
 PLCopen
®

for efficiency in automation

 total number of pages: 65

PLCopen Training Guidelines

Guideline on Software Quality Metrics

Version 1.0 - Official Release

DISCLAIMER OF WARANTIES

THE NAME ‘PLCOPEN®’ IS A REGISTERED TRADEMARK AND TOGETHER WITH THE

PLCOPEN LOGOS OWNED BY THE ASSOCIATION PLCOPEN.

THIS DOCUMENT IS PROVIDED ON AN ‘AS IS’ BASIS AND MAY BE SUBJECT TO

FUTURE ADDITIONS, MODIFICATIONS, OR CORRECTIONS. PLCOPEN HEREBY

DISCLAIMS ALL WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING

ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE,

FOR THIS MOMENT. IN NO EVENT WILL PLCOPEN BE RESPONSIBLE FOR ANY LOSS

OR DAMAGE ARISING OUT OF OR RESULTING FROM ANY DEFECT, ERROR, OR

OMISSION IN THIS DOCUMENT OR FROM ANYONE’S USE OF OR RELIANCE ON THIS

DOCUMENT.

Copyright © 2023 by PLCopen. All rights reserved.

Date: November 07, 2023

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 2/65

The following paper

Guideline on Software Quality Metrics

is an official PLCopen document. It summarises the results of the working group, containing

contributions of all its members.

The present specification was written thanks to the members of the working group:

Name Company

Eva-Maria Neumann Technical University of Munich

Dr.-Ing. Juliane Fischer Technical University of Munich

Univ.-Prof. Dr.-Ing. Birgit Vogel-Heuser Technical University of Munich

Bernhard Reiter CODESYS Group

Sebastian Diehm Schneider Electric Automation GmbH

Christian Keupp Schneider Electric Automation GmbH

Mohua Ghosh Schneider Electric

Denis Chalon Schneider Electric

Antonio Giusto Tetra Pak

Chris Freiberg BHP Group

Bugra M. Yildiz Software Improvement Group

Michael Stiller Fraunhofer IKS

Bill Lydon PLCopen

Eelco van der Wal PLCopen

Change Status List:

Version

number

Date Change comment

V 0.1 Nov. 30, 2022 First release as proposed by E. M. Neumann

V 0.2 Dec. 22, 2022 After web meeting of December 22 and multiple inputs

on terminology and use case description

V 0.3 Mar. 23, 2023 Release of textual descriptions of software development

workflow, use cases, and initial draft for structuring

recommendations

V 0.4 Apr. 11, 2023 Release of updated template to formulate

recommendations

V 0.5 May 11, 2023 After the web meeting of May 11 and multiple inputs

V 0.6 May 25, 2023 Input on terms and definitions, use cases, and

recommendations

V 0.7 Jun. 21, 2023 First textually complete draft

V 0.8 Jul. 20, 2023 Merge and incorporation of feedback on first textually

complete draft

V 0.99 Oct. 06, 2023 Version for internal review in the WG to prepare V 1.0

-- Nov. 02, 2023 Finalized version of the WG for publication. Not

released

V. 1.0 Nov. 07, 2023 Official release of the document

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 3/65

Table of Contents

1. Motivation and Introduction ... 5

2. How to Use This Document .. 6

2.1. Aspects to Consider When Using This Guideline ... 6

2.2. Structure of the Guideline ... 6

3. Software Quality Measurement Using Metrics - Terms and Definitions 8

3.1. Software Quality and Software Quality Attributes ... 8

3.2. Software Quality Metrics .. 10

3.3. Terms and Definitions .. 11

4. Software Development Workflow ... 15

4.1. Typical workflow for PLC software development .. 15

4.2. Use Cases in the Workflow to Apply Software Quality Measurement ... 16

4.2.1 Use Case 1: Continuous quality checks of POUs during software development 17

4.2.2 Use Case 2: Comparison of code before and after commissioning .. 18

4.2.3 Use Case 3: Plant / Machine audit after project has been finished .. 19

4.2.4 Further Use Cases supported by metrics .. 19

5. Recommendations on How to Use Metrics in Industrial PLC Software Development 20

5.1. Recommendation: Metric-based Assessment of Maintainability .. 21

5.2. Recommendation: Metric-based Assessment of Reusability .. 29

5.3. Recommendation: Metric-based Assessment of Testability ... 36

5.4. Recommendation: Metric-based Assessment of Efficiency .. 42

5.5. Recommendation: Metric-based Assessment of Reliability ... 46

6. Threshold Values and Metric Application to Large-scale Industrial PLC Software

Projects ... 51

References ... 55

Appendix 1 Table to map available metrics and software quality attributes 56

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 4/65

Table of Figures
Figure 1. Overview of McCall’s software quality model [5]. ... 8
Figure 2. Overview of the software quality model according to ISO/IEC 25010 [6]. .. 9
Figure 3. Interrelationship between software properties, quality attributes, and software quality metrics [12].10
Figure 4. Software model according to IEC 61131-3 [13]. .. 12
Figure 5. Overview of a typical software development workflow in industrial practice, which was observed in a

similar form in various companies in the machine and plant engineering sector. .. 15
Figure 6. Metrics table from CODESYS sorted by highest McCabe Cyclomatic Complexity. 27
Figure 7. Code snippet highlighting the nested IF-Statements ... 28
Figure 8. Excerpt from metrics table showing lowered cyclomatic complexity of optimized POUs 28
Figure 9. Metrics tables from CODESYS sorted by Depth of Inheritance Tree (DIT) and Number Of Children (NOC)

 .. 29
Figure 10. Code snippet with used global variables highlighted in red. ... 35
Figure 11. Metrics table from CODESYS sorted by highest number of global variables used. 35
Figure 12. Code snippet with associated metrics table to highlight the absence of global variables. 35
Figure 13. Metrics table from CODESYS sorted by McCabe Complexity .. 42
Figure 14. Metrics table from CODESYS with associated code snippet of “FB_DeviceBasic” emphasizing the use of

interfaces .. 42
Figure 15. Excerpt from metrics table showing the range in the number of local variables used 46
Figure 16. Metrics table from Schneider Electric showing the good documentation of GVLs. 52
Figure 17. Code snippet demonstrating the common malpractice of commenting out “dead-code” with its associated

distorted metrics table. ... 53
Figure 18. Metrics table from Schneider Electric showing the possibly high numerical values. 54
Figure 19. Two metrics tables of two different industrial applications, emphasizing the variability of the numerical

values between different projects. .. 54

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 5/65

1. Motivation and Introduction

Companies operating in the machine and plant manufacturing sector are facing ever-increasing

competitive pressure to design, develop, and implement high-quality control software. As software

gains importance as a functionality carrier in production systems, the reuse of high-quality control

software is a crucial factor in ensuring efficient development and, consequently, ensuring long-term

competitiveness. Quality management of control software is therefore of increasing importance –

both for internally developed software, such as to meet customer requirements, as well as for external

software, such as to compare software from subcontractors. Furthermore, continuous quality

management may support the maturation of development teams since it strengthens the awareness of

software quality and how it is influenced by design decisions. In addition, the process of quality

assessment over time, e.g., across software versions, can aid in identifying and reversing a

deterioration in quality at an early stage, for instance, by compensating for an increase in complexity

resulting from software evolution. This also has the potential to save long-term costs that would be

incurred, e.g., by increased maintenance efforts due to high software complexity [1].

In the field of computer science, software quality metrics have emerged as a suitable means of

objectively measuring and comparing the quality attributes of software. Approaches to measuring

software characteristics using metrics also exist already for control software in machine and plant

manufacturing, and many platform providers already support these approaches with commercial

static code analysis tools in their programming environments. In practice, however, control software

developers are still reluctant to incorporate such metrics into their development workflows and to

measure the quality of their control software, e.g., due to a lack of knowledge of how to use such

means in their daily work. Until now, quality assessment is mostly based on the experience of

software developers. Quantitative quality indicators, therefore, hold great potential to support

developers in their experience-based decision-making by objectifying code. Furthermore, from a

management perspective, software metrics may serve as quantitative indicators to justify the initial

higher cost of software quality or to establish the basis for a cross-company benchmark.

This guideline provides support for integrating a metric-based quality assessment of control software

running on Programmable Logic Controllers (PLCs) into the daily industrial routine, supporting

different stakeholders in the software engineering workflow in machine and plant manufacturing

companies. Existing approaches from research and tool support by platform suppliers will be used

and elucidated to be applicable for various use cases and company-specific boundary conditions.

Thus, insights in software quality can be achieved with minimal effort in the daily practice of PLC

software development and, at the same time, the greatest possible benefit.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 6/65

2. How to Use This Document

This guideline is geared towards professionals in the fields of machine and plant manufacturing, who

are looking for a starting point for incorporating software quality metrics into their workflows.

This guideline focuses on IEC 61131-3-compliant control software running on industrial controllers

like PLCs, with a primary focus on the boundary conditions in machine and plant manufacturing. It

is anticipated that certain aspects may be adapted to other fields of PLC applications, such as building

automation or construction machinery.

2.1. Aspects to Consider When Using This Guideline

Please note the following hints and disclaimers when applying the guideline:

▪ The focus of this guideline is on measuring a specific set of software quality attributes as

highlighted: maintainability, reusability, testability, efficiency, and reliability. These

attributes have been proven to be particularly relevant for PLC software in machine and plant

manufacturing. However, this guideline does not claim that focusing on only these five

attributes guarantees an all-encompassing quality optimization of the software.

▪ The objectives of this guideline are to identify metrics that are included in industrially

available static code analysis tools, thereby facilitating the implementation of the

recommendations in industrial settings. In this guideline we focus on the following static code

analysis tools for software metrics: CODESYS Static Analysis, Schneider Electric

EcoStruxure Machine Code Analysis, Schneider Electric – Control Engineering Verification

(formerly Itris PLC Checker), and Software Improvement Group Sigrid are in focus.

▪ This guideline introduces typical use cases in an industrial software development workflow

in machine and plant manufacturing. However, depending on the company-specific boundary

conditions, there may be deviations from the presented reference workflow in practice. The

focused use cases represent examples of scenarios, in which metric application is considered

helpful. There is no claim for all possible use cases, only a few highly relevant and popular

ones in an industrial setting.

▪ This guideline provides recommendations on how to quantify quality attributes using suitable

metrics in the respective platforms. It is intended to provide an introduction to quality

management for software developers in machine and plant manufacturing. It is not intended

to cover all possible boundary conditions in all areas of application, instead it is a guide for

software developers to gain valuable insights and advice for improving software quality.

▪ Metric results only lead to benefits when they are correctly interpreted by practitioners.

Hence, this guideline does not advocate the optimization of PLC software solely based on

numerical values, but rather supports the identification of outstanding values or timely

deterioration of values. It is advisable to automate the metric calculation and to review the

outcomes to deliberate on anomalous metric results and inform all pertinent relevant

stakeholders (such as responsible software developers, quality managers, or project

managers).

2.2. Structure of the Guideline

In Section 3, the theoretical background, terms, and definitions used in this guideline are introduced.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 7/65

Section 4 provides a reference workflow for software development in machine and plant

manufacturing, including specific scenarios in which software metrics are expected to be beneficial.

Section 5 constitutes the fundamental component of the guideline and presents concrete

recommendations for selecting appropriate metrics to quantify the fulfillment of a specific software

quality attribute.

Lastly, in Section 6, the metric application is demonstrated for concrete industrial code examples.

Appendix 1 provides a mapping between the available metrics and software quality attributes.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 8/65

3. Software Quality Measurement Using Metrics - Terms and

Definitions

This section describes the theoretical basis for this guideline.

Section 3.1 provides the definition of software quality used in this guideline and the focused software

quality attributes.

Section 3.2 motivates how metrics can support the objective measurement of these quality attributes.

Finally, Section 3.3 lists the terms and definitions used in this guideline.

3.1. Software Quality and Software Quality Attributes

Software quality models define the characteristics of software quality as well as their

interconnections [2]. According to the standard IEEE 1061, software quality attributes refer to

“characteristic[s] of software, or a generic term applying to quality factors, quality subfactors, or

metric values”. In the field of computer science, numerous quality models have been established over

the past decades, such as the quality model of Boehm [3] or the Dromey’s model for software product

quality [4]. Among the most established quality models are the software quality model of McCall [5]

and the ISO 25010 [6], which will be outlined in the following.

McCall et al. define software quality as a “general term applicable to any trait or characteristic,

whether individual or generic, a distinguishing attribute which indicates a degree of excellence or

identifies the basic nature of something.” Based on a literature review, different quality attributes

have been gathered and grouped into three main categories, namely product revision, product

transition, and product operation (cf. Figure 1).

Figure 1. Overview of McCall’s software quality model [5].

According to the ISO/IEC 25010, software quality is defined as “the degree to which the system

satisfies the stated and implied needs of its various stakeholders, and thus provides value”. The

standard proposes eight quality attributes with different sub-characteristics, as visualized in Figure

2.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 9/65

Figure 2. Overview of the software quality model according to ISO/IEC 25010 [6].

Previous investigations and code analyses conducted in various companies in the machine and plant

manufacturing industry have revealed that the quality attributes reliability, efficiency,

maintainability, reusability, and testability hold significant importance in the development of future

technological trends, while simultaneously remaining adaptable for several decades [7]. The

comparison of the respective definitions as per McCall and ISO 25010 in Table 1 demonstrates that

they exhibit significant overlaps and complement each other. Throughout this guideline, the

combination of both definitions is used.

Table 1. Comparison of definitions for selected quality attributes according to McCall [5] and ISO 25010 [6].

Definition McCall [5] Definition of ISO 25010 [6]

R
el

ia
b

il
it

y

Extent to which a program satisfies its

specifications and fulfills the user’s

mission objectives (sub-characteristic

of product operation)

Degree to which a system, product or component

performs specified functions under specified

conditions for a specified period of time.

• Sub-characteristic maturity: Degree to

which a system, product or component meets

needs for reliability under normal

operation.

E
ff

ic
ie

n
cy

The amount of computing resources

and code required by a program to

perform a function (sub-characteristic

of product operation)

Performance relative to the amount of resources

used under stated conditions.

• Sub-characteristic Time behavior: Degree to

which the response and processing times and

throughput rates of a product or system,

when performing its functions, meet

requirements.

M
a

in
ta

in
-

a
b

il
it

y

Effort required to locate and fix an

error in an operational program (sub-

characteristic of product revision)

Degree of effectiveness and efficiency with which a

product or system can be modified to improve it.

R
eu

sa
b

il
it

y

Extent to which a program can be used

in other applications – related to the

packaging and scope of the functions

that programs perform.

Reusability: Degree to which a system or computer

program is composed of discrete components such

that a change to one component has minimal impact

on other components.

Modularity: Degree to which a system or computer

program is composed of discrete components such

that a change to one component has minimal impact

on other components.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 10/65

Definition McCall [5] Definition of ISO 25010 [6]

T
es

ta
b

il
it

y
 Effort required to test a program to

ensure it performs its intended function

Degree of effectiveness and efficiency with which test

criteria can be established for a system, product or

component and tests can be performed to determine

whether those criteria have been met. (sub-

characteristic of maintainability)

3.2. Software Quality Metrics

In computer science, software quality metrics have been proven to be a suitable means to quantify

the fulfillment of software quality attributes based on the number and distribution of software

properties. According to the IEEE 1061 standard [8], a software metric is defined as a “function

whose inputs are software data and whose output is a single numerical value that can be interpreted

as the degree to which software possesses a given attribute that affects its quality.”

Metrics can be applied to different granularities of the software architecture. The established metrics

suite from Kemerer and Chidamber [9] focuses on the structural design of object-oriented software.

This implies that the metrics do not solely focus on the source code within individual Program

Organization Units (POUs, as defined in Section 3.3), but rather on their structural interrelationships,

such as the coupling between objects. On the other hand, some metrics focus on the internal design

of a software unit’s implementation (e.g., a POU), like regarding its complexity (e.g., McCabe’s

Cyclomatic Complexity [10] or Halstead’s complexity metrics [11]). All metrics have in common

that the fulfillment of a certain quality attribute can be derived based on a certain combination and

number of software properties. The degree of fulfillment of a quality attribute, such as testability, is

indicated by a software metric as a numerical indicator (cf. Figure 3).

Figure 3. Interrelationship between software properties, quality attributes, and software quality metrics [12].

Within the scope of this guideline, metrics are grouped into a list of categories given below. This list

of categories is derived from the available metrics in commercial static code analysis tools, as well

as based on literature:

- Size metrics, i.e., metrics that measure the scope of a POU, e.g., by counting parts of their

implementation or considering the required memory size.

- Variables and POU interfaces, i.e., metrics referring to a POU’s declaration part.

- Code documentation, i.e., metrics referring to comments in a POU’s implementation or

declaration part.

- Information exchange, i.e., metrics referring to calls and information flows to and from a

POU.

- Software complexity, i.e., metrics referring to different aspects that increase the software’s

complexity.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 11/65

- OO-IEC elements, i.e., metrics referring to language elements defined by OO-IEC such as

inheritance, interfaces and properties / methods.

- Language-specific elements, i.e., metrics intended for the particularities of specific IEC

61131-3-language such as Function Block Diagram (FBD) or Sequential Fucntion Chart

(SFC).

- Reuse indicators, i.e., metrics that give insights regarding the reuse of individual POUs in a

project or library.

3.3. Terms and Definitions

In the following section, the terms and definitions used in this guideline are introduced in an

alphabetic order. The definitions are derived from the IEC 61131-3 [13], the ISO/IEC/IEEE 24765

[14], definitions provided by established PLC platform providers, and general software development

practices.

Acceptance Tests: A test of a system or functional unit usually performed by the purchasers on their

premises after installation with the participation of the vendor to ensure that the contractual

requirements are met.

Action: A Boolean variable or a collection of operations to be performed, together with an associated

control structure.

Agile software development: Software development methodologies centered around the idea of

iterative development, where requirements and solutions evolve through collaboration between self-

organizing cross-functional teams. Enables teams to deliver value faster, with higher quality and

predictability, and greater aptitude to respond to change.

Application software: A machine-specific software project file running on one or more controllers,

usually including an interface to a corresponding Human Machine Interface (HMI) and machine-

specific hardware-control.

alias: Application project, machine project, machine-specific project

Call: A language construct causing the execution of a function, function block, or method.

Class: A Program Organization Unit consisting of

• the definition of a data structure,

• a set of methods (like subroutines) to be performed upon the data structure.

A class is an implementation — a concrete data structure and collection of subroutines — while a

type is an interface.

Cohesion: The degree of relatedness or interdependence within one component (modules, classes,

functions) in a software system.

Configuration: A language element corresponding to a programmable controller system (cf. Figure

4).

Continuous Integration / Continuous Delivery / Continuous Deployment

• CI – Continuous Integration: The practice of automating the integration of code changes

from multiple contributors into a single software project.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 12/65

• CD – Continuous Delivery or Deployment:

o Continuous delivery: A developer’s changes to an application are automatically bug

tested and uploaded to a repository where they can then be deployed to a live

production environment.

o Continuous deployment (the other possible “CD”): Automatically releasing a

developer’s changes from the repository to production, where it is usable by customers

or stakeholders.

Coupling: The degree of interdependence between different modules, components, or classes in a

software system. Measures the extent to which changes in one module require modifications in other

modules.

Declaration: A mechanism for establishing the definition of a language element.

Global variables: A variable whose scope is global: It can be used in each POU of the project.

IEC 61131-3 Software model: The basic high-level language elements and their interrelationships

as illustrated in Figure 4. These elements are programmed using the languages defined in this

standard, i.e., programs and function block types, classes, functions, and configuration elements,

namely, configurations, resources, tasks, global variables, access paths, and instance specific

initializations, which support the installation of programmable controller programs into

programmable controller systems.

Figure 4. Software model according to IEC 61131-3 [13].

Information flow: The data exchange between POUs. Can be either direct data exchange via calls

or indirectly via reading / writing global variables.

alias: data exchange; data flow

Inheritance: The creation of a new class, function block type or interface based on an existing class,

function block type or interface, respectively.

Input variable: A variable which is used to supply a value to a program organization unit except for

classes.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 13/65

Instance: An individual, named copy of the data structure associated with a function block type,

class, or program type, which keeps its values from one call of the associated operations to the next.

Instantiation: The creation of an instance.

Interface: A language element in the context of object-oriented programming containing a set of

method prototypes.

Example: It resembles a motor flange in that it delineates the diameter, distance, and shaft size, albeit

it is not a motor.

Maintenance activity: An activity to fix issues (corrective maintenance), to implement new features

(perfective maintenance), to make improvements without changing observable behavior

(preventative maintenance), or to modify the software to adapt to ever-changing environments

(adaptive maintenance).

Method: A language element similar to a function that can only be defined in the scope of a function

block or class type and with implicit access to instance variables of the function block instance or

class instance.

Example: A boiler can possess a Fill method and a HeatUp method, each of which performs a distinct

task.

Output variable: A variable which is used to return a value from the program organization unit

except for classes.

PLC Project: The application software together with all referenced libraries (cf. Fig. 4).

alias: PLC program (to be distinguished from POU type program)

POU: A Program Organization Unit. Source code of a PLC program is written via POUs.

POU consists of function, function block, class, or program (terms of IEC 61131-3).

Resource: A language element corresponding to a “signal processing function” and its “man-

machine interface” and “sensor and actuator interface functions”, if any (cf. Figure 4).

Software library: A collection of standardized, reusable code that often targets a coherent problem

or functionality, such as:

• POUs, like function blocks or functions

• Interfaces and their methods and properties

• Data types such as enumerations, structures, aliases, unions

• Global variable, constants, parameter lists

• Text lists, image pools, visualizations, visualization elements

• External files (e.g., documentation)

Integration of a library into an application project enables the library modules to be used in a project

in the same way other Function Blocks and variables are defined directly in the project.

Software Template: An editable, pre-designed software project file consisting of generic modules

which can be adapted efficiently and quickly by software developers based on machine/system

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 14/65

application requirements. A template can usually be run on its own and often serves as a starting

point to develop machine-specific application projects.

Software Framework: A collection of interfaces and conditions that guide the developer in the

implementation of software (in application projects or libraries). It usually represents a collection of

tools, but it can also include libraries, example code, or non-executable support, such as programming

guidelines. The guideline presented in this document is thus intended to be integrated into a given

framework.

Task: An execution control element that provides for periodic or triggered execution of a group of

associated program organization units (cf. Fig. 4).

Unit Test: The testing of individual routines and modules by the developer or an independent tester

(automated or manually). A test of individual programs or modules to ensure that there are no errors

(logical or programming).

Waterfall procedure model: A linear, non-iterative procedure model for software development

organized in successive project phases. Results from a preceding project phase serve as binding

specifications for the subsequent project phase.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 15/65

4. Software Development Workflow

4.1. Typical workflow for PLC software development

In the following figure, an exemplary PLC software development workflow is introduced to illustrate

different scenarios in industrial development where metrics can be beneficial by supporting the

subjective experience of PLC software developers by quantitative indicators for the software quality

attributes focused on in this guideline (cf. Section 3.1).

Figure 5. Overview of a typical software development workflow in industrial practice, which was observed in a similar form in

various companies in the machine and plant engineering sector.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 16/65

The workflow comprises of two main parts: The software development itself (including the software

standardization and application development) and the commissioning. It is important to note that the

introduced workflow example shall only support the exemplary illustration of the benefits when using

metrics in realistic scenarios. It does not claim to cover all aspects of software development that can

be observed in industrial practice. Even in the case that software development of a specific company

deviates from the proposed basic workflow (e.g., because no libraries are used), metrics can be useful

in scenarios that are similar to the ones described in this section.

The software standardization (upper part of software development in Figure 5) includes the

standardization of reusable software components, which are commonly organized in the form of

software libraries that can be used for different machine-specific application projects. Thus, these

POUs need to be highly mature to ensure their reliable functionality for different applications and

boundary conditions, which is usually ensured by comprehensive unit tests. In series machine

manufacturing, companies often use standardized templates as part of the provided framework that

may comprise interfaces to infrastructural software such as exception handling or HMI linkage.

Templates can be used as an orientation to develop the machine-specific software during application

development.

In the application development, the libraries are integrated into machine-specific applications. In case

templates are used, they are adapted to the functional specifications of the respective machine to be

developed. The software’s reliable functionality is tested afterwards via acceptance tests.

In machine and particularly in plant manufacturing, software is often changed during commissioning,

e.g., in case the system functionality needs to be fixed or adapted on short notice, and partly even

during operation. Enabling online changes without stopping the process is a highly requested PLC

feature by machine and plant manufacturers (approx. 25% according to observation of the tool

provider Schneider Electric Control Engineering – Verification). Thus, this workflow step is

included in the basic workflow to keep these potential changes in mind when applying metric-based

quality assessment.

4.2. Use Cases in the Workflow to Apply Software Quality Measurement

Disclaimer on the introduced use cases

When applying this guideline, please be aware of the following points:

• General recommendations for using software metrics: Before making any changes, please

make sure to always keep in mind quality aspects.

• Please take the context of your use case into account while adapting them. Depending on

involved stakeholders and development procedures, different points / application scenarios

in the workflow are suitable for using metrics.

In the following sections, a set of typical use cases is introduced. These use cases have been observed

in different companies from machine and plant manufacturing as examples for real-world scenarios

in industrial PLC software development, where a quantification of software quality attributes is

considered helpful.

All use cases are described using the categories below, which contain all the relevant information for

each scenario:

• Stakeholder: Roles involved for a particular scenario that can benefit from the application

of metrics.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 17/65

• Workflow step: Concrete points in an existing workflow where metrics can be applied.

• Description: Short outline of the use case characteristics.

• Possible variations and boundary conditions: Examples for possible specifications /

alternatives of the use case as well as assumed boundary conditions.

• Relevant quality attributes: Quality attributes that are relevant for the use cases in the given

scenario and that should be measured with the metrics.

• Achievable benefits using metrics: Motivations and advantages of using the metrics.

In general, there are three scenarios (listed below) to integrate metric-based measurement of software

quality into industrial development practice. Depending on the company-specific boundary

conditions, it needs to be decided individually which variant fits best to the respective goals and

needs:

- Continuous quality assessment across the whole software development cycle

- Quality assessment of existing legacy software at defined points in the workflow (e.g.,

compare the difference between metric values before and after a change of an existing

project)

- Development of “greenfield” software projects (quality assessment of newly developed

software)

4.2.1 Use Case 1: Continuous quality checks of POUs during software development

In an ideal case, quality checks are made continuously during a POU’s lifecycle whenever a change

is made. While this is a common practice in development using high-level programming languages

such as Java or C#, continuous quality checks are not yet standardized or fully utilized in most PLC-

based control software development. However, the continuous evaluation of software quality and the

early identification of deviations from quality goals is assessed as highly beneficial to avoid time-

and cost-intensive refactoring in the long run. In the following, this use case and potential variations

are described using the above-mentioned categories.

Stakeholders: Software library developers, application software developers, project managers,

clients

Description: After each significant change (e.g., Bug Fix, New Feature etc.), a quality check is

performed before the new version (or variant) of the POU to enable a continuous quality monitoring.

Workflow Step: Suitable in all workflow steps in which the software is changed across its

lifecycle, including, e.g.:

• 1.a) After changes of software library POUs (e.g., fixing of bugs identified during unit

testing, development of new functionalities)

• 1.b) Preparation of templates and project frameworks (e.g., adaptions based on feedback

from application developers, fixing of errors identified after unit / software acceptance tests)

• 1.c) After project-specific adaptions of templates or project frameworks

Possible Variations and boundary Conditions:

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 18/65

- CI/CD with version control system: Automatic continuous quality checks after each change

before merging into the “master” (in case of GIT-based version control); If check fails, the

reported issues must be fixed or reviewed.

- Agile software development approach: Running metrics, observe and compare the results

with the beginning of sprint. Efficiency can be increased in case of automated metric

comparison. As part of an agile methodology, a quality check can be part of Definition-of-

Done.

- Waterfall software development: Integration of regular metric reviews into the workflow

before commissioning.

Relevant Quality Attributes: Maintainability, Reusability, Testability, Efficiency, Reliability

Achievable Benefits Using Metrics: Deviations from desired quality targets are detected at an early

stage and can be compensated in time. This avoids long-term costs due to susceptibility to errors and

costly maintenance; avoidance of costly refactoring of historically grown software at later stages and

improvement of software optimization “on-the-fly” right during development.

4.2.2 Use Case 2: Comparison of code before and after commissioning

During on-site system commissioning in plant manufacturing, the software is often subject to

continuous changes. Due to high time pressure, the software is changed on a short notice usually by

technicians without comprehensive programming skills. Software metrics may support the

identification of such changes after the system is commissioned to identify software parts that are,

e.g., frequently affected by changes during start-up. This may indicate, e.g., that the changed POUs

are difficult to understand under time pressure by non-software experts and, thus, should be

refactored.

Stakeholders: Start-up personnel on-site; software application developers; management

Description: After commissioning, variations in quality attributes due to short-term software

changes in the field are evaluated to identify source code that is frequently modified during

commissioning.

Workflow Step: After acceptance test

Possible Variations / Boundary Conditions:

- Start-up personnel has access to the whole source code: Evaluation of the whole PLC

software project

- Start-up personnel has only access to specific parts of the source code: Targeted evaluation

of accessible software parts

Relevant Quality Attributes: Maintainability, Reuse, Efficiency, Reliability

Achievable Benefits Using Metrics: Metrics can be used to identify software parts that are

particularly affected by major changes during commissioning. This may hint at software parts that

are difficult to understand for start-up personnel or may cause issues during start-up, thus need to be

revised.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 19/65

Metrics may support the automatic identification of software parts that are usually “not touched”

during commissioning and, thus, can be “protected” to avoid unintended changes.

4.2.3 Use Case 3: Plant / Machine audit after project has been finished

In ever-changing and rapidly advancing industrial automation environment, the importance of high-

quality software continues to grow. This is why companies are more and more interested in

leveraging optimization potential of software in a targeted and efficient manner. One approach

highlighting this is plant or machine audits after completion of a project.

Metrics can be used to give an objective overview of essential quality attributes of the software,

without requiring in-depth knowledge of the source code. This use case is, therefore, particularly

interesting from a management perspective, where decisions have to be made based on a cost-benefit

ratio.

Stakeholders: Management, quality team (if applicable).

Description: Selected metrics of all PLC programs are calculated to classify the programs by their

size and complexity and to detect potential technical debt to organize the priorities of future

development. This use case is not planned by the developers themselves but more by the management

to help make the right decisions for their business operations.

Workflow Step: After acceptance test or when a project is finished.

Possible Variations / Boundary Conditions:

- Plant manufacturing: Comparison of metric values of different PLCs within one plant to

compare different machines / plant parts within the system

- Machine manufacturing (but also applicable to plant manufacturing): Comparison of metric

values across different machine types

Relevant Quality Attributes:, Maintainability, Reusability, Testability, Efficiency, Reliability

Achievable Benefits using Metrics: Decisions on the prioritization of refactoring measures can be

precisely quantified and thus discussed using data. The success of quality optimizations can be

quantitatively measured across projects. (Recurring) quality deficits can be automatically identified

across projects resulting in the identification of "hidden" quality issues and optimization potentials.

4.2.4 Further Use Cases supported by metrics

• Quality checks of third-party code.

• For vendor selection: Application of quality guideline could be incorporated in the contract.

• Identification of software functions that would highly benefit in terms of improvement from

refactoring, in an already existing code base.

• Quality checks during acceptance tests.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 20/65

5. Recommendations on How to Use Metrics in Industrial PLC

Software Development

In computer science, there are several tools (e.g., SonarQube by Sonar or Sigrid by Software

Improvement Group), recommendations and guidelines (e.g., Common Weakness Enumeration) on

how to improve software. For the improvement of industrial PLC software, tools and guidelines are

available from platform providers such as Schneider Electric and the CODESYS Group but also from

platform-independent organizations such as PLCopen. All these tools, guidelines and

recommendations have in common that they are formulated based on certain categories to support

software developers in the correct application and interpretation of analysis results.

Derived from the consensus of these well-accepted categories used in established tools and

guidelines, the following categories are proposed to structure the recommendations in a uniform way

that is understandable for the concerned stakeholders.

- Non-compliant code example: Negative example of source code that does not fulfill the

quality attribute and an illustration how this can be made explicit in selected software metrics.

- Compliant code example: Positive example of source code that does fulfill the quality

attribute and an illustration how this can be made explicit in selected software metrics

o Note: The selected code excerpts for compliant and non-compliant code examples are

extracted from an idealized, didactic example of a water heater and do not necessarily

represent the extent of a complete industrial application. The analyses have been

exemplarily conducted using the CODESYS Static Analysis.

- Implementation specification: Examples for metrics that are available in industrial PLC

software platforms and analysis tools that can be used to measure a specific influencing factor.

In the proposed recommendations, the implementation specifications refer to the tools below.

In future versions of the guideline, additional code analysis tools providing software metrics

shall be included.

o CODESYS – Static Analysis (referred to as CODESYS Static Analysis)

o Schneider Electric – EcoStruxure – Machine Advisor Code Analysis (referred to as

SE – EcoStruxure MACA)

o Schneider Electric – EcoStruxure Control Engineering – Verification (referred to as

SE - EcoStruxure CE-V)

o Software Improvement Group – Sigrid (referred to as SIG Sigrid Maintainability and

Architecture Quality - AQ)
- Potential mitigations: Actions that can be performed or aspects that should be considered to

enhance the fulfillment of the respective quality attribute by adjusting the measured

influencing factors.

Since the focus of this PLCopen guideline is on applying metric-based quality assessment of

industrial PLC software, the following categories are additionally added to specify the usage of the

recommendations in the following sections:

- Use cases and corresponding workflow steps: Corresponding use case, for which the

measurement of the specific quality attribute is helpful (cf. Section 4)

- Potential antagonist: Quality attribute that may be affected by a target conflict when

optimizing another quality attribute.

- Cross-References to other PLCopen guidelines: Hint to other PLCopen guidelines that can

be referred to for deeper insights on selected aspects.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 21/65

The recommendations in the following are structured according to the focused software quality

characteristics, i.e., maintainability (cf. Section 5.1), reusability (cf. Section 5.2), testability (cf.

Section 5.3), efficiency (cf. Section 5.4), and reliability (cf. Section 5.5).

To select the metrics that are suitable for quantifying the respective quality attributes, two workshops

with international experts from industrial PLC software development have been conducted. The

experts covered the perspectives of platform suppliers (metric providers) and machine manufacturers

(metric users). In the workshop, available metrics from industrial code analysis tools and scientific

literature have been mapped to the quality attributes (details can be found in Appendix 1).

The metric categories used in the recommendations are the following, sorted by the degree of required

experience in metric-based quality assessment as prerequisite for correctly using and interpreting the

respective metric (cf. Section 3.2):

Metrics for Step 1 (basic level in applying software metrics):

• Code Size

• Language-specific Size Metrics

• Software Complexity

• Code Documentation

Metrics for Step 2 (advanced level in applying software metrics):

• Variables and POU Interfaces

• Information Exchange

• Reuse Indicators

Metrics for Step 3 (expert level in applying software metrics):

• Metrics on the usage of the object-oriented extension of the IEC 61131-3: OO-IEC Elements

For an explanation across the different tools used, please refer to Appendix 1. In the following,

recommendations for the measurement of the five focused quality attributes are formulated based on

the expert workshops.

5.1. Recommendation: Metric-based Assessment of Maintainability

Use cases and corresponding workflow steps (cf. Section 4.2):

• Use Case 1: Continuous quality checks of POUs during software development.

o Motivation: Check whether a specific change affects the software’s maintainability

and overview how the software’s maintainability develops over time.

• Use Case 2: Comparison of code before and after commissioning.

o Motivation: Check whether adaptions during the start-up phase had an impact on the

software’s maintainability and a revision of the changed parts is required.

• Use Case 3: Plant or machine audit after a project has been finished.

o Motivation: Assess the software project’s maintainability in relation to other projects

to identify strengths, weaknesses, and optimization potentials in the given design

decisions.

Description of the required metrics:

Metric category: Code Size

POU size

↑ High value:

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 22/65

↓ Low value:

Reason: Outstandingly long implementations can be difficult to understand at first glance, thus

hampering the implementation of maintenance tasks.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Lines Of Code

- SE - EcoStruxure CE-V: Number of instructions

- CODESYS Static Analysis: NOS - Number Of Statements

- SIG Sigrid Maintainability: Unit Size

Number of actions

↑ High value:

↓ Low value:

Reason: Encapsulation of code in smaller units supports maintenance work on the software.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number Of Actions

- SE - EcoStruxure CE-V: plcobjecttype counter

- SIG Sigrid Maintainability: Unit Size

 Potential antagonist:

↓ Efficiency in case of increased number of calls.

Potential mitigations to enhance maintainability based on code size:

• Make sure to apply single responsibility principle to reduce POU size by re-distributing any

non-relevant or sub-functionality to other POUs or sub-elements such as methods or

actions.

• Structure functionality by encapsulating coherent code parts into actions (or methods) that

can be called by the POU.

• Avoid local code duplication and use Derived FB, Arrays, or Structures.

Metric category: Language-specific Size Metrics

Number of steps, transitions, branches in SFC

↑ High value:

↓ Low value:

Reason: Creating very large SFCs should be avoided. Especially a high number of branches

leading to a high width of SFCs may hamper the traceability of change effects with the POU.

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Number Of Transitions

- SE - EcoStruxure CE-V: nbofbranches, g7height, g7width

- CODESYS Static Analysis: Number of SFC branches, Number of SFC steps

Number of networks in FBD

↑ High value:

↓ Low value:

Reason: A high number of networks in a POU programmed in FBD may hinder the developer from

understanding the POU functionality at first glance, thus hamper the implementation of

maintenance tasks. The effect is amplified in case individual networks are particularly complex.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 23/65

Implementation specification using available metrics:

- SE – EcoStruxure MACA: Number Of FBD Networks, Halstead Complexity for FBD

Potential mitigations to enhance maintainability based on language-specific parameters:

• In case a SFC/FBD is not readable with one look (requiring zooming out or scrolling), it

should be considered whether its functionality should be distributed across several POUs.

• In case individual FBD networks stand out with high complexity values, try to distribute

their functionality across multiple networks.

• Use FBD to develop interconnected modules rather than simple POUs which leads to

multiple networks. Interconnected modules have fewer networks.

Metric category: Variables and POU Interfaces

Usage of global variables

↑ High value:

↓ Low value:

Reason: Indirect data exchange via global variables can be difficult to trace and may cause

undesired dependencies.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number of GVL Usages

- SE - EcoStruxure CE-V: extvarref

- CODESYS Static Analysis: Used different global variables

POU interfaces

↑ High value:

↓ Low value:

Reason: A high number of dependencies to its environments may cause undesired cross-effects in

case the POU is modified.

Implementation specification using available metrics:

- SE - EcoStruxure CE-V: inputcount, outputcount, nbofparam

- CODESYS Static Analysis: Number of input/output variables
- SIG Sigrid Maintainability: Unit Interfacing

Potential mitigations to enhance maintainability based on variables and POU interfaces:

• Check whether the usage of global variables is inevitably necessary or whether relevant

information could also be received directly by POUs via direct data exchange.

• In case global variables cannot be avoided, check whether the global variables are

reasonably structured (e.g., functional coherent variables arranged together in STRUCTs).

• Check why POUs with outstandingly large interfaces need this amount of external

information. Maybe the functionality can be split-up and distributed across more POUs (or

methods / actions).

• Check if different parameters from input or output could be grouped together in a data

structure when they are produced and consumed at similar locations and create the

associated structure.

• Create function interfaces that pass data through arguments instead of global variables.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 24/65

Metric category: Code Documentation

Comments in the source code

↑ High value:

↓ Low value:

Reason: Code documentation in the form of comments supports software developers in

understanding its functionality.

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Source Code Commented Ratio, Commented Variables Ratio, Number

Of Multiline Comments, Number Of Header Comment Lines
- SE - EcoStruxure CE-V: percentage of comment, result of verification tool

- CODESYS Static Analysis: Percentage of comment

Potential mitigations to enhance maintainability based on code documentation:

• Code documentation can be enhanced by adding additional comments. The metrics can

provide hints whether the implementation part or the variables would benefit the most from

additional comments.
Note : A lot of comments doesn’t necessarily mean good quality. Writing meaningful comments, and not

paraphrasing the code are important. In an extreme case, one could create a POU with just comments/notes

and exclude the POU from being built.

Metric category: OO-IEC Elements

Depth of inheritance

↑ High value:

↓ Low value:

Reason: A high depth of inheritance (EXTENDS) may hamper maintainability and

understandability due to traceability issues of dependencies. Especially long chains of inheritance

(e.g., depth of inheritance > 10) can be hard to maintain in case errors occur at the bottom and

are spread via inheritance.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Extended By, Extends

- CODESYS Static Analysis: DIT - Depth of Inheritance Tree, NOC - Number Of Children

 Potential antagonist:

↓ Reusability &Testability benefit from inheriting from existing POU structures and

functionalities.

Cohesion

↑ High value:

↓ Low value:

Reason: A low cohesion points to the fact that a POU has more than one responsibility, i.e., it tries

to fulfill more than one functionality. Understanding and maintaining is more complex because it

is required to understand all functionalities that are provided, not just one.

Implementation specification using available metrics:

- CODESYS Static Analysis: LCOM - Lack of cohesion in methods (inverted logic as in a high lack

of cohesion is disadvantageous)

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 25/65

- SIG Sigrid AQ: Component Cohesion

Coupling of objects to the environment

↑ High value:

↓ Low value:

Reason: High coupling to the environment contradicts modularity and, thus, hamper

maintainability.

Implementation specification using available metrics:

- CODESYS Static Analysis: RFC - Response For Class, CBO - Coupling Between Objects

- SIG Sigrid Maintainability: Module coupling

Encapsulation of functionality and information in properties and methods

↑ High value:

↓ Low value:

Reason: Encapsulation of code in smaller units (i.e., properties or methods) supports maintenance

work on the software.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number Of Properties, Number Of Methods

 Potential antagonist:

↓ Efficiency in case of (nested) call chains.

Potential mitigations to enhance maintainability based on OO-IEC elements:

• In case inheritance is used in the project, clarify the relations between POUs (classes) in

additional comments in the code if needed.

• Too high coupling between methods or a lack of cohesion can be an indicator that the

functionality distribution across methods is not ideal. It should be checked whether the

concerned methods can be refactored or whether functionality can be re-distributed.

• Depending on the context, it might be beneficial to use composition instead of inheritance.

• Dependency inversion principle: Higher level modules should not import anything from

low level modules. Both should depend on interfaces. This promotes reusability,

maintainability, and testability.

Metric category: Software Complexity

Complexity and length of source code

↑ High value:

↓ Low value:

Reason: High complexity can make it difficult to trace potential cross-effects of changes in the

implementation part, e.g., in case a change is made to a highly nested loop (textual) or network

(graphical). Additional note: A distinction between machine-specific software and used library

code is required: For the used (but not changed) library code, high complexity can be tolerable

since the user is not directly engaging those POU's internal complexity as long as the interfaces

are easy to use.

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Halstead Complexity, Cyclomatic Complexity

- SE - EcoStruxure CE-V: length, volume, difficulty, vg

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 26/65

- CODESYS Static Analysis: Halstead (D/HV/HL), Complexity (McCabe)

- SIG Sigrid Maintainability: Unit size, unit complexity (McCabe)

Potential mitigations to enhance maintainability based on software complexity:

• Check whether the same functionality can be implemented with better understandability

using less loops / nested networks.

• Check whether the number of used operators can be reduced, e.g., by refactoring too large

POUs and re-distributing functionality.

Metric category: Information Exchange

Information flow from POU to its environment

↑ High value:

↓ Low value:

Reason: A lot of information from the POU is required by its environment, thus increasing the risk

of cross-effects in case of changes.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Fan Out

Potential mitigations to enhance maintainability based on information exchange:

• Check whether some of the outgoing information flows from a POU can be reduced, e.g.,

by splitting-up a POUs functionality and re-distributing its functionality to further POUs,

methods, or actions.

• To reduce high Fan Out, create an intermediate POU to factor out modules with low

coupling and high cohesion.

• Simplify data structures.

Metric category: Reuse Indicators

Call depth

↑ High value:

↓ Low value:

Reason: Changes to elements on lower parts of a long call chain may have cross-effects on POUs

using their functionality. The higher the call depth, the higher the risk of such cross-effects.

Implementation specification using available metrics:

- SE - EcoStruxure CE-V: calldepthmin, calldepthmax

Duplication

↑ High value:

↓ Low value:

Reason: When code is copy-pasted, the maintenance effort for fixing bugs or making changes

increases due to increase in the code amount and the need of managing separate copies in multiple

places for needed changes.

Implementation specification using available metrics:
- CODESYS Static Analysis: Duplication ratio

- SIG Sigrid Maintainability: Duplication

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 27/65

⦸ Potential antagonist:

↓ An increase in dependencies where code is reused via referring to it (such as function calls or

OO mechanisms)

Potential mitigations to enhance maintainability based on reuse indicators:

• In case a software project (or parts of it) is characterized by high call depths, it should be

considered whether the call depth can be reduced by merging functionalities from two or

more POUs into one.

• Use systematic reusable mechanisms such as defining functions or facilitating OO

mechanisms, such as inheritance.

Disclaimer: The subsequent code excerpts are extracted from an idealized, didactic example of a

water heater and do not necessarily represent the extent of a complete industrial application. The

provided code snippets are independent from each other, i.e., the compliant code example is not an

optimization of the non-compliant example. Due to the nature of the supplied program, the analyses

have been conducted through the utilization of CODESYS Static Analysis.

Noncompliant code example: In the metric categories of “Code Size” and “Software Complexity”,

two outliers can be spotted, with by far the highest Halstead and Cyclomatic Complexity (McCabe)

as well as one of the highest Number-Of-Statements, encouraging inquiry into possible code

optimization for enhanced maintainability (cf. Figure 6).

Figure 6. Metrics table from CODESYS sorted by highest McCabe Cyclomatic Complexity.

An analysis of the POU implementation reveals the reason for the high Cyclomatic Complexity:

deeply nested FOR-loops and IF-statements which hamper maintainability as elaborated in the above

“Description of the required metrics”.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 28/65

Figure 7. Code snippet highlighting the nested IF-Statements

Compliant code example: By applying the suggested mitigation to enhance maintainability by re-

distributing functionality, in this case by using methods, McCabes Cyclomatic Complexity can be

split up into POUs with smaller values.

Figure 8. Excerpt from metrics table showing lowered cyclomatic complexity of optimized POUs

Looking at the metric category “OO-IEC Elements” shows that the enhanced maintainability is

apparent in the form of a low Depth-Of-Inheritance (DIT) and a manageable amount of Number-of-

Children (NOC).

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 29/65

Figure 9. Metrics tables from CODESYS sorted by Depth of Inheritance Tree (DIT) and Number Of Children (NOC)

Cross-reference to other PLCopen guidelines:

PLCopen_OOP_Guidelines V10.pdf of November 18, 2021

5.2. Recommendation: Metric-based Assessment of Reusability

Use cases and corresponding workflow steps (cf. Section 4.2):

• Use Case 1: Continuous quality checks of POUs during software development.

o Motivation: Check whether a specific change affects the software’s reusability and

overview how the software’s reusability develops over time.

• Use Case 2: Comparison of code before and after commissioning.

o Motivation: Check whether adaptions during the start-up phase had an impact on the

software’s reusability and a revision of the changed parts is required. Changes during

commissioning via Copy, Paste & Modify could be compensated by standardizing

reusable functionality.

• Use Case 3: Plant or machine audit after a project has been finished.

o Motivation: Assess the amount of reuse of a project’s POUs in relation to other

projects to identify strengths, weaknesses and optimization potentials in the given

design decisions regarding, e.g., efficiency of development processes.

Description of the required metrics:

 Metric category: Code Size

POU size

↑ High value:

↓ Low value:

Reason: POUs of small size (small granularity) are usually more flexible regarding the field of

application because they usually fulfill a specific, manageable functionality (e.g., reading a sensor

value) and, thus, can be reused for many applications. On the other hand, very large POUs can be

an indicator for very comprehensive functionality tailored to a specific machine, thus hampering

its reusability.

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Lines Of Code

- SE - EcoStruxure CE-V: Number of instructions

- CODESYS Static Analysis: NOS - Number Of Statements

- SIG Sigrid Maintainability: Unit size

Potential mitigations to enhance reusability based on code size:

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 30/65

• Make sure to apply single responsibility principle to reduce POU size by re-distributing any

non-relevant or sub-functionality to other POUs or sub-elements such as methods or

actions.

• Structure functionality by encapsulating coherent code parts into actions (or methods) that

can be called by the POU.

• Avoid local code duplication and use Derived FB, Arrays, or Structures.

Metric category: Language-specific Size Metrics

Number of transitions in SFC

↑ High value:

↓ Low value:

Reason: cf. Size Metrics

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Number Of Transitions

- SE - EcoStruxure CE-V: nbofbranches, g7height, g7width

- CODESYS Static Analysis: Number of SFC branches, Number of SFC steps

Number of networks in FBD

↑ High value:

↓ Low value:

Reason: cf. Size Metrics

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Number Of FBD Networks, Halstead Complexity for FBD

Potential mitigations to enhance reusability based on language-specific parameters:

• In case an SFC/FBD is not readable with one look (requiring zooming out or scrolling), it

should be considered whether its functionality should be distributed across several POUs.

• In case individual FBD networks stand out with high complexity values, try to distribute

their functionality across multiple networks.

• Usage of FBD to develop interconnected modules rather than simple POUs which leads to

multiple networks. Interconnected modules have fewer networks.

Metric category: Variables and POU Interfaces

Usage of global variables

↑ High value:

↓ Low value:

Reason: Reading and writing into global variables lead to (undesired) dependencies from global

data from other POUs that cannot be provided via calls, thus the creation of well-defined interfaces

between POUs as a prerequisite for reuse is hampered.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number of GVL Usages

- SE - EcoStruxure CE-V: extvarref

- CODESYS Static Analysis: Used different global variables

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 31/65

Direct hardware accesses

↑ High value:

↓ Low value:

Reason: Direct hardware accesses can be an indicator that a POU is tailored to a specific

hardware configuration, thus reusability for other applications can be impaired.

Implementation specification using available metrics:

- CODESYS Static Analysis: Number of direct address accesses(I/Os)

Potential mitigations to enhance reusability based on variables and POU interfaces:

• Check whether the usage of global variables is inevitably necessary or whether relevant

information could also be received directly by POUs via direct data exchange.

• In case global variables cannot be avoided, check whether the global variables are

reasonably structured (e.g., functional coherent variables arranged together in STRUCTs).

• Check why POUs with outstandingly large interfaces need this amount of external

information. Maybe the functionality can be split-up and distributed across more POUs (or

methods / actions).

• Check if different parameters from input or output could be grouped together in a data

structure when they are produced and consumed at similar locations and create the

associated structure.

• Create function interfaces that pass data through arguments instead of global variables.

Metric category: OO-IEC Elements

Usage of inheritance

↑ High value:

↓ Low value: -

Reason: Inheritance and extension of the functionality of an existing POU may indicate that an

implemented functionality can be easily enlarged and reused for different applications.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Extended By, Extends

- CODESYS Static Analysis: DIT - Depth of Inheritance Tree, NOC - Number Of Children

 Potential antagonist:

↓ Maintainability in case of traceability issues of dependencies

Cohesion

↑ High value:

↓ Low value:

Reason: A high cohesion within objects may indicate that the object focuses on one coherent

functionality, which simplifies its reusability in different applications.

Implementation specification using available metrics:

- CODESYS Static Analysis: LCOM - Lack of cohesion in methods (inverted logic as in a high lack

of cohesion is disadvantageous)

- SIG Sigrid AQ: Component Cohesion

Coupling of objects to the environment

↑ High value:

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 32/65

↓ Low value:

Reason: A high amount of dependencies of a POU to its environment (may indicate dependability

of a specific context, and, thus, impaired reusability).

Implementation specification using available metrics:

- CODESYS Static Analysis: RFC - Response For Class, CBO - Coupling Between Objects

- SIG Sigrid Maintainability: Module coupling

Implementation of Interfaces

↑ High value:

↓ Low value: -

Reason: Well-defined interfaces are the prerequisite for reusability. The usage of interfaces as

defined in the object-oriented extension of the IEC 61131-3 is considered a valuable lever for

adapting functionality by exchanging POUs with the same interface, thus supporting the reuse of

a POU’s functionality for different applications.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Implemented By, Implements

 Potential antagonist:

↓ Efficiency A negative impact of calls of properties and methods via interfaces on the

performance at runtime has been identified in previous investigations [15].

Encapsulation of functionality and information in properties and methods

↑ High value:

↓ Low value:

Reason: Encapsulation of code in smaller units such as properties and methods with defined

functionality scope supports flexibility and reusability (cf. size metrics for reusability).

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number Of Properties, Number Of Methods

 Potential antagonist:

↓ Efficiency in case of (nested) call chains.

Potential mitigations to enhance reusability based on OO-IEC elements:

• In case inheritance is used in the project, clarify the relations between POUs (classes) in

additional comments in the code if needed.

• Too high coupling between methods or a lack of cohesion can be an indicator that the

functionality distribution across methods is not ideal. It should be checked whether the

concerned methods can be refactored or whether functionality can be re-distributed.

• A minimum depth of inheritance promotes reusability. Limit to a maximum to avoid getting

into complex/unpredictable behavior. Here, a balance is needed.

• Dependency inversion principle: Higher level modules should not import anything from

low level modules. Both should depend on interfaces. This promotes reusability,

maintainability, and testability.

Metric category: Software Complexity

Complexity and length of source code

↑ High value:

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 33/65

↓ Low value:

Reason: A significantly high complexity may indicate a coarse, monolithic granularity of

functionality distribution, thus, it may indicate that a POU’s functionality covers a larger part of

the application and is, therefore, more difficult to reuse for different applications.

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Halstead Complexity, Cyclomatic Complexity

- SE - EcoStruxure CE-V: length, volume, difficulty, vg

- CODESYS Static Analysis: Halstead (D/HV/HL), Complexity (McCabe)

- SIG Sigrid Maintainability: Unit size, unit complexity (McCabe)

Potential mitigations to enhance reusability based on software complexity:

• Check whether the same functionality can be implemented with better understandability

using less loops / nested networks.

• Check whether the number of used operators can be reduced, e.g., by refactoring too large

POUs and re-distributing functionality.

• Create smaller functions to lower complexity and increase reusability.

• Encapsulation and abstraction help with reusability.

Metric category: Information Exchange

Direct data exchange between POUs via calls

↑ High value:

↓ Low value:

Reason: Direct data exchange via calls combined with low to zero data exchange via global

variables often is an indicator for sophisticated POU interfaces supporting reusability.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Call In, Call Out

- SE - EcoStruxure CE-V: calledcount, callproc

- CODESYS Static Analysis: Number of calls

 Potential antagonist:

↓ Efficiency A high number of calls may impair the software’s efficiency [15].

Information flow from POU to its environment

↑ High value:

↓ Low value:

Reason: A high information flow from a POU to its environment may indicate that a high number

of adjacent software elements are dependent on information from it, thus hampering its reusability.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Fan Out

Potential mitigations to enhance reusability based on information exchange:

• Check whether some of the outgoing information flows from a POU can be reduced, e.g.,

by splitting-up a POUs functionality and re-distributing its functionality to further POUs,

methods, or actions.

• To reduce high Fan Out – create an intermediate POU to factor out modules with low

coupling and high cohesion.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 34/65

• Simplify data structures.

Metric category: Reuse Indicators

Call depth

↑ High value:

↓ Low value:

Reason: High call depths may indicate that the software is not flat and monolithic but

hierarchically structured, i.e., functionality is encapsulated to be reused via calls.

Implementation specification using available metrics:

- SE - EcoStruxure CE-V: calldepthmin, calldepthmax

Duplication

↑ High value:

↓ Low value:

Reason: When code is copy-pasted, the maintenance effort for fixing bugs or making changes

increases due to increase in the code amount and the need of managing separate copies in multiple

places for needed changes.

Implementation specification using available metrics:
- CODESYS Static Analysis: Duplication ratio

- SIG Sigrid Maintainability: Duplication

⦸ Potential antagonist:

↓ An increase in dependencies where code is reused via referring to it (such as function calls or

OO mechanisms)

Potential mitigations to enhance reusability based on reuse indicators:

• In case a software project (or parts of it) is characterized by high call depths, it should be

considered whether the call depth can be reduced by merging functionalities from two or

more POUs into one.

• Use systematic reusable mechanisms such as defining functions or facilitating OO

mechanisms, such as inheritance.

Disclaimer: The subsequent code excerpts are extracted from an idealized, didactic example of a

water heater and do not necessarily represent the extent of a complete industrial application. The

provided code snippets are independent from each other, i.e., the compliant code example is not an

optimization of the non-compliant example. Due to the nature of the supplied program, the analyses

have been conducted through the utilization of CODESYS Static Analysis.

Noncompliant code example: At first glance it is, neither from this code snippet nor its initialization,

apparently visible that the presented method below uses five global variables. This hidden

dependency to a global variable list (GVL) can cause issues with reusing “FB_Motor.CyclicAction”

by hampering the creation of a well-defined interface to other POUs.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 35/65

Figure 10. Code snippet with used global variables highlighted in red.

Figure 11. Metrics table from CODESYS sorted by highest number of global variables used.

Compliant code example: By directly accessing information through POUs within the call of

“fbBoiler1()”, instead of via global variables, the dependencies between the POUs are clearly defined

and visible. As stated in the reasoning provided in the table above, this well-defined interface between

POUs, as observed here, serves as a key requirement to ensure good reusability. It has the potential

to greatly reduce oversights and, consequently, errors when reusing this particular POU.

Figure 12. Code snippet with associated metrics table to highlight the absence of global variables.

Cross-reference to other PLCopen guidelines:

PLCopen_OOP_Guidelines V10.pdf

legend:

global variable

legend:

global variable

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 36/65

5.3. Recommendation: Metric-based Assessment of Testability

Use cases and corresponding workflow steps (cf. Section 4.2):

• Use Case 1: Continuous quality checks of POUs during software development.

o Motivation: Check whether a specific change affects the software’s testability and

overview how the software’s testability develops over time.

• Use Case 3: Plant or machine audit after a project has been finished.

o Motivation: Assess a software project’s testability in relation to other projects to

identify strengths, weaknesses and optimization potentials in the given design

decisions regarding, e.g., efficiency of testing processes.

Description of the required metrics:

Metric category: Code Size

POU size

↑ High value:

↓ Low value:

Reason: Significantly large POUs are often characterized by complex control flows that require

expensive testing routines.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Lines Of Code

- SE - EcoStruxure CE-V: Number of instructions

- CODESYS Static Analysis: NOS - Number Of Statements

- SIG Sigrid Maintainability: Unit size

Number of actions

↑ High value:

↓ Low value:

Reason: A high number of actions may indicate that functionality is encapsulated in smaller parts

that are easier to test.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number Of Actions

- SE - EcoStruxure CE-V: plcobjecttype counter

- SIG Sigrid Maintainability: Unit size

 Potential antagonist:

↓ Efficiency in case of increased number of calls.

Potential mitigations to enhance testability based on code size:

• Make sure to apply single responsibility principle to reduce POU size by re-distributing any

non-relevant or sub-functionality to other POUs or sub-elements such as methods or

actions.

• Structure functionality by encapsulating coherent code parts into actions (or methods) that

can be called by the POU.

• Avoid local code duplication and use Derived FB, Arrays, or Structures.

Metric category: Language-specific Size Metrics

Number of transitions in SFC

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 37/65

↑ High value:

↓ Low value:

Reason: cf. Size Metrics

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Number Of Transitions

- SE - EcoStruxure CE-V: nbofbranches, g7height, g7width

- CODESYS Static Analysis: Number of SFC branches, Number of SFC steps

Number of networks in FBD

↑ High value:

↓ Low value:

Reason: cf. Size Metrics

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Number Of FBD Networks, Halstead Complexity for FBD

Potential mitigations to enhance testability based on language-specific parameters:

• In case a SFC/FBD is not readable with one look (requiring zooming out or scrolling), it

should be considered whether its functionality should be distributed across several POUs.

• In case individual FBD networks stand out with high complexity values, try to distribute

their functionality across multiple networks.

• Usage of FBD to develop interconnected modules rather than simple POUs which leads to

multiple networks. Interconnected modules have fewer networks.

Metric category: Variables and POU Interfaces

Direct hardware accesses

↑ High value:

↓ Low value:

Reason: In case a POU requires direct hardware access to perform its functionality, i.e., reading

from sensors or writing to actuators, this leads to additional dependencies that need to be

considered during testing and increase the effort, e.g., to simulate the hardware behavior or in

case the POUs are tested with real hardware.

Implementation specification using available metrics:
- CODESYS Static Analysis: Number of direct object accesses (I/Os)

POU interfaces

↑ High value:

↓ Low value:

Reason: A high number of POU interfaces, in particular a high number of inputs, leads to a high

amount of dependencies to a POU’s environment, thus testing the correct functionality requires

the consideration of a high number of different parameter variations.

Implementation specification using available metrics:

- SE - EcoStruxure CE-V: inputcount, outputcount, nbofparam
- CODESYS Static Analysis: Number of input/output variables

- SIG Sigrid Maintainability: Unit interfacing

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 38/65

Potential mitigations to enhance testability based on variables and POU interfaces:

• Check why POUs with outstanding large interfaces need this amount of external

information. Maybe the functionality can be split-up and distributed across more POUs (or

methods / actions).

• Check if different parameters from input or output could be grouped together in a data

structure when there are produced and consumed at similar places and create the associated

structure.

Metric category: OO-IEC Elements

Usage of inheritance

↑ High value:

↓ Low value: -

Reason: Using inheritance, functionality of a base class is reused for different applications, thus,

testing effort can be reduced since testing the base class behavior also covers the FBs derived from

it.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Extended By, Extends

- CODESYS Static Analysis: DIT - Depth of Inheritance Tree, NOC - Number Of Children

 Potential antagonist:

↓ Maintainability A high depth of inheritance may hamper maintainability due to traceability

issues of dependencies.

Cohesion

↑ High value:

↓ Low value:

Reason: A high cohesion may improve testability since it is usually an indicator that an object

(e.g., a POU or method) comprises one specific functionality rather than a combination or

concatenation of several functionalities. This supports testability since an element with high

cohesion often can be tested with a single test case.

Implementation specification using available metrics:

- CODESYS Static Analysis: LCOM - Lack of cohesion in methods (inverted logic as in a high lack

of cohesion is disadvantageous)

- SIG Sigrid AQ: Component Cohesion

Coupling of objects to the environment

↑ High value:

↓ Low value:

Reason: In contrast to a high cohesion, a high coupling of an object to its environment leads to a

high number of dependencies that need to be considered in the development of test cases (cf. POU

interfaces).

Implementation specification using available metrics:

- CODESYS Static Analysis: RFC - Response For Class, CBO - Coupling Between Objects

- SIG Sigrid Maintainability: Module coupling

Implementation of Interfaces

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 39/65

↑ High value:

↓ Low value: -

Reason: If used appropriately, interfaces support the decoupling of functionalities in the software

and thus support their testability.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Implemented By, Implements

 Potential antagonist:

↓ Efficiency: A negative impact of calls of properties and methods via interfaces on the

performance at runtime has been identified in previous investigations [15].

Encapsulation of functionality and information in properties and methods

↑ High value:

↓ Low value:

Reason: Encapsulation of code in smaller units reduces the number of test cases required for an

individual object.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number Of Properties, Number Of Methods

 Potential antagonist:

↓ Efficiency in case of (nested) call chains

Potential mitigations to enhance testability based on OO-IEC elements:

• In case inheritance is used in the project, clarify the relations between POUs (classes) in

additional comments in the code if needed.

• Too high coupling between methods or a lack of cohesion can be an indicator that the

functionality distribution across methods is not ideal. It should be checked whether the

concerned methods can be refactored or whether functionality can be re-distributed.

• Dependency inversion principle: Higher level modules should not import anything from

low level modules. Both should depend on interfaces. This promotes reusability,

maintainability, and testability.

Metric category: Software Complexity

Complexity and length of source code

↑ High value:

↓ Low value:

Reason: High complexity may indicate a high number of (deeply nested) control flows in an object,

thus requiring comprehensive test cases to achieve path coverage.

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Halstead Complexity, Cyclomatic Complexity

- SE - EcoStruxure CE-V: length, volume, difficulty, vg

- CODESYS Static Analysis: Halstead (D/HV/HL), Complexity (McCabe)

- SIG Sigrid Maintainability: Unit size, unit complexity (McCabe)

Potential mitigations to enhance testability based on software complexity:

• Check whether the same functionality can be implemented with better understandability

using less loops / nested networks.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 40/65

• Check whether the number of used operators can be reduced, e.g., by refactoring too large

POUs and re-distributing functionality.

Metric category: Information Exchange

Number of calls to other POUs

↑ High value:

↓ Low value:

Reason: In case data is primarily exchanged via direct data exchange (calls) with low to zero data

exchange via global variables, this supports testability since there is a lower risk of implicit or

hidden dependencies that might be missed during testing.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Call Out

- SE - EcoStruxure CE-V: callproc

 Potential antagonist:

↓ Efficiency A high number of calls might impair the software’s efficiency during runtime.

Number of read / write accesses on variables

↑ High value:

↓ Low value:

Reason: A high number of read and write accesses on variables indicate a high number of

dependencies that need to be considered during testing.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number Of Writes, Number Of Reads

- SE - EcoStruxure CE-V: maxmemwrite, maxmemread

Informationflow from POU to its environment

↑ High value:

↓ Low value:

Reason: A high number of information flow from a POU to its environment may indicate a high

number of dependencies that need to be considered during testing.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Fan Out

Potential mitigations to enhance testability based on information exchange:

• Check whether some of the outgoing information flows from a POU can be reduced, e.g.,

by splitting-up a POUs functionality and re-distributing its functionality to further POUs,

methods, or actions.

• To reduce high Fan Out – create an intermediate POU to factor out modules with low

coupling and high cohesion

• Simplify data structures.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 41/65

Metric category: Reuse Indicators

Call depth

↑ High value:

↓ Low value:

Reason: A high call depth indicates that the POU under test is part of a long preceding call chain,

i.e., changes of the POU may lead to cross effects.

Implementation specification using available metrics:

- SE - EcoStruxure CE-V: calldepthmin, calldepthmax

Duplication

↑ High value:

↓ Low value:

Reason: When code is copy-pasted, the testing effort or the effort for making changes increases

due to increase in the code amount and the need of managing separate copies in multiple places

for needed changes.

Implementation specification using available metrics:
- CODESYS Static Analysis: Duplication ratio

- SIG Sigrid Maintainability: Duplication

⦸ Potential antagonist:

↓ An increase in dependencies where code is reused via referring to it (such as function calls or

OO mechanisms)

Potential mitigations to enhance testability based on reuse indicators:

• In case a software project (or parts of it) is characterized by high call depths, it should be

considered whether the call depth can be reduced by merging functionalities from two or

more POUs into one.

• Use systematic reusable mechanisms such as defining functions or facilitating OO

mechanisms, such as inheritance.

Disclaimer: The subsequent code excerpts are extracted from an idealized, didactic example of a

water heater and do not necessarily represent the extent of a complete industrial application. The

provided code snippets are independent from each other, i.e., the compliant code example is not an

optimization of the non-compliant example. Due to the nature of the supplied program, the analyses

have been conducted through the utilization of CODESYS Static Analysis.

Noncompliant code example: The high number of input variables of the PID controller

“FB_BasicPIDCtrl” requires a considerable effort for comprehensive tests covering all possible

combinations of parameters. In combination with the complex nesting indicated by the outstanding

McCabe Cyclomatic Complexity, this effect may be further amplified.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 42/65

Figure 13. Metrics table from CODESYS sorted by McCabe Complexity

Compliant code example: In contrast, a POU with minimal to no dependencies to the environment

indicates a reduced effort and time in testing. In this specific instance of “FB_DeviceBasic”, this has

been achieved through the utilization of interfaces, enabling separate testing procedures that need

only be conducted once for all POUs they are implemented in.

Figure 14. Metrics table from CODESYS with associated code snippet of “FB_DeviceBasic” emphasizing the use of interfaces

5.4. Recommendation: Metric-based Assessment of Efficiency

Use cases and corresponding workflow steps (cf. Section 4.2):

• Use Case 1: Continuous quality checks of POUs during software development.

o Motivation: Check whether a specific change affects the software’s efficiency and

overview how the software’s reusability develops over time.

• Use Case 2: Comparison of code before and after commissioning.

o Motivation: Check whether adaptions during the start-up phase had an impact on the

software’s efficiency and a revision of the changed parts is required.

• Use Case 3: Plant or machine audit after a project has been finished.

o Motivation: Assess the efficiency of a project’s POUs in relation to other projects to

identify strengths, weaknesses and optimization potentials in the given design

decisions regarding, e.g., in relation to the performance of the used automation

hardware.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 43/65

Description of the required metrics:

Metric category: Code Size

Memory allocation

↑ High value:

↓ Low value:

Reason: Previous investigations showed that the assignments of variables to an FB instance when

calling it may negatively affect the software’s performance in case the respective FB has a high

memory size.

Implementation specification using available metrics:
- CODESYS Static Analysis: Code size, Stack size

- SE - EcoStruxure MACA: Memory Size (Data)

- SE - EcoStruxure CE-V: Memory size

Number of actions

↑ High value:

↓ Low value:

Reason: A high number of actions may cause a high number of calls, which may have a negative

impact on the performance of the calling software element.

Implementation specification using available metrics:
- SE – EcoStruxure MACA: Number Of Actions

- SE – EcoStruxure CE-V : plcobjecttype counter

- SIG Sigrid Maintainability: Unit size

 Potential antagonist:

↓ Maintainabiliy & Testability in case of decreased encapsulation of functionality

Potential mitigations to enhance efficiency based on code size:

• Structure functionality by encapsulating coherent code parts into actions (or methods) that

can be called by the POU. However, for highly time-critical software parts, avoid

unnecessarily long call chains.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 44/65

Metric category: Variables and POU Interfaces

Usage of global variables

↑ High value:

↓ Low value:

Reason: GVL usage may impair efficiency in case there is a lot of global data traffic.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number of GVL Usages

- SE - EcoStruxure CE-V: extvarref

- CODESYS Static Analysis: Used different global variables

Usage of local variables

↑ High value:

↓ Low value:

Reason: A high number of local variables may indicate a high amount of POU-internal data traffic

that might impair its performance efficiency.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number Of Variables

- CODESYS Static Analysis: Number of local variables

Potential mitigations to enhance efficiency based on variables and POU interfaces:

• Check whether the usage of global variables is inevitably necessary or whether relevant

information could also be received directly by POUs via direct data exchange.

• In case global variables cannot be avoided, check whether the global variables are

reasonably structured (e.g., functional coherent variables arranged together in STRUCTs)

• Check why POUs with outstanding large interfaces need this amount of external

information. Maybe the functionality can be split-up and distributed across more POUs (or

methods / actions).

• Check if different parameters from input or output could be grouped together in a data

structure when there are produced and consumed at similar places and create the associated

structure.

• Create function interfaces that pass data through arguments instead of global variables.

Metric category: OO-IEC Elements

Implementation of Interfaces

↑ High value:

↓ Low value:

Reason: Performance analyses in industrial PLC software have confirmed that a high number of

method and property calls via interfaces may lead to performance issues at runtime [15].

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Implements

 Potential antagonist:

↓ Reusability & Testability Using inheritance, reusability of the functionality of a base class is

enhanced and testing effort can be reduced since testing the base class behavior also covers the

FBs derived from it.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 45/65

Encapsulation of functionality and information in properties and methods

↑ High value:

↓ Low value:

Reason: Encapsulation of code in smaller units is beneficial regarding modularity, but may lead

to impaired performance in case of an increased number of calls.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number Of Properties, Number Of Methods

 Potential antagonist:

↓ Maintainability & Reusability & Testability in case of lack of encapsulation of functionality

Potential mitigations to enhance efficiency based on OO-IEC elements:

• Too high coupling between methods or a lack of cohesion can be an indicator that the

functionality distribution across methods is not ideal. It should be checked whether the

concerned methods can be refactored or whether functionality can be re-distributed.

Metric category: Information Exchange

Incoming direct data exchange between POUs via calls

↑ High value:

↓ Low value:

Reason: A high number of calls may lead to impaired performance at runtime.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Call Out

- SE - EcoStruxure CE-V: callproc

 Potential antagonist:

↓ Reusability & Testability: Monolithic POUs instead of encapsulating and distributing

functionality and using it by calling the respective POU may impair reusability and testability.

Potential mitigations to enhance efficiency based on information exchange:

• Check whether some of the outgoing information flows from a POU can be reduced, e.g.,

by splitting-up a POUs functionality and re-distributing its functionality to further POUs,

methods, or actions.

• Simplify data structures.

Disclaimer: The subsequent code excerpts are extracted from an idealized, didactic example of a

water heater and do not necessarily represent the extent of a complete industrial application. The

provided code snippets are independent from each other, i.e., the compliant code example is not an

optimization of the non-compliant example. Due to the nature of the supplied program, the analyses

have been conducted through the utilization of CODESYS Static Analysis.

Compliant/Noncompliant code examples: It is not feasible to universally state the exact threshold

at which a POU may encounter runtime issues and leads to a substantial decline in efficiency.

However, an increased level of internal POU data traffic, induced by the higher quantity of local

variables, may have a negative impact on the runtime of e.g., “FB_AutomaticMode” compared to an

FB with less internal data traffic, e.g., “FB_LevelControl”.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 46/65

Figure 15. Excerpt from metrics table showing the range in the number of local variables used

5.5. Recommendation: Metric-based Assessment of Reliability

Use cases and corresponding workflow steps (cf. Section 4.2):

• Use Case 1: Continuous quality checks of POUs during software development

o Motivation: Check whether a specific change affects the software’s efficiency and

overview how the software’s reliability develops over time

• Use Case 2: Comparison of code before and after commissioning

o Motivation: Check whether adaptions during the start-up phase had an impact on the

software’s reliability and a revision of the changed parts is required.

• Use Case 3: Plant or machine audit after a project has been finished

o Motivation: Assess the reliability of a project’s POUs in relation to other projects to

identify strengths, weaknesses and optimization potentials in the given design

decisions regarding, e.g., to plan and prioritize test cases in the case of comprehensive

/ critical changes that might affect the software’s reliable functionality.

Description of the required metrics:

Metric category: Language-specific Metrics

Number of transitions in SFC

↑ High value:

↓ Low value:

Reason: A high level of branching in SFC code can make the code confusing and make it difficult

to perform changes. Possible cross-relationships can be missed, running the risk of compromising

reliable functionality.

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Number Of Transitions

- SE - EcoStruxure CE-V: nbofbranches, g7height, g7width

- CODESYS Static Analysis: Number of SFC branches, Number of SFC steps

Number of networks in FBD

↑ High value:

↓ Low value:

Reason: A high number of networks in an FBD implementation may indicate a high scope of

functionality assigned to an individual POU, which may hamper to keep track of its reliable

functionality.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 47/65

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Number Of FBD Networks, Halstead Complexity for FBD

Potential mitigations to enhance reliability based on language-specific parameters:

• In case a SFC/FBD is not readable with one look (requiring zooming out or scrolling), it

should be considered whether its functionality should be distributed across several POUs.

• In case individual FBD networks stand out with high complexity values, try to distribute

their functionality across multiple networks.

• Use FBD to develop interconnected modules rather than simple POUs which leads to

multiple networks. Interconnected modules have fewer networks.

Metric category: Variables and POU Interfaces

Usage of global variables

↑ High value:

↓ Low value:

Reason: Changes to POUs that initially act independently have a major impact through indirect

use of POU data via global variables. Further, finding errors is more difficult in case cross

references via global variables need to be traced.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number of GVL Usages

- SE - EcoStruxure CE-V: extvarref

- CODESYS Static Analysis: Used different global variables

Potential mitigations to enhance reliability based on variables and POU interfaces:

• Check whether the usage of global variables is inevitably necessary or whether relevant

information could also be received directly by POUs via direct data exchange.

• In case global variables cannot be avoided, check whether the global variables are

reasonably structured (e.g., functional coherent variables arranged together in STRUCTs).

• Check why POUs with outstanding large interfaces need this amount of external

information. Maybe the functionality can be split-up and distributed across more POUs (or

methods / actions).

• Check if different parameters from input or output could be grouped together in a data

structure when there are produced and consumed at similar places and create the associated

structure.

• Create function interfaces that pass data through arguments instead of global variables.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 48/65

Metric category: OO-IEC Elements

Coupling of objects to the environment

↑ High value:

↓ Low value:

Reason: A high number of dependencies of a software unit to its environment may lead to cross-

effects in case of changes that might impair the software’s reliable functionality.

Implementation specification using available metrics:

- CODESYS Static Analysis: CBO - Coupling Between Objects

- SIG Sigrid Maintainability: Module coupling

Potential mitigations to enhance reliability based on OO-IEC elements:

• Too high coupling between methods or a lack of cohesion can be an indicator that the

functionality distribution across methods is not ideal. It should be checked whether the

concerned methods can be refactored or whether functionality can be re-distributed.

Metric category: Software Complexity

Complexity and length of source code

↑ High value:

↓ Low value:

Reason: The higher the software complexity, the greater the risk of introducing errors in case of a

change and thus compromising the reliable functionality of the system.

Implementation specification using available metrics:

- SE - EcoStruxure MACA: Halstead Complexity, Cyclomatic Complexity

- SE - EcoStruxure CE-V: length, volume, difficulty, vg

- CODESYS Static Analysis: Halstead (D/HV/HL), Complexity (McCabe)

- SIG Sigrid Maintainability: Unit size, unit complexity (McCabe)

Potential mitigations to enhance reliability based on software complexity:

• Check whether the same functionality can be implemented with better understandability

using less loops / nested networks.

• Check whether the number of used operators can be reduced, e.g., by refactoring too large

POUs and re-distributing functionality.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 49/65

Metric category: Information Exchange

Ingoing direct data exchange between POUs via calls

↑ High value:

↓ Low value: -

Reason: A high number of calls to a POU indicates that its functionality is reused by many other

software units. This increases the probability of detecting and correcting errors and thus improving

reliability.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Call In

- SE - EcoStruxure CE-V: calledcouns

- CODESYS Static Analysis: Number of calls

Metric category: Reuse Indicators

Number of Library References

↑ High value:

↓ Low value:

Reason: The use of library components, which have usually been extensively tested for various

applications, usually increases reliability.

Implementation specification using available metrics:
- SE - EcoStruxure MACA: Number Of Library References

Call depth

↑ High value:

↓ Low value:

Reason: If changes are made to POUs that are located at the bottom of long call chains, there is a

risk that errors that may have been introduced will affect the calling POUs and thus worsen

reliability.

Implementation specification using available metrics:
- SE - EcoStruxure CE-V: calldepthmin, calldepthmax

Duplication

↑ High value:

↓ Low value:

Reason: When code is copied, potential bugs in the concerned software parts are also copied.

Fixing these faults is highly time-consuming, as code must be adapted at distributed locations to

maintain reliability.

Implementation specification using available metrics:
- CODESYS Static Analysis: Duplication ratio

- SIG Sigrid Maintainability: Duplication

⦸ Potential antagonist:

↓ An increase in dependencies where code is reused via referring to it (such as function calls or

OO mechanisms)

Potential mitigations to enhance reliability based on reuse indicators:

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 50/65

• In case a software project (or parts of it) is characterized by high call depths, it should be

considered whether the call depth can be reduced by merging functionalities from two or

more POUs into one.

Disclaimer: The subsequent code excerpts are extracted from an idealized, didactic example of a

water heater and do not necessarily represent the extent of a complete industrial application. The

provided code snippets are independent from each other, i.e., the compliant code example is not an

optimization of the non-compliant example. Due to the nature of the supplied program, the analyses

have been conducted through the utilization of CODESYS Static Analysis.

Noncompliant code example: Similar to the previously introduced recommendation for

maintainability in Section 5.1, it can be reasoned that the two outliers with significant Halstead

Difficulty (D) and Cyclomatic Complexity (McCabe) can also lead to a reduction of reliability and

hence may indicate a possible optimization potential by, e.g., encapsulation.

Compliant code example: The same argumentation is valid for the other compliant code example

presented in Section 5.2, wherein the suggested mitigation of re-distributing functionality into

smaller, less complex POUs may lead to improved reliability.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 51/65

6. Threshold Values and Metric Application to Large-scale Industrial

PLC Software Projects

In computer science, certain threshold values have been established to provide orientation for

interpreting calculated metric values (cf. Table 2). The analysis and comparison of existing threshold

values in the literature and available tools shows that even in high-level language development there

is no general consensus on the range of these values. Even for the same metric, different authors and

tool providers give diverging limits, e.g., for Cyclomatic Complexity (limit is 10 in the original

source in McCabe [10], 15 in Squore Vector, only 2 according to Tarcísio et al. [16]). Nevertheless,

the values can serve as an approximate guide also for IEC 61131-3-based PLC software to classify

noticeable metric values – especially for Structured Text, which is similar to high-level languages in

its syntax.

With the possibilities of modern programming platforms, e.g., in many CODESYS-based systems,

the object-oriented extension of IEC 61131-3 can be conceptually used in such a way that PLC

software is in no way inferior to high-level language software. For PLC software projects following

current-day best practices such as object-orientation, it is therefore expected that the values in the

table below could be used as sound reference values. Nevertheless, it is pointed out that there are

often significant differences in the common practice of PLC software development in machine and

plant manufacturing compared to high-level language software, which can limit the direct transfer of

threshold values from computer science, especially, e.g., for graphical and/or procedural PLC

software. The derivation of appropriate thresholds is a heuristic approach and should be based on

logically arguable conclusions, e.g., based on cause-effect analyses (e.g., complexity value above

which POU is considered unmaintainable).

One such approach connecting the measurement to the impact is presented in [17] by Alves et al. The

approach presents a technology agnostic benchmark-based metric evaluation approach. In [1],

Wijnmaalen et al. have performed a replication study showing that there is a correlation between

issue (defect fixing, enhancement, patching, etc.) resolution times and measured maintainability

metrics. The higher maintainable a system is, the faster changes can be made.

Table 2. Collection of suggested threshold values for high-level programming languages, from applications as well as research

(LOC = Lines of Code, DIT=Depth of Inheritance Tree, CBO=Coupling Between Objects, NOC=Number Of Children, LCOM=

Lack of Cohesion Of Methods, RFC=Response For Class)

Source
Metric (coherent with presented

metrics for IEC 61131-3)

Suggested threshold values in

high level language tools and

literature

Squore Vector (from an example back-

end project in php) [18]

Cyclomatic Complexity ≤ 15

Number of Parameters of Method ≤ 5

 Number of Header Comments > 0

 Number of Executable Statements ≤ 50

McCabe (intro of complexity metric) [10,

19]
Cyclomatic Complexity ≤ 10

embold Metric Thresholds (Component

Level) [20]

Lines of Code ≤ 1000

Comment Ratio > 30

LCOM ≤ 0.77

Cyclomatic Complexity 50

PHP Mess Detector [21] Cyclomatic Complexity ≤ 10

Lines of Code (Classes) ≤ 1000

Number of methods ≤ 25

Holzmann (NASAs 10 rules) [22] LOC ≤ 60

Shatnawi Raed (analysis of 11 DIT ≤ 3

open-source java projects).[23] CBO ≤ 17

DIT ≤ 2

NOC ≤ 1

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 52/65

Source
Metric (coherent with presented

metrics for IEC 61131-3)

Suggested threshold values in

high level language tools and

literature

Tarcísio et al. (analysis of Qualitas

Corpus: a curated collection of software

systems in java)[16]

LCOM ≤ 0.167

Cyclomatic Complexity ≤ 2

Number of Parameters ≤ 2

Rosenberg et al. (expert audit by NASAs

Software Assurance. Technology Center

in C++/Java).[24]

DIT 2 – 5

 CBO ≤ 5

 RFC ≤ 50

Herbold, Grabowski, Waack (collection

of research results) [25]

Cyclomatic Complexity for C ≤ 24

Cyclomatic Complexity for C++ ≤ 10

Cyclomatic Complexity for C# ≤ 10

CBO for Java ≤ 5

RFC for Java ≤ 100

Alves et al. (technology-agnostic

benchmark-based metric calculation)

[17]. New thresholds cf. [27].

Please note that the developers do not

have to implement every POU strictly

using the thresholds of low risk

categories. The approach uses a risk-

based measurement to evaluate the

codebase as a whole, using a benchmark

to determine how metric values compare

to the state of the practice.

Unit size (Lines of Code)

Low risk: 15 , Moderate Risk: 16-

30, High Risk: 31 - 60, Very-High

Risk: 61+

Unit complexity (Cyclomatic

Complexity)

Low risk: 1-5, Moderate Risk: 6-

10, High Risk: 11-25, Very-High

Risk: 26+

Module coupling (Incoming

dependencies per POU)

Low risk: 0-10, Moderate Risk: 11-

20, High Risk: 21-50, Very-High

Risk: 51+

In PLC software, the usage of different programming languages and diverse implemented

functionalities in POUs (ranging from performing simple calculations to controlling complex

technological modules) make the definition of rigid threshold values quite difficult. This guideline

therefore does not specify fixed threshold values to avoid misinterpretation of the metrics. However,

to provide an orientation for more realistic metric values in industrial application, the following part

of the section applies examples of the introduced metrics in Section 5 to realistic industrial code

examples.

The subsequent code excerpts are extracted from two real-world industrial projects that have been

recognized as representative of a diverse range of industrial applications. The analyses have been

conducted with the SE - EcoStruxure Machine Advisor Code Analysis integrated in the programming

environment SE – EcoStruxure Machine Expert.

Code Documentation: Well-structured industrial example: Upon performing a code analysis, the

software developer is presented with a comprehensive overview of the meticulous documentation of

the GVLs. This valuable information could serve as a means of reassurance prior to committing the

variable lists, or as confirmation of adherence to the internal coding guidelines of the company.

Figure 16. Metrics table from Schneider Electric showing the good documentation of GVLs.

Code Documentation – Thread to validity: Although metrics may indicate a comprehensive

documentation of this POU, it is apparent that this metric has been subject to distortion through

leaving in commented “dead-code” which brings none of the positive effects of actual code

documentation. As such, one must always be mindful of the potential threads on the validity of the

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 53/65

code analysis. Metrics related to code documentation are especially prone to intentional or

unintentional manipulation, but with proper attention and diligence, such concerns can be addressed

and resolved.

Figure 17. Code snippet demonstrating the common malpractice of commenting out “dead-code” with its associated distorted metrics

table.

co
m

m
en

te
d

 „

d
ea

d
-c

o
d
e”

ac

tu
al

 c
o
d

e

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 54/65

Software Complexity – Remarkably complex industrial example: The metrics table presented

herein originates from a real-world industrial application, that has been identified to be a negative

example with ample potential for improvements, especially regarding maintainability. Nevertheless,

this example serves to emphasize the variability in numerical values of metrics, particularly in

comparison with the idealized, didactic non-/compliant examples provided as an initial introduction

to metrics in Section 5. Furthermore, it demonstrates the inherent impossibility of a universal

recommendation for upper and lower bounds of metric values, as these must always be evaluated on

a case-by-case basis by domain experts.

Figure 18. Metrics table from Schneider Electric showing the possibly high numerical values.

Information Exchange – Industrial example comparison: This example aims to further

substantiate the range of possible maximum metric values by comparing two distinct applications.

Consequently, it is generally recommended to refrain from solely focusing on remaining within

arbitrary limits of metric values. Instead, it is advisable to initiate an examination of outliers and

overarching patterns, as well as to compare software metrics within the same domain or with projects

that are known to be similar.

Figure 19. Two metrics tables of two different industrial applications, emphasizing the variability of the numerical values between

different projects.

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 55/65

References

[1] J. Wijnmaalen, C. Chen, D. Bijlsma, and A. M. Oprescu, “The Relation between Software Maintainability and Issue

Resolution Time: A Replication Study,” in SaTToSE, 2019.

[2] H. Zhu, Q. Zhang, and Y. Zhang, “HASARD: A Model-Based Method for Quality Analysis of Software

Architecture,” in Relating System Quality and Software Architecture: Elsevier, 2014, pp. 123–156.

[3] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of software quality,” in International

Conference on Software Engineering, 1976.

[4] R. G. Dromey, “A model for software product quality,” IEEE Transactions on Software Engineering, vol. 21, no.

2, pp. 146–162, 1995.

[5] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in Software Quality. Volume I. Concepts and Definitions

of Software Quality,” 1977.

[6] Systems and software engineering - Systems and software Quality Requirements and Evaluation (SQuaRE) —

System and software quality models, 25010, ISO/IEC, 2011.

[7] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of software in automated production systems:

Challenges and research directions,” Journal of Systems and Software, vol. 110, pp. 54–84, 2015, doi:

10.1016/j.jss.2015.08.026.

[8] IEEE Standard for a Software Quality Metrics Methodology, 1061, IEEE, Piscataway, NJ, USA, 1998.

[9] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,” IEEE Transactions on Software

Engineering, vol. 20, no. 6, pp. 476–493, 1994.

[10] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering, SE-2, no. 4, pp. 308–320,

1976, doi: 10.1109/tse.1976.233837.

[11] M. H. Halstead, Elements of software science. New York, NY: North-Holland, 1977.

[12] E. M. Neumann et al., “Metric-based Identification of Target Conflicts in the Development of Industrial Automation

Software Libraries,” in IEEE International Conference on Industrial Engineering and Engineering Management

(IEEM), Kuala Lumpur, Malaysia, 2022, pp. 1493–1499.

[13] Programmable controllers - Part 3: Programming languages (IEC 61131-3:2013); German version EN 61131-

3:2013, 61131-3, International Electrotechnical Commission (IEC), 2014.

[14] Systems and software engineering - Vocabulary, 24765, ISO/IEC/IEEE, Piscataway, NJ, USA, 2010.

[15] E.-M. Neumann et al., “Identifying Runtime Issues in Object-Oriented IEC 61131-3-Compliant Control Software

using Metrics,” in Annual Conference of the IEEE Industrial Electronics Society (IECON), Singapore, Singapore,

2020, pp. 259–266.

[16] Tarcísio G. S. Filó, “A Catalogue of Thresholds for Object-Oriented Software Metrics,” pp. 48–55, 2015. [Online].

Available: http://personales.upv.es/thinkmind/dl/conferences/softeng/softeng_2015/softeng_2015_3_10_

55070.pdf

[17] T. L. Alves, J. P. Correia, and J. Visser, “Benchmark-Based Aggregation of Metrics to Ratings,” in Joint Conf. of

the 21st Int. Workshop on Software Measurement and the 6th Int. Conf. on Software Process and Product

Measurement, Nara, Japan, 2011, pp. 20–29.

[18] Vector Informatik GmbH, Squore: Analytics for Projects Monitoring. [Online]. Available: https://www.vector.com

/int/en/products/products-a-z/software/squore/ (accessed: Jul. 18 2023).

[19] A. H. Watson and T. J. McCabe, “Structured Testing: A Testing Methodology Using the Cyclomatic Complexity

Metric,” 1996.

[20] embold, Metric Thresholds. [Online]. Available: https://docs.embold.io/de/metric-thresholds/ (accessed: Jul. 18

2023).

[21] PHP, Mess Detector - Code Size Rules. [Online]. Available: https://phpmd.org/rules/codesize.html

[22] G. J. Holzmann, “The Power of Ten - Rules for Developing Safety Critical Code,” 2006.

[23] R. Shatnawi, “Deriving metrics thresholds using log transformation,” Journal of Software: Evolution and Process,

vol. 27, no. 2, pp. 95–113, 2015.

[24] L. Roseberg, R. Stapko, and A. Gallo, “Risk-based Object Oriented Testing,” 1999. [Online]. Available: https://

citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0cadbbdc244f38e4dfbae022b5e5e3fdc8249dd0

[25] S. Herbold, J. Grabowski, and S. Waack, “Calculation and optimization of thresholds for sets of software metrics,”

Empirical Software Engineering, vol. 16, no. 6, pp. 812–841, 2011.

[26] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from benchmark data,” in IEEE International

Conference on Software Maintenance (ICSM), Timișoara, Romania, 2010.

[27] SIG/TÜViT, Evaluation Criteria Trusted Product Maintainability: Guidance for producers (V15.0). [Online].

Available: https://www.softwareimprovementgroup.com/software-analysis/

 PLCopen
®

for efficiency in automation

 total number of pages: 65

Appendix 1 Table to map available metrics and software quality attributes

LEGEND

++ strong positive correlation between metric value and quality attribute

+ rather positive correlation between metric value and quality attribute
O neutral - no correlation between metric and quality attribute

- rather negative correlation between metric value and quality attribute (higher metric values indicate that quality attribute is less fulfilled)

-- strong negative correlation between metric value and quality attribute (higher metric values indicate that quality attribute is less fulfilled)

Size Metrics

CODESYS Group

Schneider Electric –

EcoStruxure Machine Advisor Code Analysis

Schneider Electric – Control Engineering

– Verification (formerly Itris PLC

Checker)

Software Improvement Group Sigrid R
e
li

a
b
il

it
y

E
ff

ic
ie

n
cy

M
a
in

ta
in

a
b

il
it

y

R
e
u

sa
b
il

it
y

T
e
st

a
b

il
it

y

Metric Description Metric Description Metric Description Metric Description

NOS Number of

statements.

 Number of

instructions

Number of instructions

(Affect, Conditional

instruction, loop

instructions, break

instructions) in a given

POU.

 o o - - -

 Lines Of

Code

(LOC)

Counts the number of source code

lines of a program.

 Unit size Lines of Code (LoC) per

unit (function, function

block, network, etc. –

based on programming

language). For visual

languages each element

(in the diagram) is

counted as one LoC.

o o - - -

Code Size,

Variable

Size

Number of

bytes.

Memory

Size (Data)

Measures amount of memory

allocation and processing for each

instantiation of a complex type (type

information and variables).

Memory size Number of bits required. o - o o o

 Number Of

Actions

Information about how many actions

are attached to a program or a

function block.

plcobjecttype

counter

For every kind of PLC

supported by the

technology, the tooling

counts the number of

elements found in the

 o - + o +

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 57/65

CODESYS Group

Schneider Electric –

EcoStruxure Machine Advisor Code Analysis

Schneider Electric – Control Engineering

– Verification (formerly Itris PLC

Checker)

Software Improvement Group Sigrid R
e
li

a
b
il

it
y

E
ff

ic
ie

n
cy

M
a
in

ta
in

a
b

il
it

y

R
e
u

sa
b
il

it
y

T
e
st

a
b

il
it

y

Metric Description Metric Description Metric Description Metric Description

application (function

block, function, program,

section SR, routine, etc.).

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 58/65

Language-specific Size Metrics

CODESYS Group

Schneider Electric –

EcoStruxure Machine Advisor Code Analysis

Schneider Electric – Control Engineering

– Verification (formerly Itris PLC

Checker) Software Improvement Group Sigrid R
e
li

a
b
il

it
y

E
ff

ic
ie

n
cy

M
a
in

ta
in

a
b

il
it

y

R
e
u

sa
b
il

it
y

T
e
st

a
b

il
it

y

Metric Description Metric Description Metric Description Metric Description

SFC

branches

Number of

SFC

branches.

 nbofbranches Number of Branches in a

given SFC routine.

 -- o -- - --

SFC steps Number of

SFC steps.

 - o - - -

 Number Of

FBD

Networks

Information about how many

networks are available in an FBD

implemented program, function

block, function, method, or property.

 - o - - -

 Halstead

Complexity

for FBD

Static testing method that analyzes

the source code by breaking it down

into tokens, classifying them, and

counting them as operators or

operands.

- o - - -

 Number Of

Transitions

Information about how many

transitions are attached to a program

or a function block.

 - o - - -

 g7height Height of a given SFC

routine counting each

state and transition as

one and divergence as no

height.

 - o - - -

 g7width Maximum width of a

given SFC routine in

term of number of

branches at the same

level.

 - o - - -

Variables and POU Interfaces

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 59/65

CODESYS Group

Schneider Electric –

EcoStruxure Machine Advisor Code Analysis

Schneider Electric – Control Engineering

– Verification (formerly Itris PLC

Checker)

Software Improvement Group Sigrid R
e
li

a
b
il

it
y

E
ff

ic
ie

n
cy

M
a
in

ta
in

a
b

il
it

y

R
e
u

sa
b
il

it
y

T
e
st

a
b

il
it

y

Metric Description Metric Description Metric Description Metric Description

Global Number of

different global

variables.

Number Of

GVL

Usages

Information about how many global

variables a programming object

(programs, function blocks,

functions, methods, etc.) uses

(reading or writing).

extvarref Number of external

references in a POU (not a

param, nor a local var).

 - - -- -- o

I/Os Number of

direct object

accesses.

 o o o - -

Local Number of

local variables.

Number Of

Variables

Information about how many

variables are defined in the

declaration part of programs, function

blocks, functions, methods, property

Get or Set, transitions, global variable

lists, etc.

 o - o o o

Inputs Number of

input variables.

 inputcount Number of input

parameters of a given

POU.

 o o - o -

Outputs Number of

output

variables.

 outputcount Number of output

parameters of a given

POU.

 o o - o -

 nbofparam Number of parameters (In,

Out and InOut) of a given

POU.

Unit

interfacing

Number of parameters

(In, Out and InOut) of a

given POU.

o o - o -

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 60/65

Code Documentation

CODESYS Group

Schneider Electric –

EcoStruxure Machine Advisor Code Analysis

Schneider Electric – Control Engineering

– Verification (formerly Itris PLC

Checker) Software Improvement Group Sigrid R
e
li

a
b
il

it
y

E
ff

ic
ie

n
cy

M
a
in

ta
in

a
b

il
it

y

R
e
u

sa
b
il

it
y

T
e
st

a
b

il
it

y

Metric Description Metric Description Metric Description Metric Description

Comments Percentage of

comments.

Source Code

Comment

Ratio

Calculates the %-ratio between

CLOC (Comment Lines Of Code)

and SLOC (Source Lines Of

Code) of the implementation part

of an object.

percentage

of comment

Global ratio for the whole

application.

 o o ++ o o

 Commented

Variables

(All) Ratio

This metric calculates the %-ratio

between commented and not

commented variables in an object.

result of

Verification

tool

 o o ++ o o

 Commented

Variables (In

+ Out +

Global) Ratio

Calculates the %-ratio between

commented and not commented

variables that are defined in

VAR_GLOBAL, VAR_INPUT,

VAR_OUTPUT, or

VAR_IN_OUT.

 o o ++ o o

 Number Of

Multiline

Comments

Counts the multiline comments in

an object.

 o o ++ o o

 Number Of

Header

Comment

Lines

Counts the number of comments

in the header of the declaration

part.

 o o ++ o o

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 61/65

OO-IEC Elements

CODESYS Group

Schneider Electric –

EcoStruxure Machine Advisor Code Analysis

Schneider Electric – Control Engineering

– Verification (formerly Itris PLC

Checker)

Software Improvement Group Sigrid R
e
li

a
b
il

it
y

E
ff

ic
ie

n
cy

M
a
in

ta
in

a
b

il
it

y

R
e
u

sa
b
il

it
y

T
e
st

a
b

il
it

y

Metric Description Metric Description Metric Description Metric Description

DIT Depth of

inheritance tree.

 o o - ++ +

NOC Number of

children.

Extended By Information about how often a

function block or an interface is

extended by another function

block or interface.

 o o - ++ +

 Extends Information about how many

interfaces are extended by a

function block or an interface.

 o o - ++ +

RFC Response for

class.

 o o -- - --

CBO Coupling between

objects.

 Component

coupling

Degree to which

architectural components
are depended on and

depend on other

components that make up
a system.

- o - -- --

LCOM Lack of cohesion

in methods.

 Component

cohesion
(rating refers

to inverted

value, cf.
CODESYS

metric)

degree to which

architectural components
encapsulate specific

business responsibilities /

functionality within the
system.

o o - - -

 Implemented

By

Information about how often an

interface is implemented by a

function block.

 o o o + +

 Implements Information about how many

interfaces are implemented by a

function block.

 o - o + +

 Number Of

Methods

Information about how many

methods are attached to a program

or a function block.

 o - + + +

 Number Of

Properties

Information about how many

properties are attached to a

program or a function block.

 o - + + +

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 62/65

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 63/65

Software Complexity

CODESYS Group

Schneider Electric –

EcoStruxure Machine Advisor Code Analysis

Schneider Electric – Control Engineering

– Verification (formerly Itris PLC

Checker) Software Improvement Group Sigrid R
e
li

a
b
il

it
y

E
ff

ic
ie

n
cy

M
a
in

ta
in

a
b

il
it

y

R
e
u

sa
b
il

it
y

T
e
st

a
b

il
it

y

Metric Description Metric Description Metric Description Metric Description

HL

(Halstead)

Halstead

length (HL).

 length - o - - -

HV

(Halstead)

Halstead

volume

(HV).

 volume - o - - -

D

(Halstead)

Halstead

difficulty

(D).

Halstead

Complexity

(for ST and

FBD)

Static testing method that analyzes

the source code by breaking it down

into tokens, classifying them, and

counting them as operators or

operands.

difficulty

 - o -- - --

McCabe McCabe

complexity.

Cyclomatic

Complexity

Measure the complexity of a program

by counting the number of linearly

independent paths in the source code.

vg Unit

complexity

McCabe Cyclomatic

Complexity per unit

(function, function block,

network, etc. – based on

programming language).

For visual languages, an

element with multiple

outgoing edges counts as

branching points in the

flow.

- o -- - --

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 64/65

Information Exchange

CODESYS Group

Schneider Electric –

EcoStruxure Machine Advisor Code Analysis

Schneider Electric – Control Engineering

– Verification (formerly Itris PLC

Checker) Software Improvement Group Sigrid R
e
li

a
b
il

it
y

E
ff

ic
ie

n
cy

M
a
in

ta
in

a
b

il
it

y

R
e
u

sa
b
il

it
y

T
e
st

a
b

il
it

y

Metric Description Metric Description Metric Description Metric Description

Calls Number of calls Call In Information about who is calling a

method, function, function block, etc.

calledcount Number of reference

calls to a given POU.

 + o o ++ o

 Call Out Information about which other

objects (method, function, function

block, etc.) are called by the POU.

callproc Number of POU calls

done in a given POU. No

distinction is done

between user code POUs

and system POUs.

 o - o + +

 Number Of

Writes

Information about which variables

are written.

maxmemwrite Maximum number (in

case of a structure with

different members) of

write done to the

corresponding memory

cell.

 o o o o -

 Number Of

Reads

Information about which variables

are read.

minmemwrite Minimum number (in

case of a structure with

different members) of

write done to the

corresponding memory

cell.

 o o o o -

 Fan Out Information about how many

outgoing dependencies (reads, writes,

calls, etc.) a node in the analysis data

model (Dependency Model) has.

 o o -- - --

Reuse Indicators

PLCopen
®

for efficiency in automation

PLCopen Guidelines November 07, 2023 © PLCopen (2023)

Software Quality Metrics Version 1.0 page 65/65

CODESYS Group

Schneider Electric –

EcoStruxure Machine Advisor Code Analysis

Schneider Electric – Control Engineering

– Verification (formerly Itris PLC

Checker) Software Improvement Group Sigrid R
e
li

a
b
il

it
y

E
ff

ic
ie

n
cy

M
a
in

ta
in

a
b

il
it

y

R
e
u

sa
b
il

it
y

T
e
st

a
b

il
it

y

Metric Description Metric Description Metric Description Metric Description

 Number Of

Library

References

Information about how many libraries

are directly referenced by an

application or POU space.

 + o o o o

 calldepthmin Minimum depth level of

a calling stack.

 - o - - -

 calldepthmax Maximum depth of

calling stack (disclaimer:

not calculable for

recursion).

 - o - - -

 Clone ratio Ratio of

cloned code

given in

percent.

 Duplication The ratio of duplication

(and/or redundancy) in a

codebase caused by exact

copy-paste patterns.

- o -- - -

	1. Motivation and Introduction
	2. How to Use This Document
	2.1. Aspects to Consider When Using This Guideline
	2.2. Structure of the Guideline

	3. Software Quality Measurement Using Metrics - Terms and Definitions
	3.1. Software Quality and Software Quality Attributes
	3.2. Software Quality Metrics
	3.3. Terms and Definitions

	4. Software Development Workflow
	4.1. Typical workflow for PLC software development
	4.2. Use Cases in the Workflow to Apply Software Quality Measurement
	4.2.1 Use Case 1: Continuous quality checks of POUs during software development
	4.2.2 Use Case 2: Comparison of code before and after commissioning
	4.2.3 Use Case 3: Plant / Machine audit after project has been finished
	4.2.4 Further Use Cases supported by metrics

	5. Recommendations on How to Use Metrics in Industrial PLC Software Development
	5.1. Recommendation: Metric-based Assessment of Maintainability
	5.2. Recommendation: Metric-based Assessment of Reusability
	5.3. Recommendation: Metric-based Assessment of Testability
	5.4. Recommendation: Metric-based Assessment of Efficiency
	5.5. Recommendation: Metric-based Assessment of Reliability

	6. Threshold Values and Metric Application to Large-scale Industrial PLC Software Projects
	References
	Appendix 1 Table to map available metrics and software quality attributes

