPEAT

IF xTimeOut AND eErrorID = ERROR.NO_ERROR THEN
eErrorID := ERROR.TIME_OUT;
END_IF

METHOD PROTECTED ResetAction
VAR_OUTPUT

xComplete : BOOL;
END_VAR

// free all

/7 reiniti

xComplete

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 53/89

PLCopen’

for efficiency in automation

ETrigTITo Timing Diagram

Invocation 1T 2 X n Ynt1)nr2 m Y+l
xExecute (1) IR e N .
xDone (O) _/_ \
xBusy (O) / TN f
Error (0) _
eErrorlD (O)
eState (V) Domant | Evecuting_ | Done J Resetting Dormant fEsec
Action (M) —— o A ket }——cw

The status of Inputs (1), Outputs (), locale Variables (V) and Methods (M) for every invocation.

Invocation T Y 2 U n Yorior2) m Ym+1
xExecute (/) _/___._/____
xDone (O) /____
xBusy (0O) / ___/__
xError (O)
eErrorlD (0) P
eState (V) Dormant) Executing) Done) Resetting) Executing

Action (M) —— odic p—— Rest | o

The status of Inputs (I}, Outputs (O), locale Variables (V) and Methods (M) for every invocation.

Invocation 1 X 2 X i XH+IXH+‘2XH+3XH+4X m Xm.flx;u+2xm.+3Xm+-lxm+5

xBxecte [\ [L. | /

xDone

—

xBusy J:::_\—/_:::_\ / \
xError / | W SO | \S B —

eErrorlD ‘ Code)‘

‘ Code k

eState Dormant x Executing x Error xResettmgxnnrmnmx Executing K Error XReseltmgXExecutingx Done lRese

Action 4(Cyclic)—(Reset)—(Cyclic }—(Reset X Cyelic Res

The status of Inputs (1), Outputs (O), locale Variables (V) and Methods (M) for every invocation.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)

Software Creation Guidelines May 4, 2017

page 54/89

PLCopen’

for efficiency in automation

Appendix 1.3.5 ETrigA
ETrigA (Edge Triggered | Abortable | Not Time Limited | Not Time Out Constraint)
ETrigA State Chart

xExecute

Invocation Complete
Ready

AND
Condition xResetRequest OR NOT xExecute

Invocation Complete

Error
Condition

xResetRequest OR NOT xExecute
XExecute

Resetting

NOT xExecute

Invocation Complete

xResetRequest OR NOT xExecute

Executing: = CyclicAtion is running until xComplete is TRUE, xBusy = TRUE
Done: xDone => TRUE, xBusy = FALSE

Error: xError = TRUE, eErrorID # ERROR. NO_ERROR, xBusy => FALSE
Aborting: = AbortAction is running until xComplete is TRUE (xBusy is still TRUE!)
Aborted: xAborted = TRUE, xBusy = FALSE

Resetting: = ResetAction is running until xComplete is TRUE

ETrigA Implementation

ETrigA (FE) FUNCTION_BLOCK ETrigh
= 12 BehaviourModel EEE L
|74 AbortAction
[CydicAction ETrigA
I Resetaction —xExecute xDone
= 12 stateMachine
- —{xAbort xBusy
%4 Handieabortedstate
HandeAbortingState xError
 HandeDonestate xAborted
HandeDormantState eErrorlD
a HandieErrorState reached
M HandleExecutingState
fja HandieResettingState £ reached
- xError: BOOL;
error cod g error condition
eErrorID : ERROR;
END_VAR
VAR
JREELSTATER: estate : STATE;
(- XFirstInvocation : BOOL := TRUE;
PORRHE N xResetRequest : BOOL;
EXECUTING, END_VAR
z‘;:;;{ VAR_TEMP
e, xAgain :BOOL;
END_VAR
ABORTED, -
 RESETTING AT
Iy xAgain := FALSE;
END_TYPE CASE eState OF
STATE.DORMANT: HandleDormantState(xAgain=>xAgain);
STATE.EXECUTING: HandleExecutingState(xAgain=>xAgain);
STATE.DOME: HandleDoneState(xAgain=>xAgain);
STATE.ERROR: HandleErrorstate(xaAgain=>xagain);
TYPE ERROR : STATE.ABORTING: HandleAbortingState(xAgain=>xAgain);
STATE. ABORTED: HandleAbortedState(xAgain=>xAgain);
NO_ERROR := @, STATE.RESETTING: HandleResettingState(xAgain=>xAgain);
TIME_OUT := END_CASE
e UNTIL NOT xﬂgain
)i END_REPEAT;
END_TYPE

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 55/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xExecute THEN

xBusy
eState := STATE.EXECUTING;
xAgain := TRUE;

END_IF

METHOD PRIVATE FINAL HandleExecutingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

IF NOT xAbort THEN
CyclicAction(
xComplete=>xComplete,
eErrorID=>eErrorID

)i
END_IF

IF eErrorID <> ERROR.NO_ERROR THEN
eState := STATE.ERROR;
ain 1= TRUE;
ELSIF xAbort THEN
STATE.ABORTING;
xAgain = TRUE;
ELSIF xComplete THEN

METHOD PRIVATE FINAL HandleDoneState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xDone AND (xResetRequest OR NOT xExecute) THEN

eState := STATE.RESETTING;
xAgain := TRUE;

ELSE
XBusy i= FALSE;

xDone := TRUE;
xXResetRequest := NOT xExecute;
xAgain := FALSE; (* [!! *)
END_TF

METHOD PRIVATE FINAL HandleErrorState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xError AND (xResetRequest OR NOT xExecute) THEN

eState := STATE.RESETTING;
xAgain := TRUE;
ELSE
xBusy := FALSE;
xError := TRUE;
xResetRequest := NOT xExecute;
xAgain := FALSE; (* !)
END_TF

METHOD PRIVATE FINAL HandleAbortingstate
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

AbortAction(
xComplete=>xComplete,
eErrorID=>eErrorlD

bH

IF eErrorID <> ERROR.NO_ERROR THEN
eState := STATE.ERROR;
ain TRUE;
ELSIF xComplete THEN
esta := STATE.ABORTED;
TRUE;

METHOD PRIVATE FINAL HandleAbortedState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xAborted AND (xResetRequest OR NOT xExecute) THEN
eState := STATE.RESETTING;
xAgain := TRUE;
ELSE
xBusy := FALSE;
xAborted := TRUE;
xResetRequest := NOT xExecute;
xAgain := FALSE; (* !
END_IF

METHOD PRIVATE FINAL HandleResettingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

ResetAction(xComplete=>xComplete);

IF xComplete THEN

ERROR.MNO_ERROR;
estate := STATE.DORMANT;
xFirstInvocation := TRUE;

xAgain := xResetRequest; (* [I/ *)
xResetRequest := FALSE;
END_IF

METHOD PROTECTED CyclicAction

VAR_OUTPUT
xComplete : BOOL;
eErrorID : ERROR;
END_VAR

IF NOT xAbort THEN
IF xFirstInvocation THEN

(1) invocation,
Le the input variables
= FALSE;

xFirstInvocation
END_IF

cuting
king to
xComplete :
// if an error condition is reached
// = set eErrorID te a value other

ready conditio

than ERROR.NO_ERROR

xComplete := TRUE;
eErrorID ERROR. NO_ERROR;
END_IF

IF xAbort OR xComplete OR eErrorID <> ERROR.NO_ERROR THEN
(* Cleaning *)

free as much allocated resources

// as possible
END_IF

METHOD PROTECTED AbortAction

VAR_OUTPUT
xComplete : BOOL;
eErrorID @ ERROR;
END_VAR

on is hed set
// eErrorID to a value other than ERROR.NO_ERROR

xComplete
eErrorID

TRUE;
ERROR. NO_ERROR;

METHOD PROTECTED ResetAction
VAR_OUTPUT

xComplete : BOOL;
END_VAR

// free all

// reinit

xComplete

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines

May 4, 2017

© PLCopen (
page

2017)
56/89

PLCopen’

for efficiency in automation

ETrigA Timing Diagram

Invocation

xn+'an+2x m Xm+1

xExecute ()

xAbort (I)
xDone (O) / ___
xBusy (O) / - |
xAborted (O)
xError (O)
eErrorlD (O)
eState (V) Domant Y Execting Y Done YResetting Dormant ferec
4(Cyclic

Action (M)

The status of Inputs (1), Outputs (O}, locale Variables (V) and Methods (M) for every invocation.

Invocation
xExecute (1)
xAbort (I)
xDone (O)
xBusy (O)
xAborted (O)
xError (O)
eErrorlD (O)
eState (V)
Action (M)

Invocation
xExecute (1)
xAbort (1)
xDone (O)
xBusy (O)
xAborted (O)
xError (O)
eErrorlD (O)
eState (V)
Action (M)

Invocation
xExecute (I)
xAbort (I)
xDone (O)
xBusy (O)
xAborted (O)
xError (O)
eErrorlD (O)
eState (V)
Action (M)

1 X 2

X i Xn*lx:i+2x m Xm+1

I s W W

NI e W I

Diormant x

Extcuting X Done XReseltingX Executing

—

Cyclic

=]

Cyclic

The status of Inputs (I}, Qutputs (O), locale Variables (V) and Methods (M) for every invacation.

1 2

X » Ynt1i)nt2fnt3fn+al m Ymti m+2m+3 m+alm+5

—

P L VO S Y B

| S A W

,_CZZ__\—/_C?Z

v/

I
(-

Dormant): Executing xAhurlmg x Aborted x e tx Executing x Aborting x Aborted x Executing x

The status of Inputs (1), Outputs (), locale Variables (V) and Methods (M) for every invocation

" Code ‘

‘ Code h

Dormant): Executing

\ oo Yt Dormart)

Executing

xAhDrlmgx Error xﬂewlkmngxKulmgN

—

Cyclic

Cyclic

o —

Reset) Cyclic }—

The status of Inputs (1), Outputs (Q), locale Variables (V) and Methods (M) for every invecation

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines

May 4, 2017

© PLCopen (2017)

page 57/89

PLCopen’

for efficiency in automation

Appendix 1.3.6 ETrigATI

ETrigATI (Edge Triggered | Abortable | Time Limited | Not Time Out Constraint)

ETrigATI State Chart

TimeLimit
xExecute

NOT xExecute

Aborted

xExecute

Executing: = CyclicAtion is running until xComplete is TRUE, xBusy = TRUE
Done: xDone = TRUE, xBusy = FALSE

Error: xError = TRUE, eErrorID # ERROR. NO_ERROR, xBusy = FALSE
Aborting: = abortAction is running until xComplete is TRUE (xBusy is still TRUE!)
Aborted: xAborted = TRUE, xBusy = FALSE

Resetting: = ResetAction is running until xComplete is TRUE

ETrigATI Implementation

xResetRequest OR NOT xExecute

xResetRequest OR NOT xExecute

Invocation Complete
AND

xResetRequest OR NOT xExecute

Invocation Complete
AND

Resetting

Invocation Complete

ETrigaT! (FB)

= |2 BehaviourMode!
 Abortaction
[CydicAction ETrigATI
[I# Resetaction xExecute xDone

=) StateMachine xAbort xBusy
'i' e e udiTimeLimit xError!
 HandeAbortingState
[HandeeDonestate xAborted
fj HandieDormantState eErrorlD

 HandleErrorState
fla HandleExecutingState
| HandieResettingState

TYPE STATE :
{

DORMANT,
EXECUTING,
DONE,
ERROR,
ABORTING,
ABORTED,
RESETTING

)i
END_TYPE

TYPE ERROR :
(

NO_ERROR
TIME_OUT :

5
END_TYPE

FUNCTION_BLOCK ETrigATl

VAR_INPUT

END_VAR
VAR_OUTPUT
iy

erat
XBusy: BOOL;

Y, 8 Sione
udiTimeLimit: UDINT;

xDone: BOOL;

/ error code

eErrorID @

END_VAR
VAR

teTimingController : TimingController;

eState :

STATE;

xFirstInvocation : BOOL := TRUE;
xResetRequest : BOOL;

END_VAR
VAR_TEMP

xAgain :BOOL;

END_VAR

REPEAT
xAgain :=

FALSE;

CASE estate OF

STATE.
STATE.
.DOME: HandleDonestate(xAgain=
STATE.
STATE.
STATE.
STATE.

STATE

END_CASE

DORMANT: HandleDormantstate(xAgain=>xAgain);
EXECUTING: HandleExecutingState(xagain=>xAgain);
xAgain);

ERROR: HandleErrorState(xAgain=>xAgain);
ABORTING: HandleAbortingState(xAgain=>xAgain);
ABORTED: HandleAbortedState(xAgain=>xAgain);
RESETTING: HandleResettingState(xAgain=>xAgain);

UNTIL NOT xAgain

END_REPEAT;

Creating PLCopen Compliant Libraries V 1.0 - Official Release
May 4, 2017

Software Creation Guidelines

© PLCopen (2017)
page 58/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xExecute THEN

xBusy := TRUE;
eState := STATE.EXECUTING;
xAgain := TRUE;

END_TF

METHOD PRIVATE FINAL HandleExecutingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

IF NOT xAbort THEN
teTimingController. startInvocationTimer();

CyclicAction(
xComplete=>xComplete,
SErrOrID=>eErrorID

)

END_TF

IF eErrorID <> ERROR.NO_ERROR THEN

estate := STATE.ERROf
xAgain := TRUE;

ELSIF xAbort THEN
eState STATE.ABORTING;

xAgain TRUE;
ELSIF xComplete THEN
STATE.DONE;
TRUE;

METHOD PRIVATE FINAL HandleDoneState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xDone AND (xResetRequest OR NOT xExecute) THEN

eState STATE.RESETTING;
xAgain := TRUE;
ELSE
XBusy = FALSE;
xDone := TRUE;
xResetRequest := NOT xExecute;
xAgain := FALSE; (* [!! *)
END_IF

METHOD PRIVATE FINAL HandleErrorState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF XError AND (xResetRequest OR NOT xExecute) THEN

eState := STATE.RESETTING;
xAgain := TRUE;
ELSE
XBusy := FALSE;
xError := TRUE;
xResetRequest := NOT xExecute;
xAgain := FALSE; (* [/! *)
END_IF

METHOD PRIVATE FINAL HandleAbortingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

Abortaction(
xComplete=>xComplete,
eErrorID=>eErrorID

¥

IF eErrorID <> ERROR.NO_ERROR THEN
STATE. ERROR;

1= TRUE;

ELSIF xComplete THEN
STATE.ABORTED;

TRUE;

METHOD PRIVATE FINAL HandleAbortedState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xAborted AND (xResetRequest OR NOT xExecute) THEN

estate := STATE.RESETTING;
xAgain := TRUE;
ELSE
xBusy := FALSE;
xAborted TRUE;
xResetRequest := NOT xExecute;
xAgain := FALSE; (* [/ *)
END_IF

METHOD PRIVATE FINAL HandleResettingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

ResetAction(xComplete=>xComplete);

IF xComplete THEN
FALSE;

RROR . NO_ERROR ;
= STATE.DORMANT;
xFirstInvocation := TRUE
xAgain := xResetRequest;
xResetRequest := FALSE;
END_IF

METHOD PROTECTED CyclicAction

VAR_OUTPUT
xComplete : BOOL;
eErrorID : ERROR;

END_VAR

VAR

xTimelimit : BOOL;
END_VAR

IF NOT xAbort THEN
IF xFirstInvocation THEN
* Starting *)
for

// sample the input
tcTimingController.TimeLimit := udiTimelimit;
xFirstInvocation := FALSE;

END_IF

REPEAT

the ready condition
TRUE
n time is reached

op than ERROI

xTimeLimit=>xTimeLimit
Y

xComplete
eErrorId

ERROR.NO_ERROR;

UNTIL xAbort OR xComplete OR xTimeLimit OR
eErrorID <> ERROR.NO_ERROR
END_REPEAT
END_IF

IF xAbort OR xComplete OR eErrorID <> ERROR.NO_ERROR THEN
(* Cleant
as much allocated resources

METHOD PROTECTED AbortAction
VAR_OUTPUT
xComplete : BOOL;
eErrorID : ERROR;
END_VAR

runni

abort operations
// if an error condition is reached set
// eErrorID to a value other than ERROR.NO_ERROR

xComplete
eErrorID

TRUE;
ERROR.NO_ERROR;

METHOD PROTECTED ResetAction

VAR_OUTPUT
xComplete : BOOL;
END_VAR

resources
nce ables

xComplete := TRUE;

May 4, 2017

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines

page 59/89

PLCopen’

for efficiency in automation

ETrigATI Timing Diagram

Invocation

XH+1XH+2X m Xm+l

xExecute (1)
xAbort (I)

xDone (O)

/_ZZZ_‘

xBusy (O)

xAborted (O)
xError (O)

eErrorlD (O)

eState (V)

Dormant X Executing x Done XResetMEXDcrmantnExec

Action (M)

4{ Cychc

}—{ Reset }—4Cycl

The status of Inputs (1), Outputs (O), locale Variables (V) and Methods (M) for every invocation.

Invocation
xExecute (1)
xAbort (I)
xDone (O)
xBusy (O)
xAborted (O)
xError (O)
eErrorlD (O)
eState (V)
Action (M)

Invocation
xExecute (I)
xAbort (7)
xDone (O)
xBusy (0)
xAborted (O)
xError (O)
eErrorlD (O)
eState (V)
Action (M)

Invocation
xExecute (I)
xAbort (I)
xDone (O)
xBusy (O)
xAborted (O)
xError (O)
eErrorlD (O)
eState (V)
Action (M)

T

X b Xn*an{»Qx o] Xm+1

I e WIS o o

T _

Dormant X

Executing X Done KResemngx Executing

—

Cylic)—(Reset x Cyclic

The status of Inputs (1), Qutputs (O}, locale Variables (V) and Methods (M} for every invocation.

[B D

XuilXHiQXuHixn{JX m Xru{leu}ZXmi:‘erulIXW{-")

—

| S A W
O U S S AR\

,_....__\—/_CZZ

| —

=
(.

Dormant x Executing

X Aborting :(Aborted x Durmantx

Executing

xAbnmngx Aborted x

Executing x

ST

Cyelic

(T —

Cyclic)_

The status of Inputs (l), Outputs (O), locale Variables (V) and Methods (M) for every invocation

‘ Code k

‘ Code k

Dormant x Executing

| D s |

Executing

xAhur\mgx Error xReszttmngnE(ulmgx:

—{ Cyclic

Cydlic

Y Avort F——{ Reser Y cyclic }—

The status of Inputs (I), Outputs (O), locale Variables (V) and Metheds (M) for every invocation.

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines

May 4, 2017

© PLCopen (2017)

page 60/89

PLCopen’

for efficiency in automation

Appendix 1.3.7 EtrigATo
ETrigATo (Edge Triggered | Abortable | Not Time Limited | Time Out Constraint)

ETrigATo State Chart

xExecute

Invocation Complete

XResetRequest OR NOT xExecute

Ready
Condition

Error Invocation Complete
Condition
- xResetRequest OR NOT xExecute
TimeOut
xExecute @ condition
Resettin
Error g
NOT xExecute Condition

Invocation Complete

XResetRequest OR NOT xExecute

Executing: = cyclicAtion is running until xComplete is TRUE, xBusy = TRUE
Done: xDone = TRUE, XBusy = FALSE

Error: XError = TRUE, eErrorID # ERROR.NO_ERROR, XBusy = FALSE
Aborting: = abortAction is running until xComplete is TRUE (xBusy is still TRUE!)
Aborted: xAborted = TRUE, xBusy = FALSE

Resetting: = ResetAction is running until xComplete is TRUE

ETrigATo Implementation

[E) ETrigaTo (FB) FUNCTION_BLOCK ETrigATo
VAR_INPUT
= {2 BehaviourModel =7
L Abortaction
[Cydicaction s /.
Ry Resetacten ETrigATo e
= {2 StateMachine —|xExecute xDone — xhbor
I HandieAbortedState —{xAbort xBusy— .
HandeRboringState —udiTimeOut xErrort— udiTimeOut: UDINT;
i\ HandleDoneState A END_VAR
_ja HandleDormantState rted e
HandieErrorState eErrorlD[—
HandieExecutingState
HandleResettingState
XEr
TYPE STATE : eErrorID :
I END_VAR
DORMANT, VAR
EXECUTING, tcTimingController @ TimingController;
DONE, estate : STATE;
ERROR, xFirstInvocation : BOOL := TRUE;
ABORTING, xResetRequest : BOOL;
ABORTED, END_VAR
RESETTING VAR_TEMP
¥ xAgain :BOOL;
END_TYPE END_VAR
REPEAT
xhgain := FALSE;
CASE eState OF
o6 @I 8 STATE.DORMANT: HandleDormantState(xAgain=>xAgain);
: STATE.EXECUTING: HandleExecutingState(xAgain=>xAgain);
(MO ERROR t= & STATE.DONE: HandleDonestate(xAgain=>xAgain);
iR ot e o STATE.ERROR: HandleErrorstate(xAgain=>xagain);
HEOUT #= 1 STATE.ABORTING: HandleAbortingState(xAgain=»>xAgain);
. o STATE.ABORTED: HandleabortedState(xAgain=>xAgain);
zv’«n P STATE.RESETTING: HandleResettingState(xAgain=>xAgain);
- END_CASE
UNTIL NOT xAgain
END_REPEAT;

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 61/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xExecute THEN

= STATE.EXECUTING;
xAgain := TRUE;

METHOD PRIVATE FINAL HandleExecutingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
XTimeOut : BOOL;
END_VAR

IF NOT xAbort THEN
cyclicAction(
xComplete=>xComplete,
SErrOrID=>eErrorID
)

teTimingController.CheckTiming(xTimeOut=>xTimeOut);
END_IF

IF xTimeOut AND eErrorID = ERROR.NO_ERROR THEN
eErrorID := ERROR.TIME_OUT;
END_IF

IF eErrorID <> ERROR.NO_ERROR THEN
eState := STATE.ERROR;

TRUE;

ELSIF xAbort THEN

STATE.ABORTING;
xAgain := TRUE;

ELSIF xComplete THEN

STATE.DONE;

1= TRUE;

METHOD PRIVATE FINAL HandleDoneState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xDone AND (xResetRequest OR NOT xExecute) THEN

eState STATE.RESETTING;
xAgain := TRUE;
ELSE
XBusy = FALSE;
xDone := TRUE;
xResetRequest := NOT xExecute;
xAgain := FALSE; (* [!! *)
END_IF

METHOD PRIVATE FINAL HandleErrorState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF XError AND (xResetRequest OR NOT xExecute) THEN

eState := STATE.RESETTING;
xAgain := TRUE;
ELSE
XBusy := FALSE;
xError := TRUE;
xResetRequest := NOT xExecute;
xAgain := FALSE; (* [/! *)
END_IF

METHOD PRIVATE FINAL HandleAbortingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

Abortaction(
xComplete=>xComplete,
eErrorID=>eErrorlD

Y

IF eErrorID <> ERROR.NO_ERROR THEN
eState := STATE.ERROR;
xhgain := TRUE;

ELSIF xComplete THEN

eState := STATE.ABORTED;
xAgain TRUE;
END_IF

METHOD PRIVATE FINAL HandleAbortedState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xAborted AND (xResetRequest OR NOT xExecute) THEN

estate := STATE.RESETTING;
xAgain := TRUE;
ELSE
xBusy := FALSE;
xAborted TRUE;
xResetRequest := NOT xExecute;
xAgain := FALSE; (* [/ *)
END_IF

METHOD PRIVATE FINAL HandleResettingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

ResetAction(xComplete=>xComplete);

IF xComplete THEN
FALSE;

RROR . NO_ERROR ;
= STATE.DORMANT;
xFirstInvocation := TRUE
xAgain := xResetRequest;
xResetRequest := FALSE;
END_IF

METHOD PROTECTED CyclicAction

VAR_OUTPUT
xComplete : BOOL;
eErrorID @ ERROR;

END_VAR

VAR

XTimeOut : BOOL;
END_VAR

IF xAbort THEN
IF xFirstInvocation THEN

ple the input
teTimingController.Timeout := udiTimeout;
xFirstInvocation := FALSE;

END_IF

if an error condition is reached
> set eErrorID to a value other than ERROR.

tcTimingController. CheckTiming(

xTimeQut=>xTimeOut,
)i
xComplete TRUE;
eErrorID := ERROR.NO_ERROR;
END_IF

IF xTimeOut AND eErrorID = ERROR.NO_ERROR THEN
eErrorID := ERROR.TIME_OUT;
END_IF

IF xAbort OR xComplete OR eErrorID ¢> ERROR.NO_ERROR THEN

free as much allocated resources

METHOD PROTECTED AbortAction

VAR_OUTPUT
xComplete : BOOL;
eErrorID : ERROR;

END_VAR
bort all runmi

if an e hed set

eErrorID to a value other than ERROR.NO_ERROR
xComplete TRUE;
eErrorID := ERROR.NO_ERROR;

METHOD PROTECTED ResetAction
VAR_OUTPUT
xComplete : BOOL;

R

xComplete := TRUE;

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 62/89

PLCopen’

for efficiency in automation

ETrigATo Timing Diagram

Invocation

XH.+1X11+2X m Xm+|

xExecute ([I)

xAbort (I) -
xDone (O) / _\—
xBusy (O) J i | e
xAborted (O)
xError (OQ)
eErrorlD (O) -
eState (V) Dormant Y Executing X Done ¥ Resetting) Dormant fExec

—

Action (M)

Cyclic

)—{ Reset }—{ Cycl

The status of Inputs (1), Outputs (O}, locale Variables (V) and Methods (M) for every invocation.

Invocation
xExecute (1)
xAbort (7)
xDone (O)
xBusy (O)
xAborted (O)
xError (O)
eErrorlD (O)
eState (V)
Action (M)

Invocation
xExecute (1)
xAbort (I)
xDone (O)
xBusy (O)
xAborted (O)
xError (O)
eErrorlD (O)
eState (V)
Action (M)

Invocation
xExecute (1)
xAbort (I)
xDone (O)
xBusy (O)
xAborted (O)
xError (O)
eErrorlD (O)
eState (V)
Action (M)

1 Y 2

X

n

Xn—'an+2x m Xm+1

e W

Diarmant x Extuting x Done XResemngx Executing

—

Cyclic

I ey

The status of Inputs (1), Outputs (0), locale Variables (V) and Methods (M) for every invocation.

1 {2 X

n+lin+2 I nt+3 L ntd m mA+1 m+2m+3m+4fm+5
Y ot1Xnw2fnes nta}l m Ym+1 mi2)m+3fmsa)

7
I

| S A W
A\

| —

=
(-

Dormant) Executing

xAhwtmg x Aborted x Dufmantx

Executing

xAhur\mgx Aborted x

Executing

X

Cyelic

e ——

Cyelic

)_

The status of Inputs (1), Outputs (O), locale Variables (V) and Methods (M) for every invocation.

‘ Code k

’: Code :\

Dormant | Executing

' D O |

Executing

xmmmngx Emor Xﬂese\tinngneculingx:

Cyclic

—

Cyclic

Y avon p——A eser Y Cyclic }—

The status of Inputs (I), Qutputs (O), locale Variables (V) and Methods (M) for every invocation

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 63/89

PLCopen’

for efficiency in automation

Appendix 1.3.8

ETrigATITo

ETrigATITo (Edge Triggered | Abortable | Time Limited | Time Out Constraint)

ETrigATITo State Chart

TimeLimit

xExecute

NOT xExecute

Ready
Condition

Error
Condition

xExecute

Invecation Complete

XxResetRequest OR NOT xExecute

Invocation Complete
AND

xResetRequest OR NOT xExecute

Invecation Complete

Executing: = CyclicAtien is running until xComplete is TRUE, xBusy = TRUE

Done: xDone = TRUE, XBusy = FALSE
Error: XError = TRUE, eErrorID # ERROR.NO_ERROR, xBusy = FALSE
Aborting: = AbortAction is running until xComplete is TRUE (xBusy is still TRUE!)

Aborted:

Resetting: = ResetAction is running until xComplete is TRUE

xAborted = TRUE, xBusy = FALSE

ETrigATITo Implementation

xResetRequest OR NOT xExecute

Resetting

ETrighTITe (FE)
= (2 BehaviourMode!
fw AbortAction
[Cycicaction ETrigATITo
[Resetaction —|xExecute xDone—
= J StateMachine A
fi HandieAbortedState) . L L XBUSy—
% HandeAbortngState —udiTimeLimit xError—
[HandeDoneState —{udiTimeQut xAborted —
3
(§ HandeDormantState eErrorlD—

M HandeErrorState
HandleExecutingState
i HandleResettingState

TYPE STATE :

DORMANT
EXECUTING,
DONE,
ERROR,
ABORTING,
ABORTED,
RESETTING

Yi
END_TYPE

TYPE ERROR :

NO_ERROR
TIME_OUT

)5
END_TYPE

FUNCTION_BLOCK ETrigAT1To
VAR_INPUT

xExecute:

xAbort:

/ @ = no
udiTimeOut: UDIN
END_VAR

VAR_OUTPUT

ready condition reached

/ error code
eErrorID : ERROR;
END_VAR
VAR
tcTimingController : TimingController;
estate : STATE;
xFirstInvocation : BOOL := TRUE;
xResetRequest : BOOL;
END_VAR
VAR_TEMP
xAgain :BOOL;
END_VAR
REPEAT
xAgain := FALSE;
CASE eState OF
STATE.DORMANT: HandleDormantState(xAgain=>xAgain);
STATE.EXECUTING: HandleExecutingState(xAgain=>xAgain);
STATE.DONE: HandleDoneState(xAgain=>xAgain);
STATE.ERROR: HandleErrorState(xAgain=>xAgain);
STATE.ABORTING: HandledbortingState(xAgain=>xAgain);
STATE.ABORTED: HandleAbortedState(xAgain=rxAgain);
STATE.RESETTING: HandleResettingState(xAgain=>xAgain);
END_CASE
UNTIL NOT xAgain
END_REPEAT;

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 64/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState METHOD PRIVATE FINAL HandleDoneState
VAR_OUTPUT VAR_OUTPUT
xAgain : BooOL; xAgain : BOOL;
END_VAR END_VAR
IF xExecute THEN IF xDone AND (xResetRequest OR NOT XExecute) THEN
tcTimingController.StartOperationTimer(); eState STATE.RESETTING;
xBusy UE; xAgain := TRUE;
estate := STATE.EXECUTING; ELSE
xAgain i= TRUE; xBusy FALSE;
END_IF xDone := TRUE;
xResetRequest := NOT xExacute;
xAgain := FALSE; ()
END_IF

METHOD PRIVATE FINAL HandleExecutingState

VAR_OUTPUT
xAgain : BOOL;
END_VAR METHOD PRIVATE FINAL HandleErrorState
VAR VAR_OUTPUT
xComplete : BOOL; XAgain : BOOL;
xTimeOut : BOOL; END_VAR
END_VAR

IF xError AND (xResetRequest OR NOT xExecute) THEN

IF NOT xAbort THEN STATE.RESETTING;

tcTimingController. StartInvocationTimer(); TRUE;

Cyclicaction(FALSE;
xComplete=>xComplete, XError := TRUE;
eErrorID=reErrorID xResetRequest := NOT xExecute;

% xAgain := FALS He =)

END_IF
tcTimingController. CheckTiming(xTimeOut=>xTimeOut);
END_IF
IF xTimeOut AND eErrorID = ERROR.NO_ERROR THEN
eErrorID ERROR. TIME_OUT; METHOD PRIVATE FINAL HandleAbortedState
END_IF VAR_OUTPUT
xAgain : BOOL;
IF eErrorID <> ERROR.NO_ERROR THEN END_VAR
estate := STATE.ERROR; -
xAgain := TRUE; IF xAborted AND (xResetRequast OR NOT xExecute) THEN
ELSIF xAbort THEN estate := STATE.RESETTING;
eState := STATE.ABORTING; xhgain i= TRUE;
xAgain i= TRUE; ELSE
ELSIF xComplete THEN XBusy := FALSE;
eState := STATE.DONE; xAborted := TRUE;
xAgain := TRUE; xResetRequest := NOT xExecute;
END_IF xAgain := FALSE; (* [/! *)
END_IF
METHOD PRIVATE FINAL HandleAbortingState
Vl\R_DUTFl}T METHOD PRIVATE FINAL HandleResettingstate
xAgain : BOOL; VAR_OUTPUT
END_VAR xAgain : BOOL;
VAR END_VAR
xComplete : BOOL; VAR
END_VAR xComplete : BOOL;
END_VAR
AbortAction(-
xComplete=>xComplete, ResetAction(xComplete=>xComplete);
eErrorID=>eErrorID
bH IF xComplete THEN

IF eErrorID <> ERROR.NO_ERROR THEN

eState := STATE.ERROR;
ain := TRUE;

ELSIF xComplete THEN eErrorID := ERROR.NO_ERROR;
eState := STATE.ABORTED; eState := STATE.DORMANT;
RARRTE S RTRUE xFirstInvocation := TRUE;

END_IF xAgain := xResetRequest; (* !!! *)

xResetRequest := FALSE;
END_IF

METHOD PROTECTED CyclicAction METHOD PROTECTED AbortAction

VAR_OUTPUT VAR_OUTPUT
xComplete : BOOL; XxComplete : BOOL;
eErrorID : ERROR; eErrorID : ERROR;

END_VAR END_VAR

VAR

XTimeOut : BOOL; // abort all ri
xTimeLimit : BOOL; // if an error
END_VAR // eErrorID

IF NOT xAbort THEN xComplete
IF xFirstInvocation THEN eErrorID
(* starting *)

ERROR.NO_ERROR;

/ sample put variabl
tcTimingController. TimeLimit := udiTimeLimit;
tcTimingController. TimeOut := udiTimeOut; METHOD PROTECTED ResetAction
xFirstInvocation := FALSE; VAR_OUTPUT

END_IF xComplete : BOOL;

END_VAR
REPEAT

reach the ready condition

xComplete := TRUE;

r0. to a value othe
tcTimingController. CheckTiming(
XTimeOut=>xTimeout,
xTimeLimit=>xTimeLimit

b
xComplete TRUE;
eErrorID := ERROR.NO_ERROR;

UNTIL xAbort OR xComplete OR
XTimeOut OR xTimeLimit OR
eErrorID <> ERROR.NO_ERROR

END_REPEAT

END_IF

IF xTimeOut AND eErrorID = ERROR.NO_ERROR THEN
eErrorID := ERROR.TIME_OUT;
END_IF

IF xAbort OR xComplete OR eErrorID <> ERROR.NO_ERROR THEN

(* Cleaniny

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 65/89

PLCopen’

for efficiency in automation

ETrigATITo Timing Diagram

[

Invocation

X

n

er+‘lx:i+2x m Xm+|

xExecute (1)

xAbort (1)
xDone (O) / _\—
xBusy (O) J—_—/_
xAborted (O)
xError (O)
eErrorlD (O)
eState (V) Domant [Executing ' Done | Resecting | Dormant fExcc

—

Action (M)

Cyclic

}—{ Reset ’—4Cyc|

The status of Inputs (1), Outputs (O), locale Variables (V) and Methods (M) for every invocation.

Invocation
xExecute (I)
xAbort (I)
xDone (0)
xBusy (O)
xAborted (O)
xError (O)
eErrorlD (O)
eState (V)
Action (M)

Invocation
xExecute (1)
xAbort (7)
xDone (O)
xBusy (O)
xAborted (O)
xError (O)
eErrorlD (O)
eState (V)
Action (M)

D

Invocation

X n Xn—‘an+2x i Xm+1

xExecute (I)
xAbort (1)

xDone (O)
xBusy (O)

T e W

xAborted (O)
xError (O)

eErrorlD (O)

eState (V)

Dormant X Executing X Done Xnesemngx Executing

—

Action (M)

=

Cyclic Cyclic

The status of Inputs (1), Outputs (O), locale Variables (V) and Methods (M) for every invocation.

leXn

XuilXH{?Xn{iﬂXuiLX m Xm{lXJn}ZXH:i.‘{XHr}-IXM{S

e

| S A W

A

| —

—
(-

Dormant x Executing

XAhwlmg x Aborted x Dmmantx

Executing

xAbDr\mgx Aborted x

Executing

-

Cyclic

e —

Cyclic

)_

The status of Inputs (I}, Qutputs (0), locale Variables (V) and Methods (M) for every invocation.

A Code ‘

A Code }

Dormant) Executing

Y Error YResetting) Dormant {

Executing

xAhur\mgx Errar xﬂgmmgxsmumgx

e

Cyclic

Cyelic

Y Avort }———{ Reser Y Cyclic }—

The status of Inputs (1), Outputs (O), locale Variables (V) and Methods (M) for every invocation.

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)

page 66/89

PLCopen’

for efficiency in automation

Appendix 1.4 Overview Level Controlled FBs
LCon LConTI

—xEnable xDone— —xEnable xDone —
xBusy— —udiTimeLimit xBusy—
xError— xError—
eErrorlD— eErrorlD—

LConTo LConTlITo
—xEnable xDone— —xEnable xDone—
—udiTimeOut xBusy— —udiTimeLimit xBusy—
xError udiTimeQOut xError—
eErrorlD eErrorlD—

LConC LConTIC

—xEnable xBusy— xEnable xBusy—
xError— udiTimeLimit xError—
eErrorlD— eErrorlD—

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines

May 4, 2017

© PLCopen (2017)

page 67/89

PLCopen’

for efficiency in automation

Appendix 1.4.1 LCon
LCon (Level Controlled | Not Time Limited | No Time Out Constraint | No Continuous Behaviour)

LCon State Chart

Ready

NOT xEnable
Condition

Error

Invocation Complete
Condition

AND
xResetRequest OR NOT xEnable

Error

Condition
NOT xEnable

Aborting

Resetting

Executing: = Cyclication is running until xComplete is TRUE, xBusy = TRUE
Aborting: = abortAction is running until xComplete is TRUE (xBusy is still TRUE!)
Done: xDone = TRUE, XBusy = FALSE

Error: XError = TRUE, eErrorID # ERROR.NO_ERROR, xBusy = FALSE

Resetting: = ResetAction is running until xComplete is TRUE

LCon Implementation

{E] LCon (FB) FUNCTION_BLOCK LCon
= 2 BehaviourModel VAR_INPUT
[Abortacton & 3 phi
{54 CydicAction LCon xXEnable: BOOL;
T4 ResetAction END_VAR
- —xEnable xDone— VAR_OUTPUT
= 2 stateMachine B ~//.ready condition rea
{34 HandieAbortingState o | xDone: BOOL;
i HandieDoneState xError— . on- i pun
[HandieDormantState eErrorlD—
|3 HandeErrorState
T HandieExecutingState rror code describing e
oM e eErrorID : ERROR;
{4 HandeResettingState END_VAR
VAR
eState : STATE;
| XResetRequest : BOOL;
END_VAR
TYPE STATE : VAR_TEMP
(xAgain :BOOL;
DORMANT, END_VAR
EXECUTING,
ABORTING, REPEAT
DONE, xAgain := FALSE;
ERROR, CASE eState OF
RESETTING

STATE.DORMANT: HandleDormantState(xAgain=>xAgain);
); STATE.EXECUTING: HandleExecutingState(xAgain=>xAgain);
END_TYPE STATE.DONE: HandleDoneState(xAgain=>xAgain);
STATE.ERROR: HandleErrorState(xAgain=>xAgain);
STATE.ABORTING: HandleAbortingState(xAgain=>xAgain);
STATE.RESETTING: HandleResettingState(xAgain=>xAgain);

END_CASE
TYPE ERROR : UNTIL NOT xAgain
(END_REPEAT;
NO_ERROR := 0,
TIME_OUT :=
e
END_TYPE

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 68/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState

VAR_OUTPUT
xAgain : BOOL;

END_VAR

IF xEnable THEN
xBusy := TRUE;
eState := STATE.EXECUTING;
xAgain := TRUE;

END_IF

METHOD PRIVATE FINAL HandleExecutingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
XTimeOut : BOOL;
END_VAR

IF xEnable THEN
CyclicAction(
xComplet
eErrorlD:

>xComplete,
eErrorID

)i
END_IF

IF eErrorID <> ERROR.NO_ERROR THEN
eState STATE.ERROR;
ain := TRUE;
ELSIF NOT xEnable THEN
STATE.ABORTING;
TRUE;

TRUE;

METHOD PRIVATE FINAL HandleDoneState

VAR_OUTPUT
xAgain : BOOL;
END_VAR

IF xDone AND NOT xEnable THEN
eState := STATE.RESETTING;
xAgain := TRUE;

ELSE
xBusy := FALSE;
xDone := TRUE;
xAgain := FALSE; (* !!! *)

END_IF

METHOD PRIVATE FINAL HandleErrorState

VAR_OUTPUT
xAgain : BOOL;
END_VAR

IF xError AND (xResetRequest OR NOT xEnable) THEN

eState

STATE.RESETTING;

xAgain := TRUE;

METHOD PRIVATE FINAL HandleAbortingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

Abortaction(
xComplete=>xComplete,
eErrorID=>eErrorID

bH

IF eErrorID <> ERROR.NO_ERROR THEN
estate STATE.ERROR;
xAgain := TRUE;
ELSIF xComplete THEN
eState := STATE.RESETTING;
TRUE;

METHOD PRIVATE FINAL HandleResettingState

VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

ResetAction(xComplete=>xComplete);

IF xComplete THEN
XBusy i= FALSE;

eErrorID = ERROR.NO_ERROR;

eState

xAgain

xResetRequest := FALSE;
END_IF

STATE .DORMANT ;

= xResetRequest; (*

METHOD PROTECTED CyclicAction
VAR_OUTPUT
xComplete : BOOL;
eErrorID : ERROR;
END_VAR

IF xEnable THEN

condition is reac
eErrorID to a value other than ERROR

VO_ERROR

xComplete
eErrorID
END_IF

= TRUE;
ERROR.NO_ERROR;

IF NOT xEnable OR xComplete OR eErrorID <> ERROR.NO_ERROR THEN

Leaning

as much allocated resources

METHOD PROTECTED AbortAction
VAR_OUTPUT
xComplete : BOOL;
eErrorID : ERROR;
END_VAR

abort all running

/ if an error condition i

xComplete
eErrorlD :

METHOD PROTECTED ResetAction

VAR_OUTPUT
xComplete : BOOL;
END_VAR

ces

xComplete := TRUE;

operations

ariables

/ eErrorID to a value other than ERROR.NO_ERROR

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)

page 69/89

PLCopen’

for efficiency in automation

Appendix 1.4.2 LConTI
LConT]I (Level Controlled | Time Limited | Not Time Out Constraint | No Continuous Behaviour)

LConTlI State Chart

xEnable

Ready

NOT xEnable
Condition

TimeLimit
P

xEnable

Error
Condition

Invocation Complete
AND

Error xResetRequest OR NOT xEnable

NOT xEnable Condition

Aborting

NOT xEnable

Resetting

Executing: = CyclicAtion is running until xComplete is TRUE, xBusy => TRUE
Aborting: = Abortaction is running until xcomplete is TRUE (xBusy is still TRUE!)
Done: xDone = TRUE, xBusy = FALSE

Error: xError = TRUE, eErrorID # ERROR.NO_ERROR, xBusy = FALSE

Resetting: = ResetAction is running until xComplete is TRUE

LConTI Implementation

\E] LconT (FB)
= 12 BehaviourModel
[l AbortAction
W CydicAction LConTI

M ResetA
) *5';‘ :‘“ cten —{xEnable xDone
=) eMachine

[HandeAbortngstate —udiTimeLimit xBusy—
i HandieDoneState xError—
[HandieDormantState eErrorlD—
|§q HandieErrorState

HandleExecutingState
[HandieResettingState

FUNCTION_BLOCK LConTl
VAR_INP

END_VAR

error cod
eErrorID : ERROR;
END_VAR
VAR
TYPE STATE :

teTimingController @ TimingContreller;

eState : STATE;
DORMANT, xResetRequest : BOOL;
EXECUTING, END_VAR
ABORTING, VAR_TEMP
DONE, xAgain :BOOL;
ERROR, END_VAR
RESETTING
Y REPEAT
END_TYPE

xhgain i= FALSE;

CASE eState OF
STATE .DORMANT: HandleDormantState(xAgain=>xAgain);
STATE.EXECUTING: HandleExecutingState(xAgain=>xagain);
STATE.DONE: HandleDoneState(xAgain=>xAgain);
STATE.ERROR: HandleErrorState(xAgain=»xAgain);
STATE.ABORTING: HandleAbortingState(xAgain=>xAgain);
STATE.RESETTING: HandleResettingState(xAgain=>xaAgain);

TYPE ERROR :
(

NO_ERROR := @,

TIME_OUT := END_CASE
LI UNTIL NOT xAgain
3 END_REPEAT;
END_TYPE

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 70/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState METHOD PRIVATE FINAL HandleDoneState
VAR_OUTPUT VAR_OUTPUT
xAgain : BOOL; xAgain : BOOL;
END_VAR END_VAR
IF xEnable THEN IF xDone AND NOT xEnable THEN

xBusy i= TRUE;
STATE. EXECUTING;
TRUE;

estate := STATE.RESETTING;

METHOD PRIVATE FINAL HandleExecutingState

VAR_OUTPUT
xAgain : BOOL;

END_VAR METHOD PRIVATE FINAL HandleErrorstate

VAR VAR_OUTPUT
xComplete : BOOL; xAgain : BOOL;

END_VAR END_VAR

IF xEnable THEN IF xError AND (xResetRequest OR NOT xEnable) THEN
‘tcTimingController.StartInvocationTimer(); estate STATE.RESETTING;

Cyclicaction(
xComplete=>xComplete,
eErrorID=>eErrorID

b NOT xEnable;

END_IF FALSE; (* !!! *)
IF eErrorID <> ERROR.NO_ERROR THEN
eState := STATE.ERROR;

x: TRUE;
ELSIF MOT xEnable THEN
eState := STATE.ABORTING; METHOD PRIVATE FINAL HandleResettingState
xAgain := TRUE; VAR_OUTPUT
ELSIF xComplete THEN _xAgaLn : BOOL;
eState := STATE.DONE; END_VAR
xAgain TRUE; VAR
o xComplete : BOOL}
END_VAR
ResetAction(xComplete=»xComplete);
METHOD PRIVATE FINAL Handledbortingstate IF xComplete THEN
VAR_OUTPUT XBusy i= FALSE;
XAgain : BOOL; xDone := FALSE;
END_VAR xError FALSE;
R eErrorID ERROR.MO_ERROR;
xComplete : BOOL; estate := STATE.DORMANT;
END_VAR xAgain := xResetRequest; (“)
xResetRequest := FALSE;
AbortAction(END_IF
xComplete=>xComplete,
eErrorID=>eErrorlD
bH
IF eErrorID <> ERROR.NO_ERROR THEN
eState := STATE.ERROR;
i TRUE;
ELSIF xComplete THEN
eState STATE.RESETTING;
xAgain := TRUE;
END_IF
METHOD PROTECTED CyclicAction METHOD PROTECTED AbortAction
VAR_OUTPUT VAR_OUTPUT
xComplete : BOOL; xComplete : BOOL;
eErrorID : ERROR; eErrorID : ERROR;
END_VAR END_VAR
VAR

xTimeLimit : BOOL;
END_VAR

eErrorID to a value other than ERROR.NO_ERROR

IF xEnable THEN
(* g *) xComplete := TRUE;
eErrorID i= ERROR.NO_ERROR;

1/ ple the input var
teTimingController. TimeLi

REPEAT
A LT rc‘r'e?rh f-’jﬁ ready condition METHOD PROTECTED ResetAction
= xComplete := TRUE . VAR_OUTPUT
imum invocation time is reached xComplete : BOOL;
t TRUI END_VAR
condition is r
/7 eErrorid to @ value ather & 3L // free all allocated resources
teTimingController.CheckTiming(V74 ize instance variables
xTimeLimit=>xTimeLimit
' xComplete i= TRUE;

xComplete := TRUE;
eErrarID := ERROR.NO_ERROR;

UNTIL NOT xEnable OR xComplete OR xTimeLimit OR
eErrorID <> ERROR.NO_ERROR
END_REPEAT
END_IF

IF NOT xEnable OR xComplete OR eErrorID <> ERROR.NO_ERROR THEN

(* Clear

if pos

/ as pos:
END_IF

cated resources

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 71/89

PLCopen’

for efficiency in automation

Appendix 1.4.3 LConTo

LConTo (Level Controlled | Not Time Limited | Time Out Constraint | No Continuous Behaviour)

LConTo State Chart

Ready
Condition

Error
Condition

TimeOut
Condition

NOT xEnable

NOT xEnable

Invocation Complete
AND
xResetRequest OR NOT xEnable

Executing: = cyclication is running until xComplete is TRUE, xBusy = TRUE
Aborting: = AbortAction is running until xComplete is TRUE (xBusy is still TRUE!)
Done: xDone = TRUE, xBusy = FALSE

Error: XError = TRUE, eErrorID # ERROR.NO_ERROR, xBusy = FALSE
Resetting. = ResetAction is running until xComplete is TRUE

LConTo Implementation

Resetting

\E] LconTo (FB)

=1 BehaviourModel VAR_INP!

T AbortAction
CydicAction LCDnTQ e
5 _-J’;'::‘:,::,L::M —{xEnable xDone — o
(54 HandieAbortngState —{udiTimeOut xBusy— swn_::;
L HendieDoneState xError— VAR_OUTRUT
T HandieDormantState B KDME

HandleErrorState
HandeExecutingState
HandeResettngState

FUNCTION_BLOCK LConTo

eErrorID @ ERROR;
END_VAR
VAR
TYPE STATE : tcTimingController : TimingController;
(estate : STATE;
DORMANT, xResetRequest : BOOL;
EXECUTING, END_VAR
ABORTING, VARTENP
DONE, xhgain :BOOL;
ERROR, END_VAR
RESETTING //
Y REPEAT
END_TYPE xAgain := FALSE;

STATE

STATE
TYPE ERROR :
(STATE

STATE
END_CASE

NO_ERROR := 0,
TIME_OUT :

3 END_REPEAT;
END_TYPE

CASE eState OF
.DORMANT: HandleDormantsState(xAgain=>xAgain);
STATE.

EXECUTING: HandleExecutingState(xagain=>xagain);

.DONE: HandleDoneState(xAgain=>xAgain);
STATE.

ERROR: HandleErrorState(xAgain=>xAgain);

LABORTING: HandleAbortingState(xAgain=>xAgain);
LRESETTING: HandleResettingState(xAgain=>xAgain);

UNTIL NOT xAgain

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines May 4, 2017

© PLCopen (2017)
page 72/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState METHOD PRIVATE FINAL HandleDoneState
VAR_OUTPUT VAR_OUTPUT

xAgain : BOOL; xAgain : BoOL;
END_VAR END_VAR
IF xEnable THEN IF xDone AND NOT xEnable THEN

teTimingController.StartoperationTimer(); STATE .RESETTING;

xBusy ; TRUE;

estate := STATE.EXECUTING;

xAgain := TRUE; FALSE;
END_IF TRUE;

xAgain := FALSE; (* !/! *)
END_IF

METHOD PRIVATE FINAL HandleExecutingState
VAR_OUTPUT

xAgain : BOOL; METHOD PRIVATE FINAL HandleErrorState
END_VAR VAR_OUTPUT
VAR xAgain : BOOL;

xTimeQut : BOOL; END_VAR
END_VAR

IF xError AND (xResetRequest OR NOT xEnable) THEN

IF xEnable THEN eState := STATE.RESETTING;

CyclicAction(TRUE;

eErrorID=>eErrorID
'l FALSE;
XError = TRUE;

tcTimingController.CheckTiming(xTimeQut=>xTimeOut); xResetRequest NOT xEnable;

END_IF xAgain := FALSE; (* !/! *)

END_IF

IF xTimeOut AND eErrorID = ERROR.NO_ERROR THEN
eErrorID := ERROR.TIME_OUT;

END_IF

IF eErrorID <> ERROR.NO_ERROR THEN

METHOD PRIVATE FINAL HandleResettingState
eState := STATE.ERROR;

t VAR_OUTPUT

xAgain := TRUE; xhgain : BOOL;
ELSIF NOT xEnable THEN END_VAR

est STATE. ABORTING; VAR

xagain TRUE; xComplete : BOOL;
END_IF

END_VAR

ResetAction(xComplete=>xComplete) ;

IF xComplete THEN

METHOD PRIVATE FINAL HandleAbortingState FALSE;
VAR_OUTPUT FALSE;
xAgain : BOOL; = FALSE;
END_VAR = ERROR.NO_ERROR;
VAR STATE . DORMANT ;
xComplete : BOOL; xResetRequest; (* /! *)
END_VAR XResetRequest := FALSE;
END_IF
abortaction(
xComplete=>xComplete,
eErrorID=>eErrorID
bH
IF eErrorID <> ERROR.NO_ERROR THEN
estate STATE.ERROR;
xAgain := TRUE;
ELSIF xComplete THEN
METHOD PROTECTED CyclicAction METHOD PROTECTED AbortAction
VAR_OUTPUT VAR_OUTPUT
xComplete : BOOL; xComplete : BOOL;
eErrorID : ERROR; eErrorID : ERROR;
END_VAR END_VAR
VAR
XTimeOut : BOOL; abort L runni
END_VAR if an error com

ekrrorID to a » than ERROR.NO_ERROR
IF xEnable THEN
xComplete
eErrorId

ERROR.NO_ERROR ;

iple the input v

/s ariables
teTimingController. TimeOut := udiTimeOut;

METHOD PROTECTED ResetAction
VAR_OUTPUT

xComplete : BOOL;
END_VAR

/ if the maxim
= xTimeout :

// eE ID to @ valu
tcTiningController. Checl

A 5 free all al
XTimeQut=>xTimeOut o imitiatiee i
H
xComplete i= TRUE;
xComplete := TRUE;
eErrorID := ERROR.NO_ERROR;
END_IF

IF xTimeOut AND eErrorID = ERROR.NO_ERROR THEN
eErrorID 1= ERROR.TIME_OUT;
END_IF

IF NOT xEnable OR eErrorID <> ERROR.NO_ERROR THEN
(* Cleaning *)

free as much allocated resources

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 73/89

PLCopen’

for efficiency in automation

Appendix 1.4.4

LConTITo

LConTITo (Level Controlled | Time Limited | Time Out Constraint | No Continuous Behaviour)

LConTITo State Chart

TimeLimit
PEEN

NOT xEnable

Condition

Error
Conditien

TimeOut

Condition

NOT xEnable

Aborting

Condition

NOT xEnable

Invocation Complete

xResetRequest OR NOT xEnable

Executing: = CyclicAtien is running until xComplete is TRUE, xBusy = TRUE

Aborting: = abortActicn is running until xcomplete is TRUE (xBusy is still TRUE!)
Done: xDone = TRUE, xBusy = FALSE
Error:

Resetting. = ResetAction is running until xComplete is TRUE

LConTITo Implementation

xError = TRUE, eErrorID # ERROR.NO_ERROR, xBusy = FALSE

[E] LconTiTo (FB)
= (2 BehaviourModel
|54 Abortaction

[CydicAction

[ResetAction
=) StateMachine —|xEnable

[HandeAbortingState —udiTimeLimit

50 HandeDoneState —judiTimeOut

| HandeDormantState

[HandeErrorState

LConTITo

xDone—
xBusy—
xError—
xErrorlDi—

4 HandeExecutngState

U HandeResettingState

TYPE STATE :
(

DORMANT
EXECUTING,
ABORTING,
DOME,

ERROR,
RESETTING

Vs
END_TYPE

TYPE ERROR :

NO_ERROR := 0,
TINE_OUT := 1

)i

END_TYPE

FUNCTION_BLOCK LConTlTo
VAR_INPUT

a
udiTimeOut: UDINT;
END_VAR
VAR_OUT!

eErrorID : ERROR;
END_VAR
VAR

tcTimingController : TimingController;
estate : STATE;
xResetRequest : BOOL;

END_VAR

VAR_TEMP
xAgain :BOOL;

END_VAR

REPEAT
xAgain := FALSE;
CASE eState OF
STATE.DORMANT: HandleDormantState(xAgain=>xAgain);
STATE.EXECUTING: HandleExecutingState(xAgain=>xAgain);
STATE.DONE: HandleDoneState(xAgain=>xAgain);
STATE.ERROR: HandleErrorState(xAgain=>xAgain);
STATE.ABORTING: HandleAbortingState(xAgain=>xAgain);
STATE.RESETTING: HandleResettingstate(xAgain=>xAgain);
END_CASE
UNTIL NOT xAgain
END_REPEAT;

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 74/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState METHOD PRIVATE FINAL HandleDoneState
VAR_OUTPUT VAR_OUTPUT
xAgain : BOOL; xAgain : BOOL;
END_VAR END_VAR
IF xEnable THEN IF xDone AND NOT xEnable THEN
teTimingController.StartOperationTimer(); eState := STATE.RESETTING;
TRUE; xAgain := TRUE;
STATE . EXECUTING; ELSE
TRUE; XBusy i= FALSE;
TRUE;
FALSE; 1ty

METHOD PRIVATE FINAL HandleExecutingState

VAR_OUTPUT
xAgain : BOOL; METHOD PRIVATE FINAL HandleErrorState
END_VAR VAR_OUTPUT
VAR xAgain : BOOL;
xComplete : BOOL; END_VAR
xTimeOut : BOOL;
END_VAR IF xError AND (xResetRequest OR NOT xEnable) THEN
eState STATE.RESETTING;
IF xEnable THEN xAgain := TRUE;
tcTimingController.StartInvocationTimer(); ELSE
CyclicActioen(
xComplete=>xComplete, xResetRequest := NOT xEnable;
eErrorID=seErrorID xAgain := FALSE; (* [/1 %)
] END_IF

tcTimingController. CheckTiming(xTimeOut=>xTimeOut) ;
END_IF

IF xTimeOut AND eErrorID = ERROR.NO_ERROR THEN METHOD PRIVATE FINAL HandleResettingstate

eErrorID := ERROR.TIME_OUT; VAR_QUTPUT
END_IF xAgain : BOOL;
END_VAR
IF eErrorID <> ERROR.NO_ERROR THEN VAR
eState STATE . ERROR; xComplete : BOOL;

xAgain ; END_VAR
ELSIF NOT xEnable THEN -

estate := STATE.ABORTING; ResetAction(xComplete=>xComplete);
xAgain := TRUE;

ELSIF xComplete THEN TF xComplete THEN
estate := STATE.DONE;

TRUE;

H
eErrorID := ERROR.NO_ERROR;

estate STATE . DORMANT ;
xAgain := xResetRequest; (* [/ *)
XResetRequest 1= FALSE;
METHOD PRIVATE FINAL HandleAbortingState END_IF
VAR_OUTPUT
xAgain : BOOL;
END_VAR
R
xComplete : BOOL;
END_VAR
Abortaction(

xCompletes>xComplete,
eErrorID=>eErrorID

H

IF eErrorID <> ERROR.NO_ERROR THEN
eState := STATE.ERROR;
i TRUE;
ELSIF xComplete THEN
eState := STATE.RESETTING;
i TRUE;

METHOD PROTECTED CyclicAction METHOD PROTECTED AbortAction
VAR_OUTPUT VAR_OUTPUT
xComplete : BOOL; xComplete : BOOL;
eErrorID : ERROR; eErrorID : ERROR;
END_VAR END_VAR
VAR

abort all runn
/ if an error cor

XTimeOut : BOOL;
xTimeLimit : BOOL;

operations
tion is reached set

END_VAR / eErrorID to a value other than ERROR.NO_ERROR
IF xEnable THEN xComplete := TRUE;
(* Executing *) eErrorID := ERROR.NO_ERROR;

'/ for ever

// sample the input Les
tcTimingController. TimeLimit := udiTimeLir
tcTimingController.TimeQut := udiTimeOut;

METHOD PROTECTED ResetAction
VAR_OUTPUT

tion xComplete : BOOL;
END_VAR

is reached

free all
is reached

reinitial
hed set
/ o a value ~ than ERROR.NO_ERROR
tcTimingController.CheckTiming(
xTimeOut=>xTimeOut,
xTimeLinit=>xTimeLimit

xComplete := TRUE;

%

xComplete TRUE;
eErrorID := ERROR.NO_ERROR;

UNTIL NOT xEnable OR xComplete OR
xTimeQut OR xTimeLimit OR
eErrorID <> ERROR.NO_ERROR

END_REPEAT

END_IF

IF xTimeOut AND eErrorID = ERROR.NO_ERROR THEN
eErrorID := ERROR.TIME_OUT;
END_IF

ee as much allocated resources

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 75/89

PLCopen’

for efficiency in automation

Appendix 1.4.5 LConC
LConC (Level Controlled | Not Time Limited | Continuous Behaviour)

LConC State Chart

xEnable

Error Invocation Complete

Condition

Error XResetReguest OR NOT xEnable

Condition

NOT xEnable

Resetting

Executing: = Cyclication is running, xBusy = TRUE
Aborting: = AbortAction is running until xComplete is TRUE (xBusy is still TRUE!)
Error: xError = TRUE, eErrorID # ERROR.NO_ERROR, xBusy = FALSE

Resetting: = ResetAction is running until xComplete is TRUE

LConC Implementation

[8) Lconc (FB) FUNCTION_BLOCK LConC
VAR_INPUT

= 2 BehaviourModel
|3 AbortAction

E =
(i CydicAction xEnable: BOOL;

e Hoene e
= (2 StateMachine —{xEnable xBusy— -

[} HandeAbortingState xError—

=

(5% HandeDormantstate oErrorlDl—

{f HandeErrorState
| HandleExecutingState

€ErrorID : ERROR;
= END_VAR
[HandeResettingState =

estate : STATE;
XResetRequest : BOOL;

END_VAR
VAR_TEMP
TYPE STATE : xAgain :BOOL;

END_VAR

DORMANT,

EXECUTING, REPEAT

ABORTING, xAgain := FALSE;

ERROR, CASE eState OF

RESETTING STATE .DORMANT : HandleDormantstate(xAgain=>xAgain);

s STATE.EXECUTING: HandleExecutingState(xAgain=>xAgain);
END_TYPE STATE.ERROR: HandleErrorState(xAgain=>xAgain);
STATE.ABORTING: HandleAbortingState(xAgain=>xAgain);
STATE.RESETTING: HandleResettingState(xAgain=»xAgain);
END_CASE
UNTIL NOT xAgain

TYPE ERROR : END_REPEAT;

NO_ERROR := @,
TIME_OUT :=

bH
END_TYPE

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 76/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xEnable THEN

xBusy := TRUE;
STATE. EXECUTING;
TRUE

METHOD PRIVATE FINAL HandleExecutingState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF xEnable THEN
CyclicAction(
eErrorID=>eErrorID

)
END_IF

IF eErrorID <> ERROR.NO_ERROR THEN
estate := STATE.ERROR;
xAgain := TRUE;

ELSIF NOT xEnable THEN

estate := STATE.ABORTING;
xAgain TRUE;
END_IF

METHOD PRIVATE FINAL HandleErrorState
VAR_OUTPUT

xAgain : BOOL;
END_VAR

IF XError AND (XResetRequest OR NOT xEnable) THEN

eState STATE.RESETTING;
xAgain TRUE;
ELSE
xBusy t= FALSE;
xError := TRUE;

xResetRequest := NOT xEnable;
xAgain := FALSE; (* //1 *)
END_IF

METHOD PRIVATE FINAL HandleAbortingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

Abortaction(
xComplete=>xcomplete,
eErrorID=>eErroriD

%

IF eErrorID <> ERROR.NO_ERROR THEN
eState := STATE.ERROR;
xAgain := TRUE;
ELSIF xComplete THEN
STATE.RESETTING;
TRUE;

METHOD PRIVATE FINAL HandleResettingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR

Resetaction(xComplete=>xComplete);

IF xComplete THEN
1= FALSE;

FALSE;

ERROR.NO_ERROR;
eState := STATE.DORMANT;
xAgain := xResetRequest; (* [/ *)
xXResetRequest := FALSE;

END_IF

eErrorID

METHOD PROTECTED CyclicAction
VAR_OUTPUT

¢ErrorID : ERROR;
END_VAR

IF xEnable THEN
every invoce
e the input

n error cond

rID to a

¢ErrorID := ERROR.NO_ERROR;
END_IF

IF NOT xEnable OR eErrorID <> ERROR.NO_ERROR THEN

le free as much allocated resources
e

METHOD PROTECTED AbortAction
VAR_OUTPUT
xComplete : BOOL;
eErrorID : ERROR;
END_VAR

unnin
an error cond

/ eErrorId to a v

xComplete
eErrorlD :

TRUE;
ERROR. NO_ERROR;

METHOD PROTECTED ResetAction
VAR_OUTPUT

xComplete : BOOL;
END_VAR

rein

xComplete := TRUE;

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)

Software Creation Guidelines

May 4, 2017

page 77/89

PLCopen’

for efficiency in automation

Appendix 1.4.6

LConTIC

LConTIC (Level Controlled | Time Limited | Continuous Behaviour)

LConTIC State Chart

TimeLimit
Pl

NOT xEnable

NOT xEnable

Error
Condition

Aborting

Executing: = CyclicAtion is running, xBusy = TRUE

Aborting: = abortAction is running until xComplete is TRUE (xBusy is still TRUE!)

Error: xError = TRUE, eErrorID # ERROR.NO_ERRCR, xBusy = FALSE

Resetting: = ResetAction is running until xComplete is TRUE

LConTIC Implementation

Condition

xEnable

Invocation Complete

xResetRequest OR NOT xEnable

Resetting

|E] LCorTiC (FB)

= I BehaviourModel
[[jy AbortAction
| CycicAction

LConTIC

W ResetAction

=12 StateMachine —xEnable
|#a HandieAbor tingState |
| HandeDormantState

[} HandleErrorState

udiTimeLimit

xBusy
xError|
eErrorlD

|34 HandeExecutingState

[HandeResettingState

TYPE STATE :
(

DORMANT,
EXECUTING,
ABORTING,
ERROR,
RESETTING

Y
END_TYPE

TYPE ERROR :
(

NO_ERROR := 9,
TIME_OUT :=

Y
END_TYPE

FUNCTION_BLOCK LConT1C
VAR_INPUT

END_VAR
VAR_OUTPUT
operation is runming

eErrorlD :
END_VAR
VAR
tcTimingController : TimingController;
estate : STATE;
xResetRequest : BOOL;
END_VAR
VAR_TEMP
xAgain :BOOL;
END_VAR

REPEAT
xhgain := FALSE;
CASE eState OF
STATE.DORMANT: HandleDormantState(xAgain=>xAgain);
STATE.EXECUTING: HandleExecutingState(xAgain=>xAgain);
STATE.ERROR: HandleErrorState(xAgain=>xAgain);
STATE.ABORTING: HandleabortingState(xAgain=>xAgain);
STATE.RESETTING: HandleResettingState(xAgain=>xAgain);
END_CASE
UNTIL NOT xAgain
END_REPEAT;

Creating PLCopen Compliant Libraries V 1.0 - Official Release

Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 78/89

PLCopen’

for efficiency in automation

METHOD PRIVATE FINAL HandleDormantState METHOD PRIVATE FINAL HandleErrorState
VAR_OUTPUT VAR_OUTPUT
xAgain : BOOL; xAgain : BOOL;
END_VAR END_VAR
IF xEnable THEN TF XError AND (xResetRequest OR NOT xEnable) THEN

xBusy := TRUE; estate :
STATE.EXECUTING; xAgain
TRUE; ELSE

STATE.RESETTING;
TRUE;

xBusy := FALSE;
xError := TRUE;
xResetRequest :

NOT xEnable;

xAgain FALSE; (* !!! *
END_IF
METHOD PRIVATE FINAL HandleExecutingstate
VAR_OUTPUT
xAgain : BOOL;
END_VAR
METHOD PRIVATE FINAL HandleResettingState
IF xEnable THEN VAR_OUTPUT
tcTimingController.StartInvocationTimer(); xAgain : BOOL;
END_VAR
CyclicAction(VAR
eErrorID=sefrrorID xComplete : BOOL;
by END_VAR
END_IF

ResetAction(xComplete=>xComplete);
IF eErrorID <> ERROR.NO_ERROR THEN

estate := STATE.ERROR; IF xcomplete THEN
xAgain := TRUE; XBusy := FALSE;
ELSIF NOT xEnable THEN XError := FALSE;
STATE.ABORTING; eErrorID := ERROR.NO_ERROR;
TRUE; eState := STATE.DORMANT;
xAgain := xResetRequest; (* [// %)
xResetRequest := FALSE;
END_IF
METHOD PRIVATE FINAL HandleAbortingState
VAR_OUTPUT
xAgain : BOOL;
END_VAR
VAR
xComplete : BOOL;
END_VAR
abortaction(
xComplete=>xComplete,
eErrorID=>eErrorID
¥
IF eErrorID <> ERROR.NO_ERROR THEN
STATE.ERROR;
TRUE;
ELSIF xComplete THEN
STATE.RESETTING;
TRUE;
METHOD PROTECTED CyclicAction METHOD PROTECTED AbortAction
VAR_OUTPUT VAR_OUTPUT
eErrorID : ERROR; XComplete : BOOL;
END_VAR eErrorID : ERROR;
VAR END_VAR
xTimeLimit : BOOL;
END_VAR

IF xEnable THEN

xComplete := TRUE;
eErrorID := ERROR.NO_ERROR;

sample the input ble
tcTimingController.TimeLimit := udiTimeLimit;

REPEAT

METHOD PROTECTED ResetAction
VAR_OUTPUT

xComplete : BOOL;
END_VAR

tcTimingController. CheckTiming(
XTimeLimit=>xTimeLimit
)i

eErrorID := ERROR.NO_ERROR;
xComplete := TRUE;
UNTIL NOT xEnable OR
XTimeLimit OR udiTimeLimit = o OR
eErrorID <> ERROR.NO_ERROR
END_REPEAT
END_IF

IF NOT xEnable OR eErrorID <> ERROR.NO_ERROR THEN

(* Clean

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 79/89

PLCopen’

for efficiency in automation

Appendix 2 Example without using Object Oriented features

It is not necessary to use object oriented features for creating function block libraries. With existing and
classical environments this is very well possible and was always an approach in IEC 61131-3.

For this reason an example of how to do that is shown here.

If one can use the functionality of an edge triggered FB, one can define the basic ST code as listed in
Chapter 5.1 The basic FB: ETrig, however without the object oriented features. This code could look like:

The ETrigATITo Function Block coded according to IEC 61131-3 2nd Edition
(Exemplary Implementation)

FUNCTION BLOCK ETrigATl1To
VAR INPUT
// Rising edge starts defined operation
// FALSE ? resets the defined operation
// after ready condition was reached
xExecute: BOOL;
// command for abort the operation
xAbort: BOOL;
// max operating time per invocation
// [us], 0 ? no operating time limit
udiTimeLimit: UDINT;
// max operating time per invocation
// [usl, 0 ? no operating time limit
udiTimeOut: UDINT;
END VAR

VAR_OUTPUT

// ready condition reached
xDone: BOOL;

// operation is running
xBusy: BOOL;

// error condition reached
xError: BOOL;

// abort condition reached
xAborted : BOOL;

// error code describing error condition
eErrorID : ERROR;

END VAR
VAR
tcTimingController : TimingController;
eState : STATE := STATE.DORMANT;
xFirstInvocation : BOOL := TRUE;

xAbortProposed : BOOL;
eErrorIDProposed : ERROR;
xResetRequest : BOOL;

END VAR

VAR TEMP
xAgain :BOOL;
xComplete : BOOL;
xTimeLimit : BOOL;
xTimeOut : BOOL;

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 80/89

PLCopen’

for efficiency in automation

xLocalAbort : BOOL;
eLocalErrorID : ERROR;
END VAR

REPEAT
xAgain := FALSE;
CASE eState OF
STATE . DORMANT :
IF xExecute THEN
tcTimingController (xStartOperationTimer :=TRUE) ;

tcTimingController.xStartOperationTimer := FALSE;
xBusy := TRUE;
eState := STATE.STARTING;
xAgain := TRUE;
END IF

STATE.STARTING:
IF NOT xAbort THEN (* StartAction *)
IF xFirstInvocation THEN
// sample the input variables

tcTimingController.udiTimelLimit := udiTimelLimit;
tcTimingController.udiTimeOut := udiTimeOut;
xFirstInvocation := FALSE;

END IF

// working to reach the locale ready condition
// ? xComplete := TRUE

// if an error condition is reached

// ? set eLocalErrorID to a value other than
// ERROR.NO ERROR

xComplete := TRUE;

eLocalErrorID := ERROR.NO ERROR;
ELSE

xAbortProposed := TRUE;
END IF

tcTimingController (xTimeOut=>xTimeOut) ;

IF xTimeOut AND elocalErrorID = ERROR.NO ERROR THEN
eLocalErrorID := ERROR.TIME OUT;

END IF

IF elLocalErrorID <> ERROR.NO ERROR OR xAbortProposed THEN

eState := STATE.CLEANING;
xAgain := TRUE;

ELSIF xComplete THEN
eState := STATE.EXECUTING;
xAgain := TRUE;

END IF

STATE .EXECUTING:
IF NOT (xAbort OR xAbortProposed) THEN
tcTimingController (xStartInvocationTimer :=TRUE) ;
tcTimingController.xStartInvocationTimer := FALSE;

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 81/89

PLCopen’

for efficiency in automation

STATE.

REPEAT (* CyclicAction ¥*)
// working to reach the ready condition

// ? xComplete := TRUE

// if the maximum invocation time is reached
// ? xTimeLimit := TRUE

// if the maximum operating time is reached
// ? xTimeOut := TRUE

// 1f an error condition is reached
// ? set elocalErrorID to a value other than
// ERROR.NO_ ERROR

tcTimingController (
xTimeOut=>xTimeOut,
XxTimelLimit=>xTimelLimit

) 7

xComplete := TRUE;
eLocalErrorID := ERROR.NO ERROR;

UNTIL xComplete OR
xTimeOut OR xTimeLimit OR
eLocalErrorID <> ERROR.NO ERROR
END REPEAT

ELSE
xAbortProposed := TRUE;
END IF

tcTimingController (xTimeOut=>xTimeOut) ;

IF xTimeOut AND eLocalErrorID = ERROR.NO ERROR THEN
eLocalErrorID := ERROR.TIME OUT;

END IF

IF xComplete OR eLocalErrorID <> ERROR.NO ERROR OR
xAbortProposed THEN

eErrorIDProposed := elLocalErrorID;
eState := STATE.CLEANING;
xAgain := TRUE;

END IF

CLEANING: (* CleanupAction *)

IF xAbortProposed THEN

// abort all running operations
// if an error condition is reached
// ? set eErrorID to a value other than ERROR.NO ERROR

xLocalAbort := xAbortProposed;
END IF
// 1if possible free as much allocated resources
// as possible

//
//
//
//

working to reach the locale ready condition

? xComplete := TRUE

if an error condition is reached

? set elocalErrorID to a value other than ERROR.NO ERROR

xComplete := TRUE;

Creating PLCopen

Compliant Libraries V 1.0 - Official Release © PLCopen (2017)

Software Creation Guidelines May 4, 2017 page 82/89

PLCopen’

for efficiency in automation

eLocalErrorID := eErrorIDProposed;

IF xAbortProposed THEN

xComplete := FALSE;
ELSE

xLocalAbort := FALSE;
END IF

IF eErrorIDProposed <> ERROR.NO ERROR THEN

xComplete := FALSE;
xAbort := FALSE;
END IF

IF elocalErrorID <> ERROR.NO_ERROR THEN
eErrorIDProposed := elLocalErrorID;
END IF

IF elLocalErrorID <> ERROR.NO_ERROR THEN
eState := STATE.ERROR;
xAgain := TRUE;

ELSIF xLocalAbort THEN

eState := STATE.ABORTED;
xAgain := TRUE;

ELSIF xComplete THEN
eState := STATE.DONE;
xAgain := TRUE;

END IF

STATE .DONE :

IF xDone AND (xResetRequest OR NOT xExecute) THEN
eState := STATE.RESETTING;
xAgain := TRUE;

ELSE
xBusy := FALSE;
xDone := TRUE;

XResetRequest := NOT xExecute;
xAgain := FALSE; (* !!! x*)
END IF

STATE .ERROR:
IF xError AND (xResetRequest OR NOT xExecute) THEN

eState := STATE.RESETTING;
xAgain := TRUE;
ELSE

XBusy := FALSE;

xError := TRUE;

eErrorID := eErrorIDProposed;
XxResetRequest := NOT xExecute;
xAgain := FALSE; (* !!! x*)

END IF

STATE .ABORTED:
IF xAborted AND (xResetRequest OR NOT xExecute) THEN
eState := STATE.RESETTING;
xAgain TRUE;
ELSE

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 83/89

PLCopen’

for efficiency in automation

xBusy := FALSE;
xAborted := TRUE;
xResetRequest := NOT xExecute;
xAgain := FALSE; (* !!! *x)

END IF

STATE.RESETTING: (* ResetAction *)
// free all residual allocated resources
// reinitialize instance variables
// working to reach the locale ready condition
// ? xComplete := TRUE
xComplete := TRUE;

IF xComplete THEN

xBusy := FALSE;
xDone := FALSE;
xError := FALSE;
xAborted := FALSE;
xAbortProposed := FALSE;
eErrorIDProposed := ERROR.NO_ ERROR;
ekErrorID := ERROR.NO ERROR;
eState := STATE.DORMANT;
xAgain := xResetRequest; (* !!! *)
xResetRequest := FALSE;
xFirstInvocation := TRUE;

END IF

END CASE
UNTIL NOT xAgain
END REPEAT;

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 84/89

PLCopen’

for efficiency in automation

Appendix 3 Example of an intermediate interface

In practice there are more than one naming convention standards. This can result in different layers of
naming conventions: for the creation of the function block libraries, for the creation of the functional
application, and for the mapping at the application level to the conventions of the user.

These different levels can cooperate by encapsulating the functionalities on the different levels, or by
using aliases, where one maps one name to another.

One can call these intermediate interfaces, like an interface between the function block library and the
application itself, both using different areas and so using different naming conventions while the
application is building on top of the library. The different naming conventions can be linked (“alias”).

One example is shown in the picture below. The public final function block MC_MoveVelocity on the
left is based on the internal FB MotionCore on the right. By creating these two function blocks it is
possible to encapsulate the complete implementation details. Using this technique the layout of the public
function block is completely decoupled from the layout of the internal function block (see the different
naming conventions for variable names). Because of the FINAL keyword it is not possible to extend this
function block in another context. So no problems can occur after changing some implementation details
(for example adding some local variables). Because of the INTERNAL keyword nobody can use a
function block marked in this way outside of its defined context, its original library. This decouples these
two layers.

PR

T
FUHCTION_BLOCK FIMAL MC_MowswWeloctty

VAR_IN_oam
Axis ; AXIS REF:

EHD_YAR

VAR_INFUT
E i BOGL:
e i REAL;
wcceleration @ REAL;
Deceleration REAL ;
Jeri 1 REAL;
Direction © B_Direct

EHD_YAR

VAR_OUTFUT

Busy 1 BOGL;

CodfandAborted 1 BOOL;

o1 BOOL
ErrerID ! SHC_ERROA;
EHD_YAR
VAR
(3 Motieslara]
EHD_VAR

]

FEUMCTION_BLOCK INTERNAL Motfond

3| - WRE_TH_OUT
axis © AKIS_REF:
EMD_VAR
WAR_IHPUT
Fé¥elocity © REAL:
hocele o REAL;
T REAL;

L REAL ;

elirection 1 MC irection:

EMD_VAR

WAR_DUTPUT
eErForID 1 SHC_ERSOR;

EMD_VAR

re EXTEWES CEML.ETrigh

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines

May 4, 2017

© PLCopen (2017)
page 85/89

PLCopen’

for efficiency in automation

Appendix 4 Behaviour of inputs and outputs in PLCopen Motion
Control FBs

For the relevant inputs and outputs

Input parameters | With ‘Execute’ without ‘ContinuousUpdate’: The parameters are used with the
rising edge of the ‘Execute’ input. To modify any parameter it is necessary to
change the input parameter(s) and to trigger the ‘Execute’ input again.

With ‘Execute’ combined with ‘ContinuousUpdate’. The parameters are used
with the rising edge of the ‘Execute’ input. The parameters can be modified
continuously as long as the ‘ContinuousUpdate’ is SET.

With ‘Enable”: The parameters are used with the rising edge of the enable input
and can be modified continuously.

Inputs exceeding | If a FB is commanded with parameters which result in a violation of application
application limits | limits, the inputs are limited by the system or the instance of the FB generates
an error. The consequences of this error for the axis are application specific and
thus should be handled by the application program.

Missing input According to IEC 61131-3, if any parameter of a function block input is

parameters missing (“open”) then the value from the previous invocation of this instance
will be used. In the first invocation the initial value is applied.

Acceleration, If the input ‘Deceleration’, ‘Acceleration’ or ‘Jerk’ is set to 0, the result is

Deceleration and | implementation dependent. There are several implementations possible, like

Jerk inputs one goes to the error state, one signals a warning (via a supplier specific

output), one inhibits this in the editor, one takes the value as either specified in
AxisRef or in the drive itself, or one takes a maximum value. Even if the 0
value input is accepted by the system, please use with caution especially if
compatibility is targeted.

Output exclusivity | With ‘Execute : The outputs ‘Busy’, ‘Done’, ‘Error’, and ‘CommandAborted’
are mutually exclusive: only one of them can be TRUE on one FB. If ‘Execute’
is TRUE, one of these outputs has to be TRUE.

Only one of the outputs ‘Active’, ‘Error’, ‘Done’ and ‘CommandAborted’ is set
at the same time, except in MC_Stop where ‘Active’ and ‘Done’ can be set both
at the same time

With ‘Enable’: The outputs ‘Valid’ and ‘Error’ are mutually exclusive: only one
of them can be TRUE on one FB.

Output status With ‘Execute: The ‘Done’, ‘Error’, ‘ErrorID’ and ‘CommandAborted’ outputs
are reset with the falling edge of ‘Execute’ . However the falling edge of
‘Execute’ does not stop or even influence the execution of the actual FB. It
must be guaranteed that the corresponding outputs are set for at least one cycle
if the situation occurs, even if execute was reset before the FB completed.

If an instance of a FB receives a new execute before it finished (as a series of
commands on the same instance), the FB won’t return any feedback, like
‘Done’ or ‘CommandAborted’, for the previous action.

With ‘Enable’: The ‘Valid’, ‘Enabled’, ‘Busy’, ‘Error’, and ‘ErrorID’ outputs
are reset with the falling edge of ‘Enable’ as soon as possible.

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 86/89

PLCopen’

for efficiency in automation

Behavior of Done
output

The ‘Done’ output is set when the commanded action has been completed
successfully.

With multiple Function Blocks working on the same axis in a sequence, the
following applies: when one movement on an axis is interrupted with another
movement on the same axis without having reached the final goal, ‘Done’ of
the first FB will not be set.

Behavior of Busy
output

With ‘Execute’: Every FB can have an output ‘Busy’, reflecting that the FB is
not finished and new output values can be expected. ‘Busy’ is SET at the rising
edge of ‘Execute’ and RESET when one of the outputs ‘Done’, ‘Aborted’, or
‘Error’ is set.

With ‘Enable’: Every FB can have an output ‘Busy’, reflecting that the FB is
working and new output values can be expected. ‘Busy’ is SET at the rising
edge of ‘Enable’ and stays SET as long as the FB is performing any action.

It is recommended that the FB should be kept in the active loop of the
application program for at least as long as ‘Busy’ is true, because the outputs
may still change.

Behavior of
InVelocity,
InGear, InTorque
and InSync

The outputs ‘InVelocity’, ‘InGear’, ‘InTorque’, and ‘InSync’ (from now on
referred to as ‘Inxxx’) have a different behavior than the ‘Done’ output.

As long as the FB is Active, ‘Inxxx’ is SET when the set value equals the
commanded value, and will be RESET when at a later time they are unequal.
For example, the InVelocity output is SET when the set velocity is equal to the
commanded velocity. This is similar for ‘InGear’, ‘InTorque’, and ‘InSync’
outputs in the applicable FBs.

‘Inxxx’ 1s updated even if ‘Execute’ is low as long as the FB has control of the
axis (‘Active’ and ‘Busy’ are SET).

The behavior of ‘Inxxx’ directly after ‘Execute’ is SET again while the
condition of ‘Inxxx’ is already met, is implementation specific.

‘Inxxx’ definition does not refer to the actual axis value, but must refer to the
internal instantaneous setpoint.

Output ‘Active’

The ‘Active’ output is required on buffered Function Blocks. This output is set
at the moment the function block takes control of the motion of the according
axis. For un-buffered mode the outputs ‘Active’ and ‘Busy’ can have the same
value.

For one axis, several Function Blocks might be busy, but only one can be active
at a time. Exceptions are FBs that are intended to work in parallel, like
MC_MoveSuperimposed and MC Phasing’s, where more than one FB related
to one axis can be active.

Behavior of
CommandAborted
output

‘CommandAborted’ is set, when a commanded motion is interrupted by another
motion command.

The reset-behavior of ‘CommandAborted’ is like that of ‘Done’. When
‘CommandAborted’ occurs, the other output-signals such as ‘InVelocity’ are
reset.

Creating PLCopen Compliant Libraries V 1.0 - Official Release
Software Creation Guidelines

© PLCopen (2017)

May 4, 2017 page 87/89

PLCopen’

for efficiency in automation

Enable and Valid |The ‘Enable’ input is coupled to a ‘Valid’ output. ‘Enable’ is level sensitive and
‘Valid’ shows that a valid set of outputs is available at the FB.

The “Valid’ output is TRUE as long as a valid output value is available and the
‘Enable’ input is TRUE. The relevant output value can be refreshed as long as
the input ‘Enable’ is TRUE.

If there is a FB error, the output is not valid (‘Valid’ set to FALSE). When the
error condition disappears, the values will reappear and ‘Valid’ output will be

set again.
Position versus ‘Position’ is a value defined within a coordinate system. ‘Distance’ is a relative
distance measure related to technical units. ‘Distance’ is the difference between two
positions.
Sign rules The ‘Acceleration’, ‘Deceleration’ and ‘Jerk’ are always positive values.

‘Velocity’, ‘Position” and ‘Distance’ can be both positive and negative.

Error Handling All blocks can have two outputs, which deal with errors that can occur while

Behavior executing that Function Block. These outputs are defined as follow:

Error Rising edge of ‘Error’ informs that an error occurred during the

execution of the Function Block.

ErroriD Error identification (Extended parameter)

‘Done’, ‘InVelocity’, ‘InGear’, ‘InTorque’, and ‘InSync’ mean successful

completion so these signals are logically exclusive to ‘Error’.

Types of errors:

e Function Blocks (e.g. parameters out of range, state machine violation
attempted)

e Communication

e Drive

Instance errors do not always result in an axis error (bringing the axis to

‘ErrorStop’)

The error outputs of the relevant FB are reset with falling edge of ‘Execute’ and

‘Enable’. The error outputs at FBs with ‘Enable’ can be reset during operation

(without a reset of ‘Enable’).

FB Naming In case of multiple libraries within one system (to support multiple drive /
motion control systems), the FB naming may be changed to
“MC FBname SupplierID”.

Naming conventions | Due to the naming constraints in the IEC standard on the uniqueness of variable
ENUM types names, the ‘mc’ reference to the PLCopen Motion Control namespace is used
for the ENUM .

In this way we avoid the conflict that using the ENUM types ‘positive’ and
‘negative’ for instance with variables with these names throughout the rest of
the project since they are called mcPositive and mcNegative respectively.

Table 1: General Rules

The behavior of the ‘Execute’ / ‘Done’ style FBs is as follows:

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 88/89

PLCopen’

for efficiency in automation

I
T
Execute |
I

Busy

Active

Done

Error

1

CommandAborted

Case 1 Case 2 Case 3

-

Figure 16: The behavior of the ‘Execute’ / ‘Done’ in relevant FBs

The behaviour of the ‘Execute’ / ‘Inxx’ style FBs is as follows:

I
T
Execute |
I

Busy

Active

I
I
|
I
INXxx : |
| J
I
I
I
I

Error

CommandAborted

Case 1l Case 2 Case 3

.
-

Figure 17: The behavior of the ‘Execute’ / ‘Inxx’ in relevant FBs

Creating PLCopen Compliant Libraries V 1.0 - Official Release © PLCopen (2017)
Software Creation Guidelines May 4, 2017 page 89/89

	1. Introduction
	1.1. Naming conventions for this document
	1.2. Notes on the examples and usage of EN/ENO

	2. Commonalities in existing PLCopen specifications
	2.1. Motion Control, Safety and Communication
	2.2. Function Block Models
	2.3. Motion Control: General structure
	Example of a Motion Control Function Block

	2.4. Safety
	Example of a Safety FB

	2.5. Specifications in Communication
	Example of a Communication FB

	2.6. Conclusion

	3. Introduction of the PLCopen Function Block concepts
	3.1. Relation of Execute and Enable inputs to Level and Trigger inputs
	3.2. Introduction to Edge Triggered function blocks
	3.3. Introduction to Level Controlled function blocks
	3.4. Common properties of these types of function blocks
	3.5. Error Domains and Error Codes
	3.6. How to handle the STATE enum data type
	3.7. Cooperation of various function blocks
	Extending the Example to a Complete EchoServer
	Transformation to a Multithreaded EchoServer

	4. Introduction in the object oriented features of IEC 61131-3
	5. Explanation of Rising Edge triggered FBs
	5.1. The basic FB: ETrig
	Example of the ST Program for the FB ETrig with OO

	5.2. Adding the Aborting Functionality to the basis
	Example of a SFC Program

	5.3. Adding timer functionality
	What does udiTimeLimit do?
	What does udiTimeOut do?
	Examples with timers without Aborting
	Examples with Aborting and timers
	Detailed description of the Function Block ETrigATlTo

	5.4. Example of the ST Program for ETrigATlTo

	6. Explanation of a Level Controlled FB
	6.1. Basic Level Controlled FB
	State Diagram Basic Level Controlled FB

	6.2. Example of the ST Program for the Function Block LCon in OO
	6.3. Adding Timers
	Example of LConTl
	State Diagram LConTlTo
	Example of an SFC diagram

