
PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 1/ 141

Technical Specification
PLCopen - Technical Committee 2 – Task Force

Function blocks for motion control
(Formerly Part 1 and Part 2)

Version 2.0, Published

DISCLAIMER OF WARANTIES

THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS AND MAY BE SUBJECT TO FUTURE ADDITIONS,
MODIFICATIONS, OR CORRECTIONS. PLCOPEN HEREBY DISCLAIMS ALL WARRANTIES OR
CONDITIONS OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES, OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE, FOR THIS DOCUMENT. IN NO EVENT WILL PLCOPEN BE RESPONSIBLE FOR
ANY LOSS OR DAMAGE ARISING OUT OR RESULTING FROM ANY DEFECT, ERROR OR OMISSION IN
THIS DOCUMENT OR FROM ANYONE’S USE OF OR RELIANCE ON THIS DOCUMENT.

Copyright © 2009 – 2011 by PLCopen. All rights reserved.

March 17, 2011.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 2/ 141

Function blocks for motion control

The following specification has been developed within the PLCopen Motion Control Task Force.
This specification was written by the following members of the Motion Control Task Force:

Nils Gotha Baumüller
Klaus Bernzen Beckhoff
Wilfried Plaß Beckhoff
Joachim Unfried B&R
Martin Schrott B&R
Roland Schaumburg Danfoss
Jan Braun Eckelmann
Alfred Möltner Elau/Schneider Electric
Ryszard Bochniak 2MC-Software (Eckelmann)
Djafar Hadiouche GE
Juergen Hipp ISG
Harald Buchgeher Keba
Candido Ferrio Omron
Josep Lario Omron
Yoshikazu Tachibana Omron
Klas Hellmann Phoenix Contact
Jan Kosa Phoenix Contact
Burkhard Werner Phoenix Contact
Wolfgang Fien Schneider Motion (former Berger Lahr)
Willi Gagsteiger Siemens AG
Hilmar Panzer 3S-Smart Software Solutions
Edwin Schwellinger 3S-Smart Software Solutions
Lutz Augenstein Stöber Antriebstechnik
Heiko Berner Stöber Antriebstechnik
Eelco van der Wal PLCopen

Change Status List:

Version
number

Date Change comment

V 0.1 September 26, 2008 First working draft. Merging of part 1 and 2, and the corrigendum.
V 0.2 January 6, 2010 As result of the meeting in Frankfurt on November 9 & 10, 2009
V 0.3 February 4, 2010 As result of the meeting in Bad Pyrmont, Feb. 3&4, 2010. Open issues

discussed
V 0.4 April 1, 2010 As result of the meeting in Frankfurt, March 17 & 18, 2010. Feedback for

Version 1.99 included. Basis for editorial corrections before release as V.
1.99. Document file errors cleaned via docx conversion.

V 1.99 May 21, 2010 Published as Release for Comments
V 1.99A Dec. 14, 2010 As results of the feedback of several meetings
V 1.99B Jan. 31, 2011 As a result of the feedback and the Jan. webmeeting
V 1.99C Feb. 27, 2011 As a result of the Feb. webmeeting
V 1.99D March 16, 2011 As result of the March webmeeting. Last version before release
V 2.0 March 17, 2011 Official release

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 3/ 141

Table of Contents

1. GENERAL...8

1.1. OBJECTIVES ...9
1.1.1. Language context goals ..9
1.1.2. Definition of a set of Function Blocks...9
1.1.3. Overview of the defined Function Blocks ...10
1.1.4. Compliance and Portability..10
1.1.5. Length of names and ways to shorten them ..11
1.1.6. History ..11

2. MODEL ...13

2.1. THE STATE DIAGRAM ..13
2.2. ERROR HANDLING..16

2.2.1. Centralized versus Decentralized ...16
2.2.2. Buffered Commands..17
2.2.3. Timing example for the ‘Enable’ input ...17

2.3. DEFINITIONS ..19
2.4. FB INTERFACE ...19

2.4.1. General rules ..19
2.4.2. Aborting versus Buffered modes ...22
2.4.3. AXIS_REF Data type ..24
2.4.4. Technical Units ...24
2.4.5. Why the command input is edge sensitive...25
2.4.6. The input ‘ContinuousUpdate’ ...25

2.5. EXAMPLE 1: THE SAME FUNCTION BLOCK INSTANCE CONTROLS DIFFERENT MOTIONS OF AN AXIS26
2.6. EXAMPLE 2: DIFFERENT FUNCTION BLOCK INSTANCES CONTROL THE MOTIONS OF AN AXIS27

3. SINGLE-AXIS FUNCTION BLOCKS...29

3.1. MC_POWER ...29
3.2. MC_HOME ...30
3.3. MC_STOP...31
3.4. MC_HALT ..33
3.5. MC_MOVEABSOLUTE ..35
3.6. MC_MOVERELATIVE ...37
3.7. MC_MOVEADDITIVE ...39
3.8. MC_MOVESUPERIMPOSED...41
3.9. MC_HALTSUPERIMPOSED ..44
3.10. MC_MOVEVELOCITY...45
3.11. MC_MOVECONTINUOUSABSOLUTE ...47
3.12. MC_MOVECONTINUOUSRELATIVE ..50
3.13. MC_TORQUECONTROL ..53
3.14. MC_POSITIONPROFILE ...56
3.15. MC_VELOCITYPROFILE..58
3.16. MC_ACCELERATIONPROFILE ...60
3.17. MC_SETPOSITION ..63
3.18. MC_SETOVERRIDE ..64
3.19. MC_READPARAMETER & MC_READBOOLPARAMETER..66
3.20. MC_WRITEPARAMETER & MC_WRITEBOOLPARAMETER ..68
3.21. MC_READDIGITALINPUT ...70
3.22. MC_READDIGITALOUTPUT ..71
3.23. MC_WRITEDIGITALOUTPUT ..72
3.24. MC_READACTUALPOSITION ..73
3.25. MC_READACTUALVELOCITY ..74
3.26. MC_READACTUALTORQUE ...75
3.27. MC_READSTATUS..76
3.28. MC_READMOTIONSTATE ..77

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 4/ 141

3.29. MC_READAXISINFO ..78
3.30. MC_READAXISERROR ...79
3.31. MC_RESET...80
3.32. MC_DIGITALCAMSWITCH..81
3.33. MC_TOUCHPROBE...85
3.34. MC_ABORTTRIGGER..87

4. MULTI-AXIS FUNCTION BLOCKS ..88

4.1. REMARKS TO CAMMING ...88
4.2. MC_CAMTABLESELECT...90
4.3. MC_CAMIN..91
4.4. MC_CAMOUT ..93
4.5. MC_GEARIN ..94
4.6. MC_GEAROUT...96
4.7. MC_GEARINPOS ..97
4.8. MC_PHASINGABSOLUTE ..101
4.9. MC_PHASINGRELATIVE ...104
4.10. MC_COMBINEAXES ...105

5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH ‘ABORTING’ VERSUS ‘BLENDING’.109

5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM ...110
5.2. SOLUTION WITH SEQUENTIAL FUNCTION CHART ..110

APPENDIX A. EXAMPLES OF THE DIFFERENT BUFFER MODES..111

APPENDIX B. COMPLIANCE PROCEDURE AND COMPLIANCE LIST...118

APPENDIX B 1. STATEMENT OF SUPPLIER ..119
APPENDIX B 2. SUPPORTED DATA TYPES...120
APPENDIX B 3. OVERVIEW OF THE FUNCTION BLOCKS..121
APPENDIX B 4. THE PLCOPEN MOTION CONTROL LOGO AND ITS USAGE ...141

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 5/ 141

Table of Figures

FIGURE 1: THE TRIANGLE WITH USER OPTIONS ..8

FIGURE 2: FB STATE DIAGRAM..15

FIGURE 3: FUNCTION BLOCKS WITH CENTRALIZED ERROR HANDLING...16

FIGURE 4: FUNCTION BLOCKS WITH DECENTRALIZED ERROR HANDLING ...16

FIGURE 5: EXAMPLE OF ERROR HANDLING WITH ‘ENABLE’ INPUT..17

FIGURE 6: SECOND EXAMPLE OF AN ERROR BEHAVIOR WITH AN ‘ENABLE’ INPUT.........................18

FIGURE 7: THE BEHAVIOR OF THE ‘EXECUTE’ / ‘DONE’ IN RELEVANT FBS ..21

FIGURE 8: THE BEHAVIOR OF THE ‘EXECUTE’ / ‘INXXX’ IN RELEVANT FBS...22

FIGURE 9: FUNCTION BLOCKS TO PERFORM A COMPLEX MOVEMENT ..25

FIGURE 10: SINGLE FB USAGE WITH A SFC ...26

FIGURE 11: TIMING DIAGRAM FOR A USAGE OF A SINGLE FB ...27

FIGURE 12: EXAMPLE OF CASCADED FUNCTION BLOCKS ..27

FIGURE 13: TIMING DIAGRAM OF EXAMPLE CASCADED FUNCTION BLOCKS28

FIGURE 14: EXAMPLE OF CASCADED FUNCTION BLOCKS WITH LD..28

FIGURE 15: MC_STOP TIMING DIAGRAM ...31

FIGURE 16: BEHAVIOR OF MC_STOP IN COMBINATION WITH MC_MOVEVELOCITY........................32

FIGURE 17: EXAMPLE OF MC_HALT ..34

FIGURE 18: TIMING DIAGRAM FOR MC_MOVEABSOLUTE ..36

FIGURE 19: TIMING DIAGRAM FOR MC_MOVERELATIVE ...38

FIGURE 20: TIMING DIAGRAM FOR MC_MOVEADDITIVE..40

FIGURE 21: TIMING DIAGRAM FOR MC_MOVESUPERIMPOSED ..42

FIGURE 22: EXAMPLE OF THE EFFECT OF MC_MOVESUPERIMPOSED ON A SLAVE AXIS................43

FIGURE 23: EXAMPLE OF THE EFFECT OF MC_MOVESUPERIMPOSED ON MC_MOVEABSOLUTE.43

FIGURE 24: MC_MOVEVELOCITY TIMING DIAGRAM ..46

FIGURE 25: EXAMPLE MC_MOVECONTINUOUSABSOLUTE ...49

FIGURE 26: MC_MOVECONTINUOUSABSOLUTE TIMING DIAGRAM FOR EXAMPLE ABOVE49

FIGURE 27: MC_MOVECONTINUOUSRELATIVE TIMING DIAGRAM WITH POSITIVE DIRECTION..51

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 6/ 141

FIGURE 28: MC_MOVECONTINUOUSRELATIVE TIMING DIAGRAM WITH NEGATIVE DIRECTION51

FIGURE 29: EXAMPLE OF MC_MOVECONTINUOUSRELATIVE..52

FIGURE 30: FIRST EXAMPLE OF MC_TORQUECONTROL..54

FIGURE 31: PROGRAM OF EXAMPLE OF MC_TORQUECONTROL..55

FIGURE 32: SECOND EXAMPLE OF MC_TORQUECONTROL...55

FIGURE 33: EXAMPLE OF TIME / MC_POSITIONPROFILE...57

FIGURE 34: MC_ACCELERATIONPROFILE, 10 SEGMENTS ONLY ...61

FIGURE 35: RESULTING MC_POSITIONPROFILE..62

FIGURE 36: GRAPHICAL EXPLANATION OF MC_SETOVERRIDE ..65

FIGURE 37: EXAMPLE OF MC_DIGITALCAMSWITCH...83

FIGURE 38: DETAILED DESCRIPTION OF SWITCH01...83

FIGURE 39: EXAMPLE IN NEGATIVE DIRECTION ..84

FIGURE 40: TIMING EXAMPLE MC_TOUCHPROBE ...86

FIGURE 41: EXAMPLES OF WINDOWS, WHERE TRIGGER EVENTS ARE ACCEPTED (FOR MODULO
AXES) ..86

FIGURE 42: CAM PROFILE ILLUSTRATION..88

FIGURE 43: GEAR TIMING DIAGRAM...95

FIGURE 44: TIMING DIAGRAM OF MC_GEARINPOS ...99

FIGURE 45: EXAMPLE OF THE DIFFERENCE BETWEEN ‘SYNCMODES’ ‘SLOWDOWN’ (GREEN) AND
‘CATCHUP’ (RED) WITH DIFFERENT INITIAL VELOCITIES OF THE SLAVE....................................99

FIGURE 46: EXAMPLE OF MC_GEARINPOS WHERE THE INITIAL VELOCITY OF THE SLAVE IS IN
THE SAME DIRECTION OF THE MASTER..100

FIGURE 47: EXAMPLE OF MC_GEARINPOS WHERE THE INITIAL VELOCITY OF THE SLAVE IS IN
THE INVERSE DIRECTION OF THE MASTER..100

FIGURE 48: TIMING EXAMPLE OF MC_PHASING – BOTH FOR ABSOLUTE AND RELATIVE102

FIGURE 49: EXAMPLE OF MC_PHASING – BOTH FOR ABSOLUTE AND RELATIVE.............................103

FIGURE 50: APPLICATION EXAMPLE OF MC_COMBINEAXES...107

FIGURE 51: THE CORRESPONDING TIMING DIAGRAM FOR MC_COMBINEAXES EXAMPLE..........108

FIGURE 52: EXAMPLE OF A SIMPLE DRILLING UNIT ...109

FIGURE 53: TIMING DIAGRAMS FOR DRILLING. LEFT SIDE NO BLENDING, RIGHT SIDE WITH
BLENDING...109

FIGURE 54: SOLUTION WITH FUNCTION BLOCK DIAGRAM ..110

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 7/ 141

FIGURE 55: STRAIGHT FORWARD STEP-TRANSITION CHAIN FOR DRILLING EXAMPLE IN SFC ..110

FIGURE 56: BASIC EXAMPLE WITH TWO MC_MOVEABSOLUTE ON SAME AXIS111

FIGURE 57: TIMING DIAGRAM FOR EXAMPLE ABOVE WITHOUT INTERFERENCE BETWEEN FB1
AND FB2 (‘ABORTING’ MODE) ..111

FIGURE 58: TIMING DIAGRAM FOR EXAMPLE ABOVE WITH FB2 INTERRUPTING FB1 (‘ABORTING’
MODE) ..112

FIGURE 59: TIMING DIAGRAM FOR EXAMPLE ABOVE IN ‘BUFFERED’ MODE113

FIGURE 60: TIMING DIAGRAM FOR EXAMPLE ABOVE WITH MODE ‘BLENDINGLOW’....................114

FIGURE 61: TIMING DIAGRAM FOR EXAMPLE ABOVE WITH MODE ‘MERGING1’.............................115

FIGURE 62: TIMING DIAGRAM FOR EXAMPLE ABOVE WITH MODE ‘BLENDINGNEXT’ MOTION.116

FIGURE 63: TIMING DIAGRAM FOR EXAMPLE ABOVE WITH MODE ‘BLENDINGHIGH’ MOTION.117

FIGURE 64: THE PLCOPEN MOTION CONTROL LOGO ...141

Table of Tables

TABLE 1: OVERVIEW OF THE DEFINED FUNCTION BLOCKS...10

TABLE 2: GENERAL RULES..21

TABLE 3: THE ENUM TYPE MC_BUFFER_MODE ..23

TABLE 4: OVERVIEW OF THE BUFFERED COMMANDS ON THE RELEVANT FBS..................................23

TABLE 5: PARAMETERS FOR MC_READPARAMETER AND MC_WRITEPARAMETER67

TABLE 6: SUPPORTED DATATYPES ..120

TABLE 7: SUPPORTED DERIVED DATATYPES ...120

TABLE 8: SHORT OVERVIEW OF THE FUNCTION BLOCKS...121

TABLE 9: PARAMETERS FOR MC_READ(BOOL)PARAMETER AND MC_WRITE(BOOL)PARAMETER130

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 8/ 141

1. General

The motion control market displays a wide variety of incompatible systems and solutions. In businesses where different
systems are used, this incompatibility induces considerable costs for the end-users, learning is confusing, engineering
becomes difficult, and the process of market growth slows down.
Standardization would certainly reduce these negative factors. Standardization means not only the programming lan-
guages themselves, (as standardization is achieved using the worldwide IEC 61131-3 standard) but also standardizing
the interface towards different motion control solutions. In this way the programming of these motion control solutions
is less hardware dependent. The reusability of the application software is increased, and the costs involved in training
and support are reduced.

Users have requested that PLCopen helps to solve this problem, which initiated the Motion Control Task Force. This
Task Force has defined the programmer’s interface by standardizing the Function Blocks for Motion Control.

Figure 1: The triangle with user options

For the positioning of this activity, please check figure 1. This triangle has the following user options at its corners:

 Performance
 Functionality
 Standardization.

In practice, users write their programs very closely coupled to the hardware with dedicated functions, in order to get the
highest performance possible as dictated by their environment. This limits the user in his options with respect to the
target hardware and the reusability of the control software and raises the training investment.
The second user option enables a very broad range of software functionality to be offered. This can be very helpful to
the user, but will seldom lead to high performance. Also the training costs are increased.
The third corner, standardization, is primarily focused on reusability across different systems from different suppliers,
including integrated, distributed and networked systems, as well as reduction in training investments. Due to the general
character of this definition, the performance on different architectures can be less optimal than hard coding. Due to this,
standardization should not be expected to offer maximum performance but can closely approach maximum functional-
ity, meaning that the bottom of the triangle is very short.

The first specification was released as an independent library of function blocks for motion control. It included motion
functionality for single axes and multiple axes, several administrative tasks, as well as a state diagram. This specifica-
tion provides the user with a standard command set and structure independent of the underlying architecture.
This structure can be used on many platforms and architectures. In this way one can decide which architecture will be
used at a later stage of the development cycle. Advantages for the machine builder are, amongst others, lower costs for
supporting the different platforms and the freedom to develop application software in a more independent way, without
limiting the productivity of the machine. In addition to those benefits, system maintenance is easier and the education
period is shorter. This is a major step forward, and is more and more accepted by users as well as suppliers.

With the release of part 1, it was understood that additional functionality was needed. Part 1 provides the basis for a set

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 9/ 141

of inter-related specifications:

Part 1 - PLCopen Function Blocks for Motion Control
Part 2 - PLCopen Motion Control - Extensions, which in the new release 2.0 is merged with Part 1
Part 3 - PLCopen Motion Control - User Guidelines
Part 4 - PLCopen Motion Control – Coordinated Motion
Part 5 - PLCopen Motion Control - Homing Extensions
Part 6 - PLCopen Motion Control –Fluid Power Extensions

With the release of the underlying document, Part 1 – PLCopen Function Blocks for Motion Control version 2.0, Part 2
– PLCopen Motion Control Extensions has been integrated into the Basic document
The PLCopen Motion Control User Guidelines, Part 3, is an addition to the PLCopen Function Blocks for Motion Con-
trol, and should not be seen as stand alone document.

1.1. Objectives

The Motion Control Function Blocks are applicable in the IEC 61131-3 languages with following factors in considera-
tion:

1 Simplicity - ease of use, towards the application program builder and installation & maintenance
2 Efficiency - in the number of Function Blocks, directed to efficiency in design (and understanding)
3 Consistency - conforming to IEC 61131-3 standard
4 Universality - hardware independent
5 Flexibility - future extensions / range of application
6 Completeness - not mandatory but sufficiently

1.1.1. Language context goals
 Focus on definition of Function Block interfaces and behavior and the data types according to the IEC 61131-3

specification.
 These Function Blocks and data types can be used in all IEC 61131-3 languages.
 The examples in this document are given informatively in textual and graphical IEC 61131-3 languages.
 The contents of the Function Blocks can be implemented in any programming language (e.g. IEC 61131-3 ST, C) or

even in firmware or hardware. Therefore the content should not be expected to be portable across platforms.
 Reusable applications composed from these Function Blocks and data types are simplified using PLCopen exchange

standards.
 This specification shall be seen as an open framework without hardware dependencies. It provides openness in the

implementation on different platforms such as fully integrated, centralized or distributed systems. The actual imple-
mentation of the Function Blocks themselves is out of the scope of this standard.

1.1.2. Definition of a set of Function Blocks
A basic problem concerns the granularity or modularity of the standardized Function Blocks. The extremes are one
Function Block per axis versus a command level functionality. The objectives stated above can be achieved more easily
by a modular design of the Function Blocks. Modularity creates a higher level of scalability, flexibility and re-
configurability. Large-scale blocks (Derived Function Blocks) can then be created from these, e.g. the whole axis, for
ease of application program building and browsing.
If feasible, a Function Block specified here could be implemented as a Function (for instance MC_ReadParameter).

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 10/ 141

1.1.3. Overview of the defined Function Blocks
The following table gives an overview of the defined Function Blocks, divided into administrative (not driving motion)
and motion related sets.

Administrative Motion
Single Axis Multiple Axis Single Axis Multiple Axis

MC_Power MC_CamTableSelect MC_Home MC_CamIn
MC_ReadStatus MC_Stop MC_CamOut
MC_ReadAxisError MC_Halt MC_GearIn
MC_ReadParameter MC_MoveAbsolute MC_GearOut
MC_ReadBoolParameter MC_MoveRelative MC_GearInPos
MC_WriteParameter MC_MoveAdditive MC_PhasingAbsolute
MC_WriteBoolParameter MC_MoveSuperimposed MC_PhasingRelative
MC_ReadDigitalInput MC_MoveVelocity MC_CombineAxis
MC_ReadDigitalOutput MC_MoveContinuousAbsolute
MC_WriteDigitalOutput MC_MoveContinuousRelative
MC_ReadActualPosition MC_TorqueControl
MC_ReadActualVelocity MC_PositionProfile
MC_ReadActualTorque MC_VelocityProfile
MC_ReadAxisInfo MC_AccelerationProfile
MC_ReadMotionState
MC_SetPosition
MC_SetOverride
MC_TouchProbe
MC_DigitalCamSwitch
MC_Reset
MC_AbortTrigger
MC_HaltSuperimposed

Table 1: Overview of the defined Function Blocks

1.1.4. Compliance and Portability
The objective of this work is to achieve a level of portability for Motion Control Function Blocks acting on an axis, and
providing the same functionality to the user as described within this document, with respect to user interface, input /
output variables, parameters and units used.
The possibility of combining several MC libraries from different vendors within one application is left open to be
solved by the systems integrator or end user.
An implementation which claims compliance with this PLCopen specification shall offer a set of (meaning one or more)
Function Blocks for motion control with at least the basic input and output variables, marked as “B” in the defined
tables in the definition of the Function Blocks in this document.
For higher-level systems and future extensions any subset of the extended input and output variables, marked as “E” in
the tables can be implemented.
Vendor specific additions are marked with “V”.
For more specific information on compliance and the usage of the PLCopen Motion Control logo, refer to Appendix B.

- Basic input/output variables are mandatory Marked in the tables with the letter “B”
- Extended input /output variables are optional Marked in the tables with the letter “E”
- Vendor Specific additions Marked in the vendor’s compliance documentation with “V”

Any vendor is allowed to add Vendor Specific parameters to any of the Function Blocks specified within this document.

Note:
According to the IEC 61131-3 specification, the input variables may be unconnected or not parameterized by the user. In this case the Function
Block will use the value from the previous invocation of the Function Block instance or in case of the first invocation the initial value will be used.
Each Function Block input has a defined initial value, which is typically 0.

The data type REAL listed in the Function Blocks and parameters (e.g. for velocity, acceleration, distance, etc.) may be

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 11/ 141

exchanged to SINT, INT, DINT or LREAL without being seen as incompliant to this standard, as long as it is consistent
for the whole set of Function Blocks and parameters.
Implementation allows the extension of data types as long as the basic data type is kept. For example: WORD may be
changed to DWORD, but not to REAL.
Any FBs and inputs that are no longer specified in this new version of the specification can be kept in the vendors’ sys-
tems to keep compatibility, avoiding incompatible changes in existing FBs.

1.1.5. Length of names and ways to shorten them
There are systems that only support a limited number of significant characters in the name. For these rules for shorter
names are provided here. These names are still seen as compliant, although have to be mentioned in the certification
document.

List of rules to shorten names:
Command Cmd
Position Pos
Velocity Vel
Acceleration Acc
Deceleration Decel
Absolute Abs
Relative Rel
Actual Act
Superimposed SupImp
Additive Add
Parameter Par
Continuous Cont
GearRatioDenominatorM1 RatioDenM1
GearRatioNumeratorM1 RatioNumM1

Resulting compliant names as example:
CommandAborted CmdAborted
MC_MoveContinuousRelative MC_MoveContRel
MC_ReadParameter MC_ReadPar

1.1.6. History
The first official release of Part 1 was made in November 2001. Since that time feedback has been received from both
users and implementers. In 2004 it was decided to release a new version, Version 1.1, of Part 1, which includes the
changes resulting from inclusion of the feedback into the specification. This update was published in April 2005.
In September 2005 the first official release of Part 2 – Extensions was published.
After that date, a corrigendum and addendum was maintained for both parts. During 2008 the proposal was accepted to
merge both part 1 and 2 in one new part 1, to be released as version 2.0, the document you are looking at now.
Basically the two sets of function blocks have been merged. In addition, several overall changes were done. These
changes include (however are not limited to):

 The simplification of the representation of the State Diagram, with a.o. the removal of the transition commands
 The new input ‘ContinuousUpdate’ extending the behaviour of the relevant motion related function blocks
 Adopted description resulting in a changed behaviour of the output ‘Active’
 Aborting mode deleted in some FBs
 Changes in the mcAborting enum
 The split of MC_Phasing and MC_MoveContinuous FBs in to relative and absolute versions for both
 New FBs MC_ReadMotionState, MC_ReadAxisInfo, MC_CombineAxes and MC_HaltSuperimposed
 The description at Camming
 The functionality of MC_CamTableSelect is extended with input ‘ExecutionMode’. Description of ‘Peri-

odic’defined more precise.
 The functionality of MC_CamIn is extended with inputs ‘MasterStartDistance’and ‘MasterSyncPosition’.
 New input ‘MasterValueSource’ and corresponding datatype in MC_CamIn, MC_GearIn, MC_GearInPos,

MC_ReadMotionState, and MC_CombineAxes

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 12/ 141

 Input ‘Mode’ of MC_SetPosition now called ‘Relative’ (in line with Part 4)
 Unified naming conventions for Function Blocks, Enum elements, Data types, Structures, Inputs and Outputs for all

PLCopen Motion Control specifications.
 The behaviour of the ‘InVelocity’, ‘InGear’, ‘InTorque’, and ‘InSync’outputs changed after the corresponding SET

value is reached
 FBs MC_ReadAxisInfo, MC_PhasingRelative and MC_PhasingAbsolute added to Function Blocks which are not

listed in the State Diagram
 Description of inputs ‘Axis’, ‘Master’ and ‘Slave’ changed
 Description of outputs ‘Busy’, ‘Error’ and ‘ErrorID’ changed

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 13/ 141

2. Model

The following Function Block (FB) library is designed for the purpose of controlling axes via the language elements
consistent with those defined in the IEC 61131-3 standard. It was decided by the task force that it would not be practical
to encapsulate all the aspects of one axis into only one function block. The retained solution is to provide a set of com-
mand oriented function blocks that have a reference to the axis, e.g. the abstract data type ‘Axis’, which offers flexibil-
ity, ease of use and reusability.
Implementations based on IEC 61131-3 (for instance via Function Blocks and SFC) will be focused towards the inter-
face (look-and-feel / ‘proxy’) of the Function Blocks. This specification does not define the internal operation of the
Function Blocks.
This leads to some consequences that are described in this chapter.

2.1. The State Diagram

The following diagram normatively defines the behavior of the axis at a high level when multiple Motion Control Func-
tion Blocks are «simultaneously» activated. This combination of motion profiles is useful in building a more compli-
cated profile or to handle exceptions within a program. (In real implementations there may be additional states at a low-
er level defined).

The basic rule is that motion commands are always taken sequentially, even if the PLC had the capability of real parallel
processing. These commands act on the axis’ state diagram.

The axis is always in one of the defined states (see diagram below). Any motion command that causes a transition
changes the state of the axis and, as a consequence, modifies the way the current motion is computed.
The state diagram is an abstraction layer of what the real state of the axis is, comparable to the image of the I/O points
within a cyclic (PLC) program.
A change of state is reflected immediately when issuing the corresponding motion command. (Note: the response time
of ‘immediately’ is system dependent, coupled to the state of the axis, or an abstraction layer in the software)

The diagram is focused on a single axis. The multiple axis Function Blocks, MC_CamIn, MC_GearIn and MC_Phasing,
can be looked at, from a state diagram point of view, as multiple single-axes all in specific states. For instance, the
CAM-master can be in the state ‘ContinuousMotion’. The corresponding slave is in the state ‘SynchronizedMotion’.
Connecting a slave axis to a master axis has no influence on the master axis.

Arrows within the state diagram show the possible state transitions between the states. State transitions due to an issued
command are shown by full arrows. Dashed arrows are used for state transitions that occur when a command of an axis
has terminated or a system related transition (like error related). The motion commands which transit the axis to the
corresponding motion state are listed above the states. These motion commands may also be issued when the axis is
already in the according motion state.

Remarks on states:

Disabled The state ‘Disabled’ describes the initial state of the axis.
In this state the movement of the axis is not influenced by the FBs. Power is off and there is no error
in the axis.
If the MC_Power FB is called with ‘Enable’=TRUE while being in ‘Disabled’, the state changes to
‘Standstill’. The axis feedback is operational before entering the state ‘Standstill’.
Calling MC_Power with ‘Enable’=FALSE in any state except ‘ErrorStop’ transfers the axis to the
state ‘Disabled’, either directly or via any other state. Any on-going motion commands on the axis are
aborted (‘CommandAborted’).

ErrorStop ‘ErrorStop’ is valid as highest priority and applicable in case of an error. The axis can have either
power enabled or disabled and can be changed via MC_Power. However, as long as the error is pend-
ing the state remains ‘ErrorStop’.
The intention of the ‘ErrorStop’ state is that the axis goes to a stop, if possible. There is no further
motion command accepted until a reset has been done from the ‘ErrorStop’ state.
The transition to ‘ErrorStop’ refers to errors from the axis and axis control, and not from the Function
Block instances. These axis errors may also be reflected in the output of the Function Blocks ‘FB
instances errors’.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 14/ 141

Standstill Power is on, there is no error in the axis, and there are no motion commands active on the axis.

Remarks on commands:

MC_Stop Calling the FB MC_Stop in state ‘Standstill’ changes the state to ‘Stopping’ and back
to ‘Standstill’ when ‘Execute’ = FALSE. The state ‘Stopping’ is kept as long as the
input ‘Execute’ is true. The ‘Done’ output is set when the stop ramp is finished.

MC_MoveSuperimposed MC_MoveSuperimposed issued in state ‘Standstill’ brings the axis to state ‘Discrete-
Motion’. Issued in any other state the state of the axis is not influenced.

MC_GearOut,
MC_CamOut

Change the state of the slave axis from ‘SynchronizedMotion’ to ‘ContinuousMotion’.
Issuing one of these FBs in any other state generates an error.

Function Blocks which are not listed in the State Diagram do not affect the state of the State Diagram, meaning that
whenever they are called the state does not change. They are:
 MC_ReadStatus
 MC_ReadAxisError
 MC_ReadParameter
 MC_ReadBoolParameter
 MC_WriteParameter
 MC_WriteBoolParameter
 MC_ReadDigitalInput
 MC_ReadDigitalOutput
 MC_WriteDigitalOutput
 MC_ReadActualPosition
 MC_ReadActualVelocity
 MC_ReadActualTorque
 MC_ReadMotionState
 MC_SetPosition
 MC_SetOverride
 MC_AbortTrigger
 MC_TouchProbe
 MC_DigitalCamSwitch
 MC_CamTableSelect
 MC_ReadAxisInfo
 MC_PhasingRelative
 MC_PhasingAbsolute
 MC_HaltSuperimposed

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 15/ 141

Note 1: From any state. An error in the axis occurred.
Note 2: From any state. MC_Power.Enable = FALSE and there is no error in the axis.
Note 3: MC_Reset AND MC_Power.Status = FALSE
Note 4: MC_Reset AND MC_Power.Status = TRUE AND MC_Power.Enable = TRUE
Note 5: MC_Power.Enable = TRUE AND MC_Power.Status = TRUE
Note 6: MC_Stop.Done = TRUE AND MC_Stop.Execute = FALSE

Figure 2: FB State Diagram

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 16/ 141

2.2. Error handling

All access to the drive/motion control is via Function Blocks. Internally these Function Blocks provide basic error
checking on the input data. Exactly how this is done is implementation dependent. For instance, if MaxVelocity is set to
6000, and the Velocity input to a FB is set to 10,000, either the system slows down or an error is generated. In the case
where an intelligent drive is coupled via a network to the system, the MaxVelocity parameter is probably stored on the
drive. The FB has to take care that it handles the error generated by the drive internally. With another implementation,
the MaxVelocity value could be stored locally. In this case the FB will generate the error locally.

2.2.1. Centralized versus Decentralized
Both centralized and decentralized error handling methods are possible when using the Motion Control Function
Blocks.
Centralized error handling is used to simplify programming of the Function Block. Error-reaction is the same independ-
ent of the instance in which the error has occurred.

Figure 3: Function Blocks with centralized error handling

Decentralized error handling gives the possibility of different reactions depending on the Function Block in which an
error occurred.

Figure 4: Function blocks with decentralized error handling

SecondFirst

FB1

Execute

FB2

Execute

AxisAxis

Done Done

& &

Third

FB3

Execute

Axis

Done

ErrorHandling

ReadAxisError

Enable

Axis

True

Second Third
First

FB1

Execute

FB2 FB3

Execute

AxisAxisAxis

Done

Error

ErrorID

Recovery

FB100

Execute

Axis

Done

Error

ErrorID

ErrorHandling

ErrorID

FB200

Execute

Axis

Done

Error

ErrorID

ErrorID

Error

ErrorID

Execute Done

Error

ErrorID

Done

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 17/ 141

2.2.2. Buffered Commands
All buffered commands will be aborted if the applicable axis moves to the state ‘ErrorStop’. The ‘Error’ output of ap-
plicable aborted FBs are SET. Any subsequent commands will be rejected and the error output is SET (action not al-
lowed – see state diagram)
If a FB has an error (for instance due to a wrong set of parameters) the error output is set, and the behavior is depending
on the application program. For instance, with two FBs, the first FB instance FB1 executes any motion command on an
axis. Start a new command on a second FB instance FB2 in buffered mode on the same axis. This command is buffered
and waits until FB1 is done. Before the first instance FB1 has finished its command, let one of the following situations
occur:

1. The axis goes to state ‘ErrorStop’ (e.g. due to a following error or over-temperature). FB1 sets the output ‘Error’.
FB2 (as well as any other FB instance that is waiting to execute a buffered command on this axis) sets its ‘Error’
output and shows with the output ‘ErrorID’, that it cannot execute its job, because the axis is in a state that doesn't
allow it. All buffered commands are cleared. After the axis error is reset by MC_Reset, it can be commanded again.

2. The FB1 sets its ‘Error’ output (e.g. due to an invalid parameterization). FB2 becomes active and executes the
given command immediately afterwards, and the application should handle the error situation.

2.2.3. Timing example for the ‘Enable’ input
Example 1: On the left side of the picture the normal operation is shown. On the right side during the operation an error
occurs. This error forces the ‘Valid’ output to be reset. The output ‘Busy’ stays high. After the error has been reset, the
normal operation procedure is restored, possibly after some time.

Figure 5: Example of error handling with ‘Enable’ input

The second example shows on the right side an error that cannot be automatically cleared. The outputs ‘Busy’ and
‘Valid’ are reset after the error is set. The FB needs a rising edge on the ‘Enable’ input to continue.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 18/ 141

Figure 6: Second example of an error behavior with an ‘Enable’ input

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 19/ 141

2.3. Definitions

Within this document the following levels of values are used: Commanded/ Set/ Actual:

 Commanded value – is the value that is based on the inputs of the function blocks and can be used as (one of the)
input to the profile generator.

 Set value – is at a ‘lower’ level, closer to the actuator. It is the latest value (generated by the profile generator) that is
about to be send to the servo loop (e.g. actuator), e.g. the next value the actuator will use.

 Actual value – the latest value that is available in the system from the feedback system

2.4. FB interface

2.4.1. General rules
Input parameters With ‘Execute’ without ‘ContinuousUpdate’: The parameters are used with the rising edge of

the ‘Execute’ input. To modify any parameter it is necessary to change the input parameter(s)
and to trigger the ‘Execute’ input again.

With ‘Execute’ combined with ‘ContinuousUpdate’: The parameters are used with the rising
edge of the ‘Execute’ input. The parameters can be modified continuously as long as the ‘Con-
tinuousUpdate’ is SET.

With ‘Enable’: The parameters are used with the rising edge of the enable input and can be
modified continuously.

Inputs exceeding
application limits

If a FB is commanded with parameters which result in a violation of application limits, the in-
puts are limited by the system or the instance of the FB generates an error. The consequences of
this error for the axis are application specific and thus should be handled by the application
program.

Missing input pa-
rameters

According to IEC 61131-3, if any parameter of a function block input is missing (“open”) then
the value from the previous invocation of this instance will be used. In the first invocation the
initial value is applied.

Acceleration, Decel-
eration and Jerk in-
puts

If the input ‘Deceleration’, ‘Acceleration’ or ‘Jerk’ is set to 0, the result is implementation de-
pendent. There are several implementations possible, like one goes to the error state, one signals
a warning (via a supplier specific output), one inhibits this in the editor, one takes the value as
either specified in AxisRef or in the drive itself, or one takes a maximum value. Even if the 0
value input is accepted by the system, please use with caution especially if compatibility is tar-
geted.

Output exclusivity With ‘Execute’: The outputs ‘Busy’, ‘Done’, ‘Error’, and ‘CommandAborted’ are mutually
exclusive: only one of them can be TRUE on one FB. If ‘Execute’ is TRUE, one of these out-
puts has to be TRUE.
Only one of the outputs ‘Active’, ‘Error’, ‘Done’ and ‘CommandAborted’ is set at the same
time, except in MC_Stop where ‘Active’ and ‘Done’ can be set both at the same time

With ‘Enable’: The outputs ‘Valid’ and ‘Error’ are mutually exclusive: only one of them can be
TRUE on one FB.

Output status With ‘Execute’: The ‘Done’, ‘Error’, ‘ErrorID’ and ‘CommandAborted’ outputs are reset with
the falling edge of ‘Execute’ . However the falling edge of ‘Execute’ does not stop or even in-
fluence the execution of the actual FB. It must be guaranteed that the corresponding outputs are
set for at least one cycle if the situation occurs, even if execute was reset before the FB com-
pleted.
If an instance of a FB receives a new execute before it finished (as a series of commands on the
same instance), the FB won’t return any feedback, like ‘Done’ or ‘CommandAborted’, for the
previous action.

With ‘Enable’: The ‘Valid’, ‘Enabled’, ‘Busy’, ‘Error’,and ‘ErrorID’ outputs are reset with the
falling edge of ‘Enable’ as soon as possible.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 20/ 141

Behavior of Done
output

The ‘Done’ output is set when the commanded action has been completed successfully.
With multiple Function Blocks working on the same axis in a sequence, the following applies:
when one movement on an axis is interrupted with another movement on the same axis without
having reached the final goal, ‘Done’ of the first FB will not be set.

Behavior of Busy
output

With ‘Execute’: Every FB can have an output ‘Busy’, reflecting that the FB is not finished and
new output values can be expected. ‘Busy’ is SET at the rising edge of ‘Execute’ and RESET
when one of the outputs ‘Done’, ‘Aborted’, or ‘Error’ is set.

With ‘Enable’: Every FB can have an output ‘Busy’, reflecting that the FB is working and new
output values can be expected. ‘Busy’ is SET at the rising edge of ‘Enable’ and stays SET as
long as the FB is performing any action.

It is recommended that the FB should be kept in the active loop of the application program for
at least as long as ‘Busy’ is true, because the outputs may still change.

Behavior of InVeloc-
ity, InGear, InTorque
and InSync

The outputs ‘InVelocity’, ‘InGear’, ‘InTorque’, and ‘InSync’ (from now on referred to as
‘Inxxx’) have a different behavior than the ‘Done’ output.
As long as the FB is Active, ‘Inxxx’ is SET when the set value equals the commanded value,
and will be RESET when at a later time they are unequal. For example, the InVelocity output is
SET when the set velocity is equal to the commanded velocity. This is similar for ‘InGear’,
‘InTorque’, and ‘InSync’ outputs in the applicable FBs.
‘Inxxx’ is updated even if ‘Execute’ is low as long as the FB has control of the axis (‘Active’
and ‘Busy’ are SET).
The behavior of ‘Inxxx’ directly after ‘Execute’ is SET again while the condition of ‘Inxxx’ is
already met, is implementation specific.
‘Inxxx’ definition does not refer to the actual axis value, but must refer to the internal instanta-

neous setpoint.

Output ‘Active’ The ‘Active’ output is required on buffered Function Blocks. This output is set at the moment
the function block takes control of the motion of the according axis. For un-buffered mode the
outputs ‘Active’ and ‘Busy’ can have the same value.
For one axis, several Function Blocks might be busy, but only one can be active at a time. Ex-
ceptions are FBs that are intended to work in parallel, like MC_MoveSuperimposed and
MC_Phasing’s, where more than one FB related to one axis can be active.

Behavior of
CommandAborted
output

‘CommandAborted’ is set, when a commanded motion is interrupted by another motion com-
mand.
The reset-behavior of ‘CommandAborted’ is like that of ‘Done’. When ‘CommandAborted’
occurs, the other output-signals such as ‘InVelocity’ are reset.

Enable and Valid The ‘Enable’ input is coupled to a ‘Valid’ output. ‘Enable’ is level sensitive, and ‘Valid’ shows
that a valid set of outputs is available at the FB.
The ‘Valid’ output is TRUE as long as a valid output value is available and the ‘Enable’ input is
TRUE. The relevant output value can be refreshed as long as the input ‘Enable’ is TRUE.
If there is a FB error, the output is not valid (‘Valid’ set to FALSE). When the error condition
disappears, the values will reappear and ‘Valid’ output will be set again.

Position versus dis-
tance

‘Position’ is a value defined within a coordinate system. ‘Distance’ is a relative measure related
to technical units. ‘Distance’ is the difference between two positions.

Sign rules The ‘Acceleration’, ‘Deceleration’ and ‘Jerk’ are always positive values. ‘Velocity’, ‘Position’
and ‘Distance’ can be both positive and negative.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 21/ 141

Error Handling
Behavior

All blocks can have two outputs, which deal with errors that can occur while executing that
Function Block. These outputs are defined as follow:

Error Rising edge of ‘Error’ informs that an error occurred during the execution of
the Function Block.

ErrorID Error identification (Extended parameter)

‘Done’, ‘InVelocity’, ‘InGear’, ‘InTorque’, and ‘InSync’ mean successful completion so these
signals are logically exclusive to ‘Error’.
Types of errors:
 Function Blocks (e.g. parameters out of range, state machine violation attempted)
 Communication
 Drive
Instance errors do not always result in an axis error (bringing the axis to ‘ErrorStop’)
The error outputs of the relevant FB are reset with falling edge of ‘Execute’ and ‘Enable’. The
error outputs at FBs with ‘Enable’ can be reset during operation (without a reset of ‘Enable’).

FB Naming In case of multiple libraries within one system (to support multiple drive / motion control sys-
tems), the FB naming may be changed to “MC_FBname_SupplierID”.

Naming conventions
ENUM types

Due to the naming constraints in the IEC standard on the uniqueness of variable names, the ‘mc’
reference to the PLCopen Motion Control namespace is used for the ENUMs.
In this way we avoid the conflict that using the ENUM types ‘positive’ and ‘negative’ for in-
stance with variables with these names throughout the rest of the project since they are called
mcPositive and mcNegative resp.

Table 2: General Rules

The behavior of the ‘Execute’ / ‘Done’ style FBs is as follows:

Figure 7: The behavior of the ‘Execute’ / ‘Done’ in relevant FBs

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 22/ 141

The behavior of the ‘Execute’ / ‘Inxxx’ style FBs is as follows:

Execute

Busy

InXxx

Error

CommandAborted

Case 1 Case 2 Case 3

Active

Figure 8: The behavior of the ‘Execute’ / ‘Inxxx’ in relevant FBs

2.4.2. Aborting versus Buffered modes
Some of the FBs have an input called ‘BufferMode’. With this input, the FB can either work in a ‘Non-buffered mode’
(default behavior) or in a ‘Buffered mode’. The difference between those modes is when they should start their action:
 A command in a non-buffered mode acts immediately, even if this interrupts another motion. The buffer is cleared.
 A command in a buffered mode waits till the current FB sets its ‘Done’ output (or ‘InPosition’, or ‘InVelocity’,..).

There are several options for the buffered mode. For this reason, this input is an ENUM of type MC_BUFFER_MODE.
The following modes have been identified:

 Aborting Default mode without buffering. The next FB aborts an ongoing motion and the command
affects the axis immediately. The buffer is cleared.

 Buffered The next FB affects the axis as soon as the previous movement is ‘Done’. There is no
blending.

 BlendingLow The next FB controls the axis after the previous FB has finished (equivalent to ‘Buffered’),
but the axis will not stop between the movements. The velocity is blended with the lowest
velocity of both commands (1 and 2) at the first end-position (1).

 BlendingPrevious blending with the velocity of FB 1 at end-position of FB 1
 BlendingNext blending with velocity of FB 2 at end-position of FB 1
 BlendingHigh blending with highest velocity of FB 1 and FB 2 at end-position of FB1

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 23/ 141

The ENUM has been defined as follows:
No. MC_BUFFER_MODE Description
0 mcAborting Start FB immediately (default mode)
1 mcBuffered Start FB after current motion has finished
2 mcBlendingLow The velocity is blended with the lowest velocity of both FBs
3 mcBlendingPrevious The velocity is blended with the velocity of the first FB
4 mcBlendingNext The velocity is blended with velocity of the second FB
5 mcBlendingHigh The velocity is blended with highest velocity of both FBs

Table 3: The ENUM type MC_BUFFER_MODE

Supplier specific extensions are allowed after these defined Enums.

The examples as listed in Appendix A describe the different behavior of these modes.
The following table gives an overview of the effects on the defined function blocks:

Function block Can be specified as a
buffered command

Can be followed by a
buffered command

Relevant signal to activate
the next buffered FB

MC_Power No Yes Status

MC_Home Yes Yes Done

MC_Stop No Yes Done AND NOT Execute

MC_Halt Yes Yes Done

MC_MoveAbsolute Yes Yes Done

MC_MoveRelative Yes Yes Done

MC_MoveAdditive Yes Yes Done

MC_MoveSuperimposed No No --

MC_HaltSuperimposed No No --

MC_MoveVelocity Yes Yes InVelocity

MC_MoveContinuousAbsolute &
MC_MoveContinuousRelative

Yes Yes InEndVelocity

MC_TorqueControl Yes Yes InTorque

MC_PositionProfile Yes Yes Done

MC_VelocityProfile Yes Yes Done

MC_AccelerationProfile Yes Yes Done

MC_CamIn Yes Yes - (in single mode) EndOfProfile

MC_CamOut No Yes Done

MC_GearIn Yes Yes InGear

MC_GearOut No Yes Done

MC_GearInPos Yes Yes InSync

MC_PhasingRelative &
MC_PhasingAbsolute

Yes No --

MC_CombineAxes Yes Yes InSync

Table 4: Overview of the buffered commands on the relevant FBs

Note: The (administrative) FBs not listed here are basically not buffered, nor can be followed by a buffered FB. How-
ever, the supplier may choose to support the various buffering / blending modes.
If an on-going motion is aborted by another movement, it can occur that the braking distance is not sufficient due to
deceleration limits.
In rotary axis, a modulo can be added. A modulo axis could go to the earliest repetition of the absolute position speci-
fied, in cases where the axis should not change direction and reverse to attain the commanded position.
In linear systems, the resulting overshoot can be resolved by reversing, as each position is unique and therefore there is
no need to add a modulo to reach the correct position.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 24/ 141

2.4.3. AXIS_REF Data type
The AXIS_REF is a structure that contains information on the corresponding axis. It is used as a VAR_IN_OUT in all
Motion Control Function Blocks defined in this document. The content of this structure is implementation dependent
and can ultimately be empty. If there are elements in this structure, the supplier shall support the access to them, but this
is outside of the scope of this document. The refresh rate of this structure is also implementation dependent.
According to IEC 61131-3 it is allowed to switch the AXIS_REF for an active FB, for instance from Axis1 to Axis2.
However, the behavior of this can vary across different platforms, and is not encouraged to do.

AXIS_REF data type declaration:
TYPE

AXIS_REF : STRUCT
(Content is implementation dependent)

END_STRUCT
END_TYPE

Example:
TYPE

AXIS_REF : STRUCT
AxisNo: UINT;
AxisName: STRING (255);
…

END_STRUCT
END_TYPE

2.4.4. Technical Units
The only specification for physical quantities is made on the length unit (noted as [u]) that is to be coherent with its
derivatives i.e. (velocity [u/s]; acceleration [u/s2]; jerk [u/s3]). Nevertheless, the unit [u] is not specified (manufacturer
dependent). Only its relations with others are specified.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 25/ 141

2.4.5. Why the command input is edge sensitive
The ‘Execute’ input for the different Function Blocks described in this document always triggers the function with its
rising edge. The reason for this is that with edge triggered ‘Execute’ new input values may be commanded during exe-
cution of a previous command. The advantage of this method is a precise management of the instant a motion command
is performed. Combining different Function Blocks is then easier in both centralized and decentralized models of axis
management. The ‘Done’ output can be used to trigger the next part of the movement.
The example given below is intended to explain the behavior of the Function Block execution. The figure illustrates the
sequence of three Function Blocks “First”, “Second” and “Third” controlling the same axis. These three Function
Blocks could be for instance various absolute or relative move commands. When “First” is completed the motion its
rising output ‘First.Done’ triggers ‘Second.Execute’. The output ‘Second.Done’ AND ‘In13’ trigger the
‘Third.Execute’.

First.Execute

First.Active

First.Done

Second.Execute

Second.Active

Second.Done

In13

Third.Execute

Third.Active

Third.Done

Third.Error

Figure 9: Function blocks to perform a complex movement

2.4.6. The input ‘ContinuousUpdate’
Like described in the previous chapter, the input ‘Execute’ triggers a new movement. With a rising edge of this input the
values of the other function block inputs are defining the movement. Until version 1.1 there was the general rule that a
later change in these input parameters doesn’t affect the ongoing motion.
Nevertheless, there are numerous application examples, where a continuous change of the parameters are needed. The
user could retrigger the ‘Execute’ input of the FB, but this complicated the application.

Therefore, the input ‘ContinuousUpdate’ has been introduced. It is an extended input to all applicable function blocks.
If it is TRUE, when the function block is triggered (rising ‘Execute’), it will - as long as it stays TRUE – make the func-
tion block use the current values of the input variables and apply it to the ongoing movement. This does not influence
the general behavior of the function block nor does it impact the state diagram. In other words it only influences the
ongoing movement and its impact ends as soon as the function block is no longer ‘Busy’ or the input ‘ContinuousUp-

Third

Execute

Par Error

Axis

DoneAND

Axis

FB 2

Execute Done

Par

Error

First

Axis

FB 1

Execute Done

Par Error

Second

FB 3

In13

Start

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 26/ 141

date’ is set to FALSE. (Remark: it can be that certain inputs like ‘BufferMode’ are not really intended to change every
cycle. However, this has to be dealt with in the application, and is not forbidden in the specification.)

If ‘ContinuousUpdate’ is FALSE with the rising edge of the ‘Execute’ input, a change in the input parameters is ignored
during the whole movement and the original behavior of previous versions is applicable.

The ‘ContinuousUpdate’ is not a retriggering of the ‘Execute’ input of the function block. A retriggering of a function
block which was previously aborted, stopped, or completed, would regain control on the axis and also modify its state
diagram. Opposite to this, the ‘ContinuousUpdate’ only effects an ongoing movement.
Also, a ‘ContinuousUpdate’ of relative inputs (e.g. ‘Distance’ in MC_MoveRelative) always refers to the initial condi-
tion (at rising edge of ‘Execute’).
Example:
 MC_MoveRelative is started at ‘Position’ 0 with ‘Distance’ 100, ‘Velocity’ 10 and ‘ContinuousUpdate’ set TRUE.

‘Execute’ is Set and so the movement is started to position 100
 While the movement is executed (let the drive be at position 50), the input ‘Distance’ is changed to 130, ‘Velocity’

20.
 The axis will accelerate (to the new ‘Velocity’ 20) and stop at ‘Position’ 130 and set the output ‘Done’ and does not

accept any new values.

2.5. Example 1: the same Function Block instance controls different motions of an axis

Figure 10: Single FB usage with a SFC shows an example where the Function Block FB1 is used to control “AxisX”
with three different values of ‘Velocity’. In a Sequential Function Chart (SFC) the ‘Velocity’ 10, 20, and 0 is assigned
to V. To trigger the ‘Execute’ input with a rising edge the variable E is stepwise set and reset.

Figure 10: Single FB usage with a SFC

K = true

InVelocity = TRUE

L = TRUE

M = TRUE

K, L, M are Boolean Variables

V:= 10; E := TRUE;

E := FALSE;

E := FALSE;

E := FALSE;

V:= 20; E := TRUE;

V:= 0; E := TRUE;

InVelocity = TRUE

InVelocity =TRUE

E

V

Y

Axis X

MC_MoveVelocity

Velocity

Execute InVelocity

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 27/ 141

The following timing diagram explains how it works.

20

10

0

20

10

1

0

1

0

Commanded
Velocity V

Execute E

Set Velocity

InVelocity

K= TRUE L= TRUE M= TRUEEvents

Figure 11: Timing diagram for a usage of a single FB
Note: if the execute input is retriggered with the same commanded velocity while ‘InVelocity’ is SET, the behavior of
the output ‘InVelocity’ is implementation dependent (for instance: reset for one cycle or not reset at all)

2.6. Example 2: different Function Block instances control the motions of an axis

Different instances related to the same axis can control the motions on an axis. Each instance will then be «responsible»
for one part of the global profile.

FB2 FB3

20

L

0

FB1

MC_MoveVelocity

K Execute

Velocity InVelocity10 AND

MC_MoveVelocity

Execute

MC_MoveVelocity

Execute

AxisAxis
Axis

InVelocity InVelocityVelocity Velocity

M

Figure 12: Example of cascaded Function Blocks

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 28/ 141

The corresponding timing diagram:

Figure 13: Timing diagram of example cascaded Function Blocks

A corresponding solution written in LD can look like this:

Figure 14: Example of cascaded Function Blocks with LD

MoveVelocity

Execute

Velocity

FB1 FB2

K

10

MoveVelocity

Execute

Velocity 20

L M
InVel.

Axis Axis

FB3
MoveVelocity

Execute

Velocity

Axis

InVelocity InVelocity InVelocity

0

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 29/ 141

3. Single-Axis Function Blocks

3.1. MC_Power

FB-Name MC_Power
This Function Block controls the power stage (On or Off).

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Enable BOOL As long as ‘Enable’ is true, power is being enabled.

E EnablePositive BOOL As long as ‘Enable’ is true, this permits motion in positive direction

E EnableNegative BOOL As long as ‘Enable’ is true, this permits motion in negative direction

VAR_OUTPUT

B Status BOOL Effective state of the power stage

E Valid BOOL If true, a valid set of outputs is available at the FB

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes:
 The ‘Enable’ input enables the power stage in the drive and not the FB itself
 If the MC_Power FB is called with the ‘Enable’ = TRUE while being in ‘Disabled’, the axis state changes to

‘Standstill’.
 It is possible to set an error variable when the Command is TRUE for a while and the Status remains false with a

Timer FB and an AND Function (with inverted Status input). It indicates that there is a hardware problem with the
power stage.

 If power fails (also during operation) it will generate a transition to the ‘ErrorStop’ state.
 ‘EnablePositive’ and ‘EnableNegative’ are both level sensitive.
 ‘EnablePositive’ & ‘EnableNegative’ can both be true.
 Only 1 FB MC_Power should be issued per axis.

MC_Power
AXIS_REF Axis Axis AXIS_REF

BOOL Enable Status BOOL

BOOL EnablePositive Valid BOOL

BOOL EnableNegative Error BOOL

ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 30/ 141

3.2. MC_Home

FB-Name MC_Home
This Function Block commands the axis to perform the «search home» sequence. The details of this sequence are
manufacturer dependent and can be set by the axis’ parameters. The ‘Position’ input is used to set the absolute posi-
tion when reference signal is detected. This Function Block completes at ‘Standstill’ if it was started in ‘Standstill’.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Start the motion at rising edge

B Position REAL Absolute position when the reference signal is detected [u]

E BufferMode MC_BufferMode Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B Done BOOL Reference known and set sucessfully

E Busy BOOL The FB is not finished and new output values are to be expected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes: MC_Home is a generic FB which does a system specified homing procedure which can be constructed by the
StepHoming FBs as specified in Part 5 – Homing Procedures.

MC_Home
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

REAL Position Busy BOOL

MC_BUFFER_MODE BufferMode Active BOOL

CommandAborted BOOL

Error BOOL

ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 31/ 141

3.3. MC_Stop

FB-Name MC_Stop
This Function Block commands a controlled motion stop and transfers the axis to the state ‘Stopping’. It aborts any
ongoing Function Block execution. While the axis is in state ‘Stopping’, no other FB can perform any motion on the
same axis. After the axis has reached ‘Velocity’ zero, the ‘Done’ output is set to TRUE immediately. The axis re-
mains in the state ‘Stopping’ as long as ‘Execute’ is still TRUE or ‘Velocity’ zero is not yet reached. As soon as
‘Done’ is SET and ‘Execute’ is FALSE the axis goes to state ‘Standstill’.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Start the action at rising edge

E Deceleration REAL Value of the ‘Deceleration’ [u/s2]

E Jerk REAL Value of the ‘Jerk’ [u/s3]

VAR_OUTPUT

B Done BOOL Zero velocity reached

E Busy BOOL The FB is not finished and new output values are to be expected

E CommandAborted BOOL ‘Command’ is aborted by switching off power (only possibility to
abort)

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Note:
1. This FB is primarily intended for emergency stop functionality or exception situations
2. As long as ‘Execute’ is high, the axis remains in the state ‘Stopping’ and may not be executing any other motion

command.
3. If ‘Deceleration’ = 0, the behavior of the function block is implementation specific

MC_Stop
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

REAL Deceleration Busy BOOL

REAL Jerk CommandAborted BOOL

Error BOOL

ErrorID WORD

Execute

Done

Velocity

Stopping

StandStill

Figure 15: MC_Stop timing diagram

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 32/ 141

The example below shows the behavior in combination with a MC_MoveVelocity.
a) A rotating axis is ramped down with FB MC_Stop.
b) The axis rejects motion commands as long as MC_Stop parameter ‘Execute’ = TRUE. FB MC_MoveVelocity
reports an error indicating the busy MC_Stop command.

Velocity
Axis_1

50

InVel_1

Exe_1

1

0

1

0

1

0
Exe_2

Done_2
1

0

t

FB1

FB2

t

t

t

t

t
Abort_1

0

1

1

0

t
Error_1

MC_Stop

AxisAxis_1

Deceleration20

Jerk0

Error

ErrorID

ExecuteExe_2 Done_2Done

MC_MoveVelocity

AxisAxis_1

Velocity50

Acceleration10

Deceleration10

Direction1
ErrorID

ExecuteExe_1

CommandAborted Abort_1

FB1

InVel_1InVelocity

FB2

Error_1Error

BusyBusy

a b

Axis_1Axis Axis_1Axis

ContinuousUpdate

BufferMode

Jerk0

Active CommandAborted Abort_2

Figure 16: Behavior of MC_Stop in combination with MC_MoveVelocity

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 33/ 141

3.4. MC_Halt

FB-Name MC_Halt
This Function Block commands a controlled motion stop. The axis is moved to the state ‘DiscreteMotion’, until the
velocity is zero. With the ‘Done’ output set, the state is transferred to ‘Standstill’.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Start the action at rising edge

E Deceleration REAL Value of the ‘Deceleration’ [u/s2]

E Jerk REAL Value of the ‘Jerk’ [u/s3]

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B Done BOOL Zero velocity reached

E Busy BOOL The FB is not finished and new output values are to be ex-
pected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes:
 MC_Halt is used to stop the axis under normal operation conditions. In non-buffered mode it is possible to set

another motion command during deceleration of the axis, which will abort the MC_Halt and will be executed
immediately.

 If this command is active the next command can be issued. E.g. a driverless vehicle detects an obstacle and
needs to stop. MC_Halt is issued. Before the ‘Standstill’ is reached the obstacle is removed and the motion can
be continued by setting another motion command, so the vehicle does not stop.

MC_Halt
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

REAL Deceleration Busy BOOL

REAL Jerk Active BOOL

MC_BUFFER_MODE BufferMode CommandAborted BOOL

Error BOOL

ErrorID WORD

The example below shows the behavior in combination with a MC_MoveVelocity.
a) A rotating axis is ramped down with Function Block MC_Halt
b) Another motion command overrides the MC_Halt command. MC_Halt allows this, in contrast to MC_Stop.
The axis can accelerate again without reaching ‘Standstill’.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 34/ 141

Velocity
Axis_1

MC_Halt

AxisAxis_1

Deceleration5

Jerk0

Error

ErrorID

ExecuteExe_2

50

InVel_1

Exe_1

1

0

1

0

1

0

Exe_2

Done_2

1

0

t

Done_2Done

MC_MoveVelocity

AxisAxis_1

Velocity50

Acceleration10

Deceleration10

Jerk0

Direction1

Error

ErrorID

ExecuteExe_1

CommandAborted Abort_1

FB1

InVel_1InVelocity

FB2

FB1

FB2

t

t

t

t

t
Abort_2

0

1

CommandAborted Abort_2

t
Abort_1

1

0

Busy Busy

a b

BufferMode

Active Active

BufferMode

Axis_1AxisAxis_1Axis

ContinuousUpdate

Figure 17: Example of MC_Halt

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 35/ 141

3.5. MC_MoveAbsolute

FB-Name MC_MoveAbsolute
This Function Block commands a controlled motion to a specified absolute position.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Start the motion at rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

B Position REAL Commanded ‘Position’ for the motion (in technical unit
[u]) (negative or positive)

B Velocity REAL Value of the maximum ‘Velocity’ (not necessarily
reached) [u/s].

E Acceleration REAL Value of the ‘Acceleration’ (always positive) (increasing
energy of the motor) [u/s2]

E Deceleration REAL Value of the ‘Deceleration’ (always positive) (decreasing
energy of the motor) [u/s2]

E Jerk REAL Value of the ‘Jerk’ [u/s3]. (always positive)

B Direction MC_DIRECTION Enum type (1-of-4 values: mcPositiveDirection, mcShort-
estWay, mcNegativeDirection, mcCurrentDirection)

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
‘Aborting versus Buffered modes’

VAR_OUTPUT

B Done BOOL Commanded position finally reached

E Busy BOOL The FB is not finished and new output values are to be
expected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function
Block

E ErrorID WORD Error identification

Notes:
 This action completes with velocity zero if no further actions are pending
 If there is only one mathematical solution to reach the ‘CommandedPosition’ (like in linear systems), the value of

the input ‘Direction’ is ignored
 For modulo axis - valid absolute position values are in the range of [0, 360[, (360 is excluded), or corresponding

range. The application however may shift the ‘CommandedPosition’ of MC_MoveAbsolute into the correspond-
ing modulo range.

 The Enum type ‘mcShortestWay’ is focused to a trajectory which will go through the shortest route. The decision
which direction to go is based on the current position where the command is issued.

MC_MoveAbsolute
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

BOOL ContinuousUpdate Busy BOOL

REAL Position Active BOOL

REAL Velocity CommandAborted BOOL

REAL Acceleration Error BOOL

REAL Deceleration ErrorID WORD

REAL Jerk

MC_DIRECTION Direction

MC_BUFFER_MODE BufferMode

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 36/ 141

The following figure shows two examples of the combination of two absolute move Function Blocks:

1. The left part of the timing diagram illustrates the case if the Second Function Block is called after the First one.
If First reaches the commanded position of 6000 (and the velocity is 0) then the output ‘Done’ causes the Second FB
to move to the ‘Position’ 10000.

2. The right part of the timing diagram illustrates the case if the Second move Function Block starts the execution while
the First FB is still executing. In this case the First motion is interrupted and aborted by the Test signal during the
constant velocity of the First FB. The Second FB moves directly to the position 10000 although the position of 6000
is not yet reached.

Figure 18: Timing diagram for MC_MoveAbsolute

Note to figure: the examples are based on two instances of the Function Block: instance “First” and ”Second”.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 37/ 141

3.6. MC_MoveRelative

FB-Name MC_MoveRelative
This Function Block commands a controlled motion of a specified distance relative to the set position at the time of the
execution.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Start the motion at rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

B Distance REAL Relative distance for the motion (in technical unit [u])

E Velocity REAL Value of the maximum velocity (not necessarily reached)
[u/s]

E Acceleration REAL Value of the acceleration (increasing energy of the motor)
[u/s2]

E Deceleration REAL Value of the deceleration (decreasing energy of the motor)
[u/s2]

E Jerk REAL Value of the Jerk [u/s3]

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B Done BOOL Commanded distance reached

E Busy BOOL The FB is not finished and new output values are to be ex-
pected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes: This action completes with velocity zero if no further actions are pending.

MC_MoveRelative
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

BOOL ContinuousUpdate Busy BOOL

REAL Distance Active BOOL

REAL Velocity CommandAborted BOOL

REAL Acceleration Error BOOL

REAL Deceleration ErrorID WORD

REAL Jerk

MC_BUFFER_MODE BufferMode

The following figure shows the example of the combination of two relative move Function Blocks

1. The left part of the timing diagram illustrates the case if the Second Function Block is called after the First
one.
If First reaches the commanded distance 6000 (and the velocity is 0) then the output ‘Done’ causes the Second
FB to move the commanded distance 4000 and moves the axis to the resulting position of 10000.

2. The right part of the timing diagram illustrates the case if the Second move Function Blocks starts the execu-
tion while the First FB is still executing. In this case the First motion is interrupted and aborted by the Test sig-
nal during the constant velocity of the First FB. The Second FB adds on the actual position of 3250 the dis-
tance 4000 and moves the axis to the resulting position of 7250.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 38/ 141

Second

Motion

Go

Done

Accelerating

Constant

Decelerating

Test

Finish

Constant

Decelerating

Velocity

relative
Position

Command
Aborted

First

t

t

t

t

t

t

t

t

MoveRelative - Example

1

0

1

1

1

0

0

0

0

Sequence of two complete motions Second motion interrupts first motion

0

0

0

0

1

1

1

1

1

0

0

0

10000

6000

2000

3000

7250

3250

t

t

Accelerating

Test

Finish
OR

First Second

MC_MoveRelative
Axis Axis

Execute Done

Distance

Velocity
Acceleration
Deceleration

Jerk

Error
ErrorID

MyAX

GO

6000
3000
10
10
0

CommandAborted

ContinuousUpdate

BufferMode

MC_MoveRelative
Axis Axis

Execute Done

Distance

Velocity
Acceleration
Deceleration

Jerk

Error
ErrorID

4000
2000

10

10
0

CommandAborted

ContinuousUpdate

BufferMode

Busy Busy
Active Active

Figure 19: Timing diagram for MC_MoveRelative

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 39/ 141

3.7. MC_MoveAdditive

FB-Name MC_MoveAdditive
This Function Block commands a controlled motion of a specified relative distance additional to the most recent com-
manded position in the axis state ‘DiscreteMotion’. The most recent commanded position may be the result of a previ-
ous MC_MoveAdditive motion which was aborted. If the FB is activated in the axis state ‘ContinuousMotion’, the
specified relative distance is added to the set position at the time of the execution.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Start the motion at rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

B Distance REAL Relative distance for the motion (in technical unit [u])

E Velocity REAL Value of the maximum velocity (not necessarily reached)
[u/s]

E Acceleration REAL Value of the acceleration (increasing energy of the motor)
[u/s2]

E Deceleration REAL Value of the deceleration (decreasing energy of the motor)
[u/s2]

E Jerk REAL Value of the Jerk [u/s3]

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B Done BOOL Commanded distance reached

E Busy BOOL The FB is not finished and new output values are to be ex-
pected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes: -

MC_MoveAdditive
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

BOOL ContinuousUpdate Busy BOOL

REAL Distance Active BOOL

REAL Velocity CommandAborted BOOL

REAL Acceleration Error BOOL

REAL Deceleration ErrorID WORD

REAL Jerk

MC_BUFFER_MODE BufferMode

The following figure shows two examples of the combination of two Function Blocks while the axis is in ‘DiscreteMo-
tion’ state:

1. The left part of the timing diagram illustrates the case if the Second Function Block is called after the First
one.
If First reaches the commanded distance 6000 (and the velocity is 0) then the output ‘Done’ causes the Second
FB to move the commanded distance 4000 and moves the axis to the resulting position of 10000.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 40/ 141

2. The right part of the timing diagram illustrates the case if the Second move Function Blocks starts the execu-
tion while the First FB is still executing. In this case the First motion is interrupted and aborted by the Test sig-
nal during the constant velocity of the First FB. The Second FB adds on the previous commanded position
of 6000 the distance 4000 and moves the axis to the resulting position of 10000.

Figure 20: Timing diagram for MC_MoveAdditive

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 41/ 141

3.8. MC_MoveSuperimposed

FB-Name MC_MoveSuperimposed
This Function Block commands a controlled motion of a specified relative distance additional to an existing motion.
The existing Motion is not interrupted, but is superimposed by the additional motion.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Start the motion at rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

B Distance REAL Additional distance that is to be superimposed (in technical unit [u])

E VelocityDiff REAL Value of the velocity difference of the additional motion (not necessar-
ily reached) [u/s]

E Acceleration REAL Value of the acceleration (increasing energy of the motor) [u/s2]

E Deceleration REAL Value of the deceleration (decreasing energy of the motor) [u/s2]

E Jerk REAL Value of the Jerk [u/s3]

VAR_OUTPUT

B Done BOOL Additional distance superimposed to the ongoing motion

E Busy BOOL The FB is not finished and new output values are to be expected

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

E CoveredDistance REAL Displays continuously the covered distance contributed by this FB
since it was started

Note:
 If MC_MoveSuperimposed is active, then any other command in aborting mode except MC_MoveSuperimposed

will abort both motion commands: both the MC_MoveSuperimposed and the underlying motion command. In
any other mode, the underlying motion command is not aborted

 If MC_MoveSuperimposed is active and another MC_MoveSuperimposed is commanded, only the on-going
MC_MoveSuperimposed command is aborted, and replaced by the new MC_MoveSuperimposed, but not the
underlying motion command

 The FB MC_MoveSuperimposed causes a change of the velocity and, if applicable, the commanded position of
an ongoing motion in all relevant states

 In the state ‘Standstill’ the FB MC_MoveSuperimposed acts like MC_MoveRelative
 The values of ‘Acceleration’, ‘Deceleration’, and ‘Jerk’ are additional values to the on-going motion, and not

absolute ones. With this, the underlying FB always finishes its job in the same period of time regardless of
whether a MC_MoveSuperimposed FB takes place concurrently.

 The output ‘Active’ has a different behavior as in buffered FBs.

MC_MoveSuperimposed
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

BOOL ContinuousUpdate Busy BOOL

REAL Distance Active BOOL

REAL VelocityDiff CommandAborted BOOL

REAL Acceleration Error BOOL

REAL Deceleration ErrorID WORD

REAL Jerk CoveredDistance REAL

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 42/ 141

Axis

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

Axis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveRelative

ContinuousUpdate

Axis

Execute

Distance

VelocityDiff

Acceleration

Deceleration

Jerk CoveredDistance

Axis

Done

CommandAborted

Busy

Active

Error

ErrorID

MC_MoveSuperimposed

ContinuousUpdate

Figure 21: Timing diagram for MC_MoveSuperimposed
Note 1: the ‘CommandAborted’ is not visible here, because the new command works on the same instance (see general rules 2.4.1)
Note 2: the end position is between 7000 and 8000, depending on the timing of the aborting of the second command set for the
MC_MoveSuperimposed

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 43/ 141

Example of MC_MoveSuperimposed during Camming with modulo axes. In green color the slave position is shown
both with and without MC_MoveSuperimposed:

Figure 22: Example of the effect of MC_MoveSuperimposed on a slave axis

Note: at Slave velocity, the double line shows the effect of MoveSuperimposed while in synchronized motion during
Camming. The same is valid for the related slave position.

The next example shows MC_MoveSuperimposed working on MC_MoveAbsolute. MC_MoveSuperimposed continues
its movement even after the underlying discrete motion is finished.

Figure 23: Example of the effect of MC_MoveSuperimposed on MC_MoveAbsolute

x 10
2

1 2 3 4 5

Takte

Slave velocity with Superimposed Slave position with Superimposed

Master position

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 44/ 141

3.9. MC_HaltSuperimposed

FB-Name MC_HaltSuperimposed
This Function Block commands a halt to all superimposed motions of the axis. The underlying motion is not inter-
rupted.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Start the action at rising edge

E Deceleration REAL Value of the deceleration [u/s2]

E Jerk REAL Value of the Jerk [u/s3]

VAR_OUTPUT

B Done BOOL Superimposed motion halted

E Busy BOOL The FB is not finished and new output values are to be expected

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

-

MC_HaltSuperimposed
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

REAL Deceleration Busy BOOL

REAL Jerk Active BOOL

CommandAborted BOOL

Error BOOL

ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 45/ 141

3.10. MC_MoveVelocity

FB-Name MC_MoveVelocity
This Function Block commands a never ending controlled motion at a specified velocity.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Start the motion at rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

B Velocity REAL Value of the maximum velocity [u/s]. Can be a signed value.

E Acceleration REAL Value of the acceleration (increasing energy of the motor)
[u/s2]

E Deceleration REAL Value of the deceleration (decreasing energy of the motor)
[u/s2]

E Jerk REAL Value of the Jerk [u/s3]

E Direction MC_DIRECTION Enum type (1-of-3 values: mcPositiveDirection, mcNega-
tiveDirection, and mcCurrentDirection. Note: shortest way
not applicable)

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B InVelocity BOOL Commanded velocity reached

E Busy BOOL The FB is not finished and new output values are to be ex-
pected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes:
 To stop the motion, the FB has to be interrupted by another FB issuing a new command
 The signal ‘InVelocity’ has to be reset when the block is aborted by another block.
 Negative velocity * negative direction = positive velocity
 In combination with MC_MoveSuperimposed, the output ‘InVelocity’ is SET as long as the contribution of this FB

(MC_MoveVelocity) to the set velocity is equal to the commanded velocity of this FB.

MC_MoveVelocity
AXIS_REF Axis Axis AXIS_REF

BOOL Execute InVelocity BOOL

BOOL ContinuousUpdate Busy BOOL

REAL Velocity Active BOOL

REAL Acceleration CommandAborted BOOL

REAL Deceleration Error BOOL

REAL Jerk ErrorID WORD

MC_DIRECTION Direction

MC_BUFFER_MODE BufferMode

The following figure shows two examples of the combination of two MC_MoveVelocity Function Blocks:
1. The left part of the timing diagram illustrates the case if the Second Function Block is called after the First one

is completed. If First reaches the commanded velocity 3000 then the output ‘First.InVelocity’ AND the signal
Next causes the Second FB to move to the velocity 2000. In the next cycle ‘First.InVelocity’ is Reset and

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 46/ 141

‘First.CommandAborted’ is Set. Therefore the ‘Execute’ of the 2nd FB is Reset. And as soon as the axis
reaches ‘Velocity’ 2000 the ‘Second.InVelocity’ is set.

2. The right part of the timing diagram illustrates the case if the Second move Function Block starts the execution
while the First FB is not yet ‘InVelocity’.
The following sequence is shown: The First motion is started again by GO at the input ‘First.Execute’. While
the First FB is still accelerating to reach the velocity 3000 the First FB will be interrupted and aborted because
the Test signal starts the Run of the Second FB. Now the Second FB runs and decelerates the velocity to 2000.

Figure 24: MC_MoveVelocity timing diagram

Note: 2nd FB in mode ‘Aborting’ (If in buffered mode the velocity would reach 3000 before actuating the next FB).

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 47/ 141

3.11. MC_MoveContinuousAbsolute

FB-Name MC_MoveContinuousAbsolute

This Function Block commands a controlled motion to a specified absolute position ending with the specified velocity.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Start the motion at rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

B Position REAL Commanded position for the motion (in technical unit
[u]) (negative or positive)

B EndVelocity REAL Value of the end velocity [u/s]. Signed value

B Velocity REAL Value of the maximum velocity [u/s]

E Acceleration REAL Value of the acceleration [u/s2]

E Deceleration REAL Value of the deceleration [u/s2]

E Jerk REAL Value of the Jerk [u/s3]

E Direction MC_DIRECTION Enum type (1-of-4 values: mcPositiveDirection,
mcNegativeDirection, mcCurrentDirection and mcShort-
estWay

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B InEndVelocity BOOL Commanded distance reached and running at requested
end velocity

E Busy BOOL The FB is not finished and new output values are to be
expected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function
Block

B ErrorID WORD Error identification

Notes:
 If the commanded position is reached and no new motion command is put into the buffer, the axis continues to run

with the specified ‘EndVelocity’.
 State ‘ContinuousMotion’ (meaning: it will not stop by itself).
 This FB can be replaced by the combination of MC_MoveAbsolute and MC_MoveVelocity if BufferMode is im-

plemented on those FBs

MC_MoveContinuousAbsolute
AXIS_REF Axis Axis AXIS_REF

BOOL Execute InEndVelocity BOOL

BOOL ContinuousUpdate Busy BOOL

REAL Position Active BOOL

REAL EndVelocity CommandAborted BOOL

REAL Velocity Error BOOL

REAL Acceleration ErrorID WORD

REAL Deceleration

REAL Jerk

MC_BUFFER_MODE BufferMode

One use case for MC_MoveContinuousAbsolute is a linear cutter:

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 48/ 141

One linear axis that is carrying a laser device that is used to cut a workpiece.

Starting from lrIdlePos the working chain is this:

1. Move the laser with fast velocity over the position lrStartCutPos. The laser is off during this movement:

2. Turn back and make sure to have the speed lrCutVelocity when at lrStartCutPos. At this position, switch the la-
ser on:

3. Travel over the work piece with this constant speed while the laser is on:

4. When reaching lrEndCutPos switch off the laser and move back to idle position with fast velocity:

During the cutting process the laser must be moved with a fix velocity, no acceleration or deceleration phase can be
tolerated. The laser must be moved to its waiting position after the cutting was done.
This can be achieved with the FB MC_MoveContinuousAbsolute in the following way:

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 49/ 141

Figure 25: Example MC_MoveContinuousAbsolute

Started with a rising edge of xStartCuttingCycle, the instance ‘mca’ of MC_MoveContinuousAbsolute will move the
axis with lrFastVelocity over lrStartCutPos, turn back and have the speed lrCutVelocity when reaching lrStartCutPos
again in negative direction. In this point in time, ‘InEndVelocity’ is set, and the laser is switched on. As no other motion
FB interrupts this movement, MC_MoveContinuousAbsolute will keep travelling in negative direction with the current
speed. After the axis has overstepped the position lrEndPos, where the laser is switched off, the MC_MoveAbsolute
instance ‘ma’ moves the axis with high speed to its idle position:

Figure 26: MC_MoveContinuousAbsolute timing diagram for example above

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 50/ 141

3.12. MC_MoveContinuousRelative

FB-Name MC_MoveContinuousRelative

This Function Block commands a controlled motion of a specified relative distance ending with the specified velocity.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Start the motion at rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

B Distance REAL Relative distance for the motion [u]

B EndVelocity REAL Value of the end velocity [u/s]. Signed value

B Velocity REAL Value of the maximum velocity [u/s]

E Acceleration REAL Value of the acceleration [u/s2]

E Deceleration REAL Value of the deceleration [u/s2]

E Jerk REAL Value of the Jerk [u/s3]

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B InEndVelocity BOOL Commanded distance reached and running at requested
end velocity

E Busy BOOL The FB is not finished and new output values are to be
expected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function
Block

B ErrorID WORD Error identification

Notes:
 If the commanded position is reached and no new motion command is put into the buffer, the axis continues to run

with the specified ‘EndVelocity’.
 State ‘ContinuousMotion’ (meaning: it will not stop by itself).
 This FB is specified here for systems without the support for the ‘BufferMode’.
 This FB can be replaced by the combination of MC_MoveAbsolute and MC_MoveVelocity if BufferMode is im-

plemented on those FBs

MC_MoveContinuousRelative
AXIS_REF Axis Axis AXIS_REF

BOOL Execute InEndVelocity BOOL

BOOL ContinuousUpdate Busy BOOL

REAL Distance Active BOOL

REAL EndVelocity CommandAborted BOOL

REAL Velocity Error BOOL

REAL Acceleration ErrorID WORD

REAL Deceleration

REAL Jerk

MC_BUFFER_MODE BufferMode

These two sampling traces show the effect of the sign of the value of the input ‘EndVelocity’:
1. ‘EndVelocity’ with positive direction:

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 51/ 141

Figure 27: MC_MoveContinuousRelative timing diagram with positive direction

2. ‘EndVelocity’ with negative direction:

Figure 28: MC_MoveContinuousRelative timing diagram with negative direction

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 52/ 141

Example of MC_MoveContinuousRelative:

Figure 29: Example of MC_MoveContinuousRelative

FB1.Start

FB1.InEndVelocity = Execute FB2

FB1.Aborted

FB2.InEndVelocity = FB3.Execute

20

Velocity

50

20

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 53/ 141

3.13. MC_TorqueControl

FB-Name MC_TorqueControl
This Function Block continuously exerts a torque or force of the specified magnitude. This magnitude is ap-
proached using a defined ramp (‘TorqueRamp’), and the Function Block sets the ‘InTorque’ output if the com-
manded torque level is reached. This function block is applicable for force and torque. When there is no external
load, force is applicable. Positive torque is in the positive direction of velocity.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Starts the motion on a rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

B Torque REAL Value of the torque (Torque or force in technical unit [u])

E TorqueRamp REAL The maximum time derivative of the set value of the
torque or force (in technical unit per sec. [u/s])

E Velocity REAL Absolute value of the maximum velocity.

E Acceleration REAL Value of the maximum acceleration (acceleration is appli-
cable with same sign of torque and velocity)

E Deceleration REAL Value of the maximum deceleration (deceleration is appli-
cable with opposite signs of torque and velocity)

E Jerk REAL Value of the maximum jerk

E Direction MC_DIRECTION Enum type (1 of 2 values: mcPositiveDirection, mcNega-
tiveDirection or mcCurrentDirection). Specifies the direc-
tion of the torque. (Note: Torque input can be signed
value).

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B InTorque BOOL Setpoint value of torque or force equals the commanded
value

E Busy BOOL The FB is not finished and new output values are to be
expected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function
Block

E ErrorID WORD Error identification

Notes:
1. The movement is limited by velocity, acceleration / deceleration, and jerk, or by the value of the torque, de-

pending on the mechanical circumstances.
2. Specific additional tests are outside this FB. For instance, checking on the traveled distance could be done via

tracing the actual positions during the action.
3. ‘Velocity’ is a limit input and is always a positive value. The direction is dependent on the torque and load.
4. The axis ceases to be in ‘Torque’ control mode when any motion control (not administrative) Function Block

is accepted on the same axis.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 54/ 141

MC_TorqueControl
AXIS_REF Axis Axis AXIS_REF

BOOL Execute InTorque BOOL

BOOL ContinuousUpdate Busy BOOL

REAL Torque Active BOOL

REAL TorqueRamp CommandAborted BOOL

REAL Velocity Error BOOL

REAL Acceleration ErrorID WORD

REAL Deceleration

REAL Jerk

MC_DIRECTION Direction

MC_BUFFER_MODE BufferMode

The example below shows the typical behavior of an intermediate “resistive” load (see ‘Deceleration’ limit) with some
“inertia” (see ‘TorqueRamp’ limit).

Figure 30: First example of MC_TorqueControl

This example could be implemented in a Function Block Diagram like:

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 55/ 141

Figure 31: Program of example of MC_TorqueControl

The second example (below) opposite signs for ‘Direction’ & ‘Torque’ are used (e.g. Retention or brake control). (In
the FB: +Direction –Torque). It is like an unwinding application with torque on the material, and a break in the material.
When the material breaks, as shown in the middle of the picture, this causes a drop in the real Torque value (in absolute
terms): the velocity will decrease, limited by the fastest “deceleration” limit specified by the ‘Deceleration’
VAR_INPUT down to zero velocity (with no tension there is a risk of having shock breakings, so we have to limit to the
fastest). In this case the torque setpoint might not be achieved.

Time

Time

Actual Torque

Actual Velocity

Direction

“TorqueRamp”
limiter

Initial Torque from
previous state

max
“Deceleration”

limit

Time
Commanded Torque

Zero “Velocity” level reached ...

max
“Deceleration”

limit

Material
force

Initial velocity from
previous state

Loose material
(no tension) Tension Recovered

--

Deceleration is allowed if slower than the limit

Execute

Figure 32: Second example of MC_TorqueControl

NOTE: In an unwinding application (derived from this brake control) material tension is the target, not motor torque.
The instantaneous diameter of the roll should be taken into account to transform the “User tension setpoint”. Also addi-
tional inertia compensation by modification of the torque setpoint for acceleration / deceleration is common from instan-
taneous weight data (weight is commonly estimated from diameter). Additionally in unwinding applications, in the case
of loose material (same condition as material break), a negative slow velocity reference is usually applied in order to
“rewind” the loose material. In this case, this has to be provided by external programming.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 56/ 141

3.14. MC_PositionProfile

FB-Name MC_PositionProfile
This Function Block commands a time-position locked motion profile

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

B TimePosition MC_TP_REF Reference to Time / Position. Description - see note below

VAR_INPUT

B Execute BOOL Start the motion at rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

E TimeScale REAL Overall time scaling factor of the profile

E PositionScale REAL Overall Position scaling factor

E Offset REAL Overall offset for profile [u]

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B Done BOOL Profile completed

E Busy BOOL The FB is not finished and new output values are to be
expected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function
block

E ErrorID WORD Error identification

Notes:
 MC_TP_REF is a supplier specific data type. An example for this datatype is given below:

 The content of a Time/Position pair may be expressed in DeltaTime/Pos, where Delta could be the differ-
ence in time between two successive points.

 TYPE
MC_TP : STRUCT

DeltaTime : TIME;
Position : REAL;

END_STRUCT;
END_TYPE

 TYPE
MC_TP_REF : STRUCT

NumberOfPairs : WORD;
IsAbsolute : BOOL;
MC_TP_Array : ARRAY [1..N] OF MC_TP;

END_STRUCT;
END_TYPE

 This functionality does not mean it runs one profile over and over again: it can switch between different pro-
files

 Alternatively to this FB, the FB MC_CamIn coupled to a virtual master can be used

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 57/ 141

MC_PositionProfile
AXIS_REF Axis Axis AXIS_REF

MC_TP_REF TimePosition TimePosition MC_TP_REF

BOOL Execute Done BOOL

BOOL ContinuousUpdate Busy BOOL

REAL TimeScale Active BOOL

REAL PositionScale CommandAborted BOOL

REAL Offset Error BOOL

MC_BUFFER_MODE BufferMode ErrorID WORD

Time

Position

Acceleration

Velocity

0

dT1 dT2 dT3 dT4

Pos1

Pos4
Pos3

Pos2

deltaTime absPos

dT1 Pos1
dT2 Pos2
dT3 Pos3
dT4 Pos4

s, v, a

Figure 33: Example of Time / MC_PositionProfile

Note: The Time / Velocity and Time / Acceleration Profiles are similar to the ‘Position’ Profile, with sampling points on
the ‘Velocity’ or ‘Acceleration’ lines.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 58/ 141

3.15. MC_VelocityProfile

FB-Name MC_VelocityProfile
This Function Block commands a time-velocity locked motion profile. The velocity in the final element in the profile
should be maintained. The state remains ‘ContinuousMotion’.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

B TimeVelocity MC_TV_REF Reference to Time / Velocity. Description - see note below

VAR_INPUT

B Execute BOOL Start the motion at rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

E TimeScale REAL Overall time scaling factor of the profile

E VelocityScale REAL Overall velocity scaling factor of the profile

E Offset REAL Overall offset for profile [u/s]

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B ProfileCompleted BOOL End of profile reached

E Busy BOOL The FB is not finished and new output values are to be ex-
pected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes:
 MC_TV_REF is a supplier specific datatype. An example for this datatype is given here below:

 The content of Time/Velocity pair may be expressed in DeltaTime/Velocity, where Delta could be the dif-
ference in time between two successive points. Velocity can be a signed value.

 TYPE
MC_TV : STRUCT

DeltaTime : TIME;
Velocity : REAL;

END_STRUCT;
END_TYPE

 TYPE
MC_TV_REF : STRUCT

NumberOfPairs : WORD;
MC_TV_Array : ARRAY [1..N] of MC_TV;

END_STRUCT;
END_TYPE

 This functionality does not mean it runs one profile over and over again: it can switch between different profiles
 Alternatively to this FB, the CAM FB coupled to a virtual master can be used

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 59/ 141

MC_VelocityProfile
AXIS_REF Axis Axis AXIS_REF

MC_TV_REF TimeVelocity TimeVelocity MC_TV_REF

BOOL Execute ProfileCompleted BOOL

BOOL ContinuousUpdate Busy BOOL

REAL TimeScale Active BOOL

REAL VelocityScale CommandAborted BOOL

REAL Offset Error BOOL

MC_BUFFER_MODE BufferMode ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 60/ 141

3.16. MC_AccelerationProfile

FB-Name MC_AccelerationProfile
This Function Block commands a time-acceleration locked motion profile. After finalizing the acceleration pro-
file, the acceleration goes to 0 (and typically the final velocity is maintained). It stays in the state ‘ContinuousMo-
tion’.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

B TimeAcceleration MC_TA_REF Reference to Time / Acceleration. Description – see note
below

VAR_INPUT

B Execute BOOL Start the motion at rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

E TimeScale REAL Overall time scaling factor of the profile

E AccelerationScale REAL Scale factor for acceleration amplitude

E Offset REAL Overall offset for profile [u/s2]

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B ProfileCompleted BOOL End of profile reached

E Busy BOOL The FB is not finished and new output values are to be
expected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function
Block

E ErrorID WORD Error identification

Notes:
 MC_TA_REF is a supplier specific datatype. An example for this datatype is given here below:

 The content of Time/Acceleration pair may be expressed in DeltaTime/Acceleration, where Delta could
be the difference in time between two successive points.

 TYPE
MC_TA : STRUCT

DeltaTime : TIME;
Acceleration : REAL;

END_STRUCT;
END_TYPE

 TYPE
MC_TA_REF : STRUCT

NumberOfPairs : WORD;
MC_TA_Array : ARRAY [1..N] of MC_TA;

END_STRUCT;
END_TYPE

 alternatively to this FB, the CAM FB coupled to a virtual master can be used

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 61/ 141

MC_AccelerationProfile
AXIS_REF Axis Axis AXIS_REF

MC_TA_REF TimeAcceleration TimeAcceleration MC_TA_REF

BOOL Execute ProfileCompleted BOOL

BOOL ContinuousUpdate Busy BOOL

REAL TimeScale Active BOOL

REAL AccelerationScale CommandAborted BOOL

REAL Offset Error BOOL

MC_BUFFER_MODE BufferMode ErrorID WORD

Example of an acceleration profile:
A profile is made from a number of sequential “A to B” positioning points. It is simple to visualize, but requires a lot of
sequences for a smooth profile. These requirements are often beyond the capability of low-end servos.
Alternatively, by using a modest amount of constant acceleration segments it is possible to define a well-matching mo-
tion profile. With this method the capability range of low-end servos can be extended.
It is possible to make matching to either:

1. Position versus time profile
2. Master versus slave axis

Advantages:
 Compact description of a profile
 Smooth profile properties by nature
 Low processor power requirements

Disadvantages
 Higher programming abstraction level with existing tools

Lift profile (10 segments)

-80000.00

-60000.00

-40000.00

-20000.00

0.00

20000.00

40000.00

60000.00

80000.00

0.0
00

0.1
00

0.2
00

0.3
00

0.4
00

0.5
00

0.6
00

Time [sec]

A
c
c
e

le
ra

ti
o

n
[m

m
/s

e
c
^

2
]

Part 1 Part 2

Figure 34: MC_AccelerationProfile, 10 segments only

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 62/ 141

Lift profile (10 segments)

0

1000

2000

3000

4000

5000

6000
0
.0

0
0

0
.1

0
0

0
.2

0
0

0
.3

0
0

0
.4

0
0

0
.5

0
0

0
.6

0
0

Time [sec]

P
o
s
it
io

n
[i
n
c
]

-20000

0

20000

40000

60000

80000

V
e
lo

v
it
y

[i
n
c
/s

e
c
]

Position

Velocity

Figure 35: Resulting MC_PositionProfile

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 63/ 141

3.17. MC_SetPosition

FB-Name MC_SetPosition
This Function Block shifts the coordinate system of an axis by manipulating both the set-point position as well as the
actual position of an axis with the same value without any movement caused. (Re-calibration with same following er-
ror). This can be used for instance for a reference situation. This Function Block can also be used during motion with-
out changing the commanded position, which is now positioned in the shifted coordinate system.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Start setting position in axis

B Position REAL Position unit [u] (Means ‘Distance’ if ‘Relative’= TRUE)

E Relative BOOL ‘Relative’ distance if True, ‘Absolute’ position if False (= Default)

E ExecutionMode MC_EXECUTION
_MODE

ENUM. Defines the chronological sequence of the FB.
mcImmediately - the functionality is immediately valid and may
influence the on-going motion but not the state (note: is the default
behaviour)
mcQueued - Same functionality as buffer mode ‘Buffered’

VAR_OUTPUT

B Done BOOL ‘Position’ has new value

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Note:
‘Relative’ means that ‘Position’ is added to the actual position value of the axis at the time of execution. This results in
a recalibration by a specified distance. ‘Absolute’ means that the actual position value of the axis is set to the value
specified in the ‘Position’ parameter.

MC_SetPosition
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

REAL Position Busy BOOL

BOOL Relative Error BOOL

MC_EXECUTION_MODE ExecutionMode ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 64/ 141

3.18. MC_SetOverride

FB-Name MC_SetOverride
This Function Block sets the values of override for the whole axis, and all functions that are working on that axis. The
override parameters contribute as a factor to the calculation of the commanded velocity, acceleration and jerk of the
motion.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Enable BOOL If SET, it writes the value of the override factor continuously. If
RESET it should keep the last value.

B VelFactor REAL New override factor for the velocity

E AccFactor REAL New override factor for the acceleration/deceleration

E JerkFactor REAL New override factor for the jerk

VAR_OUTPUT

B Enabled BOOL Signals that the override factor(s) is (are) set successfully

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes:
1. The Input AccFactor acts on positive and negative acceleration (deceleration).
2. This Function Block sets the factor. The override factor is valid until a new override is set.
3. The default values of the override factor are 1.0.
4. The value of the overrides can be between 0.0 and 1.0. The behavior of values > 1.0 is vendor specific. Values

< 0.0 are not allowed. The value 0.0 is not allowed for ‘AccFactor’ and ‘JerkFactor’.
5. The value 0.0 set to the ‘VelFactor’ stops the axis without bringing it to the state ‘Standstill’.
6. Override does not act on slave axes. (Axes in the state synchronized motion).
7. The Function Block does not influence the state diagram of the axis.
8. ‘VelFactor’ can be changed at any time and acts directly on the ongoing motion.
9. If in ‘Discrete’ motion, reducing the ‘AccFactor’ and/or ‘JerkFactor’ can lead to a position overshoot – a pos-

sible cause of damage
10. Activating this Function Block on an axis that is under control of MC_PositionProfile, MC_VelocityProfile, or

MC_AccelerationProfile, is vendor specific.

MC_SetOverride
AXIS_REF Axis Axis AXIS_REF

BOOL Enable Enabled BOOL

REAL VelFactor Busy BOOL

REAL AccFactor Error BOOL

REAL JerkFactor ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 65/ 141

Enable

Enabled

Error

t

Velocity

AccFactor

1.0

0.5

VelFactor

1.0

0.5

1 2 3

1

2

3

Axis Velocity changes to 50% with 100% of deceleration

Axis Velocity changes back to 100% with 50% acceleration

Axis Velocity moves to 0% with 100% deceleration

1.0

0.5

0.0

0.0

4

4 No Change, because AccFactor 0.0 is not allowed; Error is set

0.0

Figure 36: Graphical explanation of MC_SetOverride

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 66/ 141

3.19. MC_ReadParameter & MC_ReadBoolParameter

FB-Name MC_ReadParameter
This Function Block returns the value of a vendor specific parameter. The returned Value has to be converted to Real
if necessary. If not possible, the vendor has to supply a vendor specific FB to read the parameter.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Enable BOOL Get the value of the parameter continuously while enabled

B ParameterNumber INT Number of the parameter. One can also use symbolic parameter
names which are declared as VAR CONST.

VAR_OUTPUT

B Valid BOOL A valid output is available at the FB

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

B Value REAL Value of the specified parameter in the datatype, as specified by the
vendor

Note: The parameters are defined in the table below.

MC_ReadParameter
AXIS_REF Axis Axis AXIS_REF

BOOL Enable Valid BOOL

INT ParameterNumber Busy BOOL

Error BOOL

ErrorID WORD

Value REAL

FB-Name MC_ReadBoolParameter
This Function Block returns the value of a vendor specific parameter with datatype BOOL.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Enable BOOL Get the value of the parameter continuously while enabled

B ParameterNumber INT Number of the parameter. One can also use symbolic parameter
names which are declared as VAR CONST.

VAR_OUTPUT

B Valid BOOL A valid output is available at the FB

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function block

E ErrorID WORD Error identification

B Value BOOL Value of the specified parameter in the datatype, as specified by the
vendor

Note: The parameters are defined in the table below

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 67/ 141

MC_ReadBoolParameter
AXIS_REF Axis Axis AXIS_REF

BOOL Enable Valid BOOL

INT ParameterNumber Busy BOOL

Error BOOL

ErrorID WORD

Value BOOL

The parameters defined below have been standardized by the task force. Suppliers should use these parameters if they
are offering this functionality.
All read-only parameters as defined may be writable during the initialization phase (supplier dependent).

These parameters are available for use in the application program, and typically are not intended for commissioning
tools like operator panels, etc. (the drive is not visible – only the axis position)
Note: that the most used parameters are accessible via Function Blocks, and are not listed here.

(Note: PN is Parameter Number see FB MC_ReadParameter / MC_WriteParameter and Boolean versions)

PN Name Datatype B/E R/W Comments
1 CommandedPosition REAL B R Commanded position
2 SWLimitPos REAL E R/W Positive Software limit switch position
3 SWLimitNeg REAL E R/W Negative Software limit switch position
4 EnableLimitPos BOOL E R/W Enable positive software limit switch
5 EnableLimitNeg BOOL E R/W Enable negative software limit switch

6 EnablePosLagMonitoring BOOL E R/W Enable monitoring of position lag

7 MaxPositionLag REAL E R/W Maximal position lag
8 MaxVelocitySystem REAL E R Maximal allowed velocity of the axis in the mo-

tion system
9 MaxVelocityAppl REAL B R/W Maximal allowed velocity of the axis in the appli-

cation
10 ActualVelocity REAL B R Actual velocity
11 CommandedVelocity REAL B R Commanded velocity
12 MaxAccelerationSystem REAL E R Maximal allowed acceleration of the axis in the

motion system
13 MaxAccelerationAppl REAL E R/W Maximal allowed acceleration of the axis in the

application
14 MaxDecelerationSystem REAL E R Maximal allowed deceleration of the axis in the

motion system
15 MaxDecelerationAppl REAL E R/W Maximal allowed deceleration of the axis in the

application
16 MaxJerkSystem REAL E R Maximum allowed jerk of the axis in the motion

system
17 MaxJerkAppl REAL E R/W Maximum allowed jerk of the axis in the applica-

tion

Table 5: Parameters for MC_ReadParameter and MC_WriteParameter

Extensions by any supplier or user are also allowed at the end of the list, although this can affect portability between
different platforms. Parameter-numbers from 0 to 999 are reserved for the standard. Numbers greater than 999 indicate
supplier-specific parameters.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 68/ 141

3.20. MC_WriteParameter & MC_WriteBoolParameter

FB-Name MC_WriteParameter
This Function Block modifies the value of a vendor specific parameter.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Write the value of the parameter at rising edge

B ParameterNumber INT Number of the parameter (correspondence between number and
parameter is specified in the table above)

B Value REAL New value of the specified parameter

E ExecutionMode MC_EXECUTION
_MODE

Defines the chronological sequence of the FB.
mcImmediately - the functionality is immediately valid and may
influence the on-going motion but not the state (note: is the de-
fault behaviour)
mcQueued - Same functionality as buffer mode ‘Buffered’

VAR_OUTPUT

B Done BOOL Parameter successfully written

E Busy BOOL The FB is not finished and new output values are to be expected.

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes: The parameters are defined in the table above (under MC_ReadParameter, writing allowed)

MC_WriteParameter
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

INT ParameterNumber Busy BOOL

REAL Value Error BOOL

MC_EXECUTION_MODE ExecutionMode ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 69/ 141

FB-Name MC_WriteBoolParameter
This Function Block modifies the value of a vendor specific parameter of type BOOL.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Write the value of the parameter at rising edge

B ParameterNumber INT Number of the parameter (correspondence between number and
parameter is specified in the table above)

B Value BOOL New value of the specified parameter

E ExecutionMode MC_EXECUTION
_MODE

Defines the chronological sequence of the FB.
mcImmediately - the functionality is immediately valid and may
influence the on-going motion but not the state (note: is the de-
fault behaviour)
mcQueued - Same functionality as buffer mode ‘Buffered’.

VAR_OUTPUT

B Done BOOL Parameter successfully written

E Busy BOOL The FB is not finished and new output values are to be expected.

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes: The parameters are defined in the table above (under MC_ReadParameter, writing allowed)

MC_WriteBoolParameter
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

INT ParameterNumber Busy BOOL

BOOL Value Error BOOL

MC_EXECUTION_MODE ExecutionMode ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 70/ 141

3.21. MC_ReadDigitalInput

FB-Name MC_ReadDigitalInput
This Function Block gives access to the value of the input, referenced by the datatype MC_INPUT_REF. It provides
the value of the referenced input (BOOL)

VAR_IN_OUT

B Input MC_INPUT_REF Reference to the input signal source

VAR_INPUT

B Enable BOOL Get the value of the selected input signal continuously while
enabled

E InputNumber INT Selects the input. Can be part of MC_INPUT_REF, if only one
single input is referenced.

VAR_OUTPUT

B Valid BOOL A valid output is available at the FB

E Busy BOOL The FB is not finished and new output values are to be ex-
pected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

B Value BOOL The value of the selected input signal

Note: It is not guaranteed that the digital signal will be seen by the FB: a short pulse on the digital input could be over
before the next Function Block cycle occurs.

MC_ReadDigitalInput
MC_INPUT_REF Input Input MC_INPUT_REF

BOOL Enable Valid BOOL

INT InputNumber Busy BOOL

Error BOOL

ErrorID WORD

Value BOOL

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 71/ 141

3.22. MC_ReadDigitalOutput

FB-Name MC_ReadDigitalOutput
This Function Block provides access to the value of a digital output, referenced by the datatype MC_OUTPUT_REF. It
provides the value of the referenced output (BOOL).

VAR_IN_OUT

B Output MC_OUTPUT_REF Reference to the signal outputs

VAR_INPUT

B Enable BOOL Get the value of the selected output signal continuously while
enabled

E OutputNumber INT Selects the output. Can be part of MC_OUTPUT_REF, if only
one single output is referenced.

VAR_OUTPUT

B Valid BOOL A valid output is available at the FB

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the the Function Block

E ErrorID WORD Error identification

B Value BOOL The value of the selected output signal

Note: It is not guaranteed that the digital signal will be seen by the FB: a short pulse on the digital output could be over
before the next Function Block cycle occurs.

MC_ReadDigitalOutput
MC_OUTPUT_REF Output Output MC_OUTPUT_REF

BOOL Enable Valid BOOL

INT OutputNumber Busy BOOL

Error BOOL

ErrorID WORD

Value BOOL

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 72/ 141

3.23. MC_WriteDigitalOutput

FB-Name MC_WriteDigitalOutput
This Function Block writes a value to the output referenced by the argument ‘Output’ once (with rising edge of Exe-
cute).

VAR_IN_OUT

B Output MC_OUTPUT_REF Reference to the signal output

VAR_INPUT

B Execute BOOL Write the value of the selected output

E OutputNumber INT Selects the output. Can be part of MC_OUTPUT_REF, if only one
single input is referenced.

B Value BOOL The value of the selected output

E ExecutionMode MC_EXECUTION_
MODE

Defines the chronological sequence of the FB.
mcImmediately - the functionality is immediately valid and may
influence the on-going motion but not the state (note: is the default
behaviour)
mcQueued - Same functionality as buffer mode ‘Buffered’

VAR_OUTPUT

B Done BOOL Writing of the output signal value is done

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes: -

MC_WriteDigitalOutput
MC_OUTPUT_REF Output Output MC_OUTPUT_REF

BOOL Execute Done BOOL

INT OutputNumber Busy BOOL

BOOL Value Error BOOL

MC_EXECUTION_MODE ExecutionMode ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 73/ 141

3.24. MC_ReadActualPosition

FB-Name MC_ReadActualPosition
This Function Block returns the actual position.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Enable BOOL Get the value of the parameter continuously while enabled

VAR_OUTPUT

B Valid BOOL A valid output is available at the FB

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

B Position REAL New absolute position (in axis’ unit [u])

MC_ReadActualPosition
AXIS_REF Axis Axis AXIS_REF

BOOL Enable Valid BOOL

Busy BOOL

Error BOOL

ErrorID WORD

Position REAL

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 74/ 141

3.25. MC_ReadActualVelocity

FB-Name MC_ReadActualVelocity
This Function Block returns the value of the actual velocity as long as ‘Enable’ is set. ‘Valid’ is true when the data-
output ‘Velocity’ is valid. If ‘Enable’ is Reset, the data loses its validity, and all outputs are reset, no matter if new
data is available.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Enable BOOL Get the value of the parameter continuously while enabled

VAR_OUTPUT

B Valid BOOL A valid output is available at the FB

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

B Velocity REAL The value of the actual velocity (in axis’ unit [u/s])

Notes: The output ‘Velocity’ can be a signed value

MC_ReadActualVelocity
AXIS_REF Axis Axis AXIS_REF

BOOL Enable Valid BOOL

Busy BOOL

Error BOOL

ErrorID WORD

Velocity REAL

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 75/ 141

3.26. MC_ReadActualTorque

FB-Name MC_ReadActualTorque
This Function Block returns the value of the actual torque or force as long as ‘Enable’ is set. ‘Valid’ is true when the
data-output ‘Torque’ is valid. If ‘Enable’ is Reset, the data loses its validity, and ‘Valid’ is also reset, no matter if new
data is available.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Enable BOOL Get the value of the parameter continuously while enabled

VAR_OUTPUT

B Valid BOOL A valid output is available at the FB

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

B Torque REAL The value of the actual torque or force (in technical units)

Notes: The output ‘Torque’ can be a signed value

MC_ReadActualTorque
AXIS_REF Axis Axis AXIS_REF

BOOL Enable Valid BOOL

Busy BOOL

Error BOOL

ErrorID WORD

Torque REAL

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 76/ 141

3.27. MC_ReadStatus

FB-Name MC_ReadStatus
This Function Block returns in detail the status of the state diagram of the selected axis.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Enable BOOL Get the value of the parameter continuously while enabled

VAR_OUTPUT

B Valid BOOL A valid set of outputs is available at the FB

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

B ErrorStop BOOL See state diagram

B Disabled BOOL See state diagram

B Stopping BOOL See state diagram

E Homing BOOL See state diagram

B Standstill BOOL See state diagram

E DiscreteMotion BOOL See state diagram

E ContinuousMotion BOOL See state diagram

E SynchronizedMotion BOOL See state diagram

MC_ReadStatus
AXIS_REF Axis Axis AXIS_REF

BOOL Enable Valid BOOL

Busy BOOL

Error BOOL

ErrorID WORD

ErrorStop BOOL

Disabled BOOL

Stopping BOOL

Homing BOOL

Standstill BOOL

DiscreteMotion BOOL

ContinuousMotion BOOL

SynchronizedMotion BOOL

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 77/ 141

3.28. MC_ReadMotionState

FB-Name MC_ReadMotionState
This Function Block returns in detail the status of the axis with respect to the motion currently in progress.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Enable BOOL Get the value of the parameter continuously while enabled

E Source MC_SOURCE Defines the source of the relevant data: mcCommandedValue;
mcSetValue, mcActualValue.

VAR_OUTPUT

B Valid BOOL True if a valid set of outputs available

E Busy BOOL The FB is not finished and new output values are to be ex-
pected

B Error BOOL Signals that an error has occurred within the Function block

E ErrorID WORD Error identification

E ConstantVelocity BOOL Velocity is constant. Velocity may be 0. For the actual value a
window is applicable (window is vendor specific)

E Accelerating BOOL Increasing the absolute value of the velocity

E Decelerating BOOL Decreasing the absolute value of the velocity

E DirectionPositive BOOL Signals that the position is increasing

E DirectionNegative BOOL Signals that the position is decreasing

MC_ReadMotionState
AXIS_REF Axis Axis AXIS_REF

BOOL Enable Valid BOOL

MC_SOURCE Source Busy BOOL

Error BOOL

ErrorID WORD

ConstantVelocity BOOL

Accelerating BOOL

Decelerating BOOL

DirectionPositive BOOL

DirectionNegative BOOL

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 78/ 141

3.29. MC_ReadAxisInfo

FB-Name MC_ReadAxisInfo
This Function Block reads information concerning an axis, like modes, inputs directly related to the axis, and certain
status information.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Enable BOOL Get the axis information constantly while enabled

VAR_OUTPUT

B Valid BOOL True if a valid set of outputs is available

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

E HomeAbsSwitch BOOL Digital home switch input is active

E LimitSwitchPos BOOL Positive hardware end switch is active

E LimitSwitchNeg BOOL Negative hardware end switch is active

E Simulation BOOL Axis is in simulation mode (e.g. motor is simulated)

E CommunicationReady BOOL “Network” is initialized and ready for communication

E ReadyForPowerOn BOOL Drive is ready to be enabled (power on)

E PowerOn BOOL If TRUE shows that the power stage is switched ON

E IsHomed BOOL The absolute reference position is known for the axis (axis is
homed)

E AxisWarning BOOL Warning(s) on the axis is present

MC_ReadAxisInfo
AXIS_REF Axis Axis AXIS_REF

BOOL Enable Valid BOOL

Busy BOOL

Error BOOL

ErrorID WORD

HomeAbsSwitch BOOL

LimitSwitchPos BOOL

LimitSwitchNeg BOOL

Simulation BOOL

CommunicationReady BOOL

ReadyForPowerOn BOOL

PowerOn BOOL

IsHomed BOOL

AxisWarning BOOL

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 79/ 141

3.30. MC_ReadAxisError

FB-Name MC_ReadAxisError
This Function Block presents general axis errors not relating to the Function Blocks. (for instance axis errors, drive
errors, communication errors)

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Enable BOOL Get the value of the parameter continuously while enabled

VAR_OUTPUT

B Valid BOOL True if a valid output is available at the FB

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

B ErrorID WORD Error identification

E AxisErrorID WORD The value of the axis error. These values are vendor specific

Notes: -

MC_ReadAxisError
AXIS_REF Axis Axis AXIS_REF

BOOL Enable Valid BOOL

Busy BOOL

Error BOOL

ErrorID WORD

AxisErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 80/ 141

3.31. MC_Reset

FB-Name MC_Reset
This Function Block makes the transition from the state ‘ErrorStop’ to ‘Standstill’ or ‘Disabled’ by resetting all inter-
nal axis-related errors – it does not affect the output of the FB instances.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

VAR_INPUT

B Execute BOOL Resets all internal axis-related errors

VAR_OUTPUT

B Done BOOL ‘Standstill’ or ‘Disabled’ state is reached

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Note: the application of MC_Reset in other states then the state ‘ErrorStop’ is vendor specific

MC_Reset
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL

Busy BOOL

Error BOOL

ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 81/ 141

3.32. MC_DigitalCamSwitch

FB-Name MC_DigitalCamSwitch
This Function Block is the analogy to switches on a motor shaft: it commands a group of discrete output bits to switch
in analogy to a set of mechanical cam controlled switches connected to an axis. Forward and backward movements
are allowed.

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

B Switches MC_CAMSWITCH_REF Reference to the switching actions.

E Outputs MC_OUTPUT_REF Reference to the signal outputs, directly related to the refer-
enced tracks. (max. 32 per function block) (First output =
first TrackNumber)

E TrackOptions MC_TRACK_REF Reference to structure containing track related properties,
e.g. the ON and OFF compensations per output/track.

VAR_INPUT

B Enable BOOL Enables the ‘Switches’ outputs

E EnableMask DWORD 32 bits of BOOL. Enables the different tracks. Least sig-
nificant data is related to the lowest TrackNumber. With
data SET (to ‘1’ resp. TRUE) the related TrackNumber is
enabled.

E ValueSource MC_SOURCE Defines the source for axis values (e.g. positions):
mcSetValue - Synchronization on set value
mcActualValue - Synchronization on actual value

VAR_OUTPUT

B InOperation BOOL The commanded tracks are enabled

E Busy BOOL The FB is not finished and new output values are to be
expected

B Error BOOL Signals that an error has occurred within the Function
Block

E ErrorID WORD Error identification

Notes:
 MC_CAMSWITCH_REFis a vendor specific reference to the pattern data.
 MC_OUTPUT_REF is a vendor specific structure linked to the (physical) outputs
 MC_TRACK_REF is vendor specific structure containing the track properties, e.g. the compensation per track

(A track is a set of switches related to one output). It can contain the reference to the output also.
 This functionality is sometimes called PLS – Phase or Position or Programmable Limit Switch

MC_DigitalCamSwitch
AXIS_REF Axis Axis AXIS_REF

MC_CAMSWITCH_REF Switches Switches MC_CAMSWITCH_REF

MC_OUTPUT_REF Outputs Outputs MC_OUTPUT_REF

MC_TRACK_REF TrackOptions TrackOptions MC_TRACK_REF

BOOL Enable InOperation BOOL

DWORD EnableMask Busy BOOL

MC_SOURCE ValueSource Error BOOL

ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 82/ 141

Basic elements within the structure of MC_CAMSWITCH_REF
B/E Parameter Type Description

B TrackNumber INT TrackNumber is the reference to the track
B FirstOnPosition [u] REAL Lower boundary where the switch is ON
B LastOnPosition [u] REAL Upper boundary where the switch is ON
E AxisDirection INT Both (=0; Default); Positive (1); Negative (2)
E CamSwitchMode INT Position based (=0; Default); Time based (=1)
E Duration TIME Coupled to time based CamSwitchMode

Basic elements within the array structure of MC_TRACK_REF
B/E Parameter Type Description
E OnCompensation TIME Compensation time with which the switching on is advanced

or delayed in time per track.
E OffCompensation TIME Time compensation the switching off is delayed per track.
E Hysteresis [u] REAL Distance from the switching point (in positive and negative

direction) in which the switch is not executed until the axis
has left this area, in order to avoid multiple switching around
the switching point.

This definition of a cam has a start and an end position, so the user can define each single cam, which has a FirstOn-
Position and a LastOnPosition (or time). This Function Block is similar to a mechanical cam but has the additional
advantages that the outputs can be set for a certain time, and to give it a time-compensation and a hysteresis.

CamSwitchMode can be Position, Time or other additional vendor specific types.

Duration: Time, the output of a time cam is ON

The time compensation (OnCompensation and OffCompensation) can be positive or negative. Negative means the
output changes before the switching position is reached.

Hysteresis: This parameter avoids the phenomenon where the output continually switches if the axis is near the switch-
ing point and the actual position is jittering around the switching position. Hysteresis is part of MC_TRACK_REF,
which means that a different hysteresis is possible for each track.

Example of MC_CAMSWITCH_REF

Parameter Type Switch01 Switch02 Switch03 Switch04 … SwitchN

TrackNumber INTEGER 1 1 1 2

FirstOnPosition [u] REAL 2000 2500 4000 3000

LastOnPosition [u] REAL 3000 3000 1000 --

AxisDirection INTEGER 1=Pos 2=Neg 0=Both 0=Both

CamSwitchMode INTEGER 0=Position 0=Position 0=Position 1=Time

Duration TIME -- -- -- 1350

Note: Values are Examples

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 83/ 141

The example below uses the values from the example for MC_CAMSWITCH_REF above. It uses neither
On/OffCompensation, nor hysteresis.
This is the behavior of the outputs, when the axis is moving continuously in the positive direction. The axis is a modulo
axis with a modulo length of 5000 u.

Position

TrackNumber 1

1000 2000 3000 4000 5000 1000

TrackNumber 2

Switch03 Switch01 Switch03

1350 ms

Switch04

Axis is moving continously in positive direction

Figure 37: Example of MC_DigitalCamSwitch

Detailed description of Switch01.
This example additionally uses OnCompensation -125ms and OffCompensation +250ms.

2000 3000

125

ms

250

ms

Switch01

Without delay

Resulting output with delay

2500

Resulting position is depending on the actual velocity

Figure 38: Detailed description of Switch01.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 84/ 141

Below the behavior of the outputs, when the axis is moving continuously in the negative direction without
On/OffCompensation and without Hysteresis.

Switch03

Position

TrackNumber
1

1000 2000 3000 4000 5000 1000

TrackNumber
2

Switch02

Switch03

1350 ms

Switch04

Axis is moving continuously in the negative direction

Figure 39: Example in negative direction

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 85/ 141

3.33. MC_TouchProbe

FB-Name MC_TouchProbe
This Function Block is used to record an axis position at a trigger event

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

E TriggerInput MC_TRIGGER_REF Reference to the trigger signal source. Trigger input may be
specified by the AXIS_REF.

VAR_INPUT

B Execute BOOL Starts touch probe recording at rising edge

E WindowOnly BOOL If SET, only use the window (defined hereunder) to accept
trigger events

E FirstPosition REAL Start position from where (positive direction) trigger events
are accepted (in technical units [u]). Value included in win-
dow.

E LastPosition REAL Stop position of the window (in technical units [u]). Value
included in window.

VAR_OUTPUT

B Done BOOL Trigger event recorded

E Busy BOOL The FB is not finished and new output values are to be ex-
pected

E CommandAborted BOOL ‘Command’ is aborted by another command
(MC_AbortTrigger)

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

B RecordedPosition REAL Position where trigger event occurred (in technical units [u])

Notes:
1. Intended for single shot operation, that is the first event after the rising edge at ‘Execute’ is valid for recording
only. Possible following events are ignored
2. One Function Block instance should represent exactly one probing command
3. In case of multiple instances on the same probe and axis, the elements of MC_TRIGGER_REF should be ex-
tended with TouchProbeID - Identification of a unique probing command – this can be linked to MC_AbortTrigger

MC_TouchProbe
AXIS_REF Axis Axis AXIS_REF

MC_TRIGGER_REF TriggerInput TriggerInput MC_TRIGGER_REF

BOOL Execute Done BOOL

BOOL WindowOnly Busy BOOL

REAL FirstPosition CommandAborted BOOL

REAL LastPosition Error BOOL

ErrorID WORD

RecordedPosition REAL

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 86/ 141

Done

FALSE

TRUE

Execute

FALSE

TRUE

FALSE

TRUE

t

t

t

t

TriggerInput.Signal

Axis.Position

FirstPosition

RecordedPosition

LastPosition

PLC Sampling Points

signal not
accepted

signal
accepted

WindowOnly

FALSE

TRUE

t

Figure 40: Timing example MC_TouchProbe

accepted

+-

0

FirstPosition LastPosition

+-

0

FirstPosition

LastPosition

accepted

+-

0

LastPosition

accepted

A. FirstPosition < LastPosition

B. FirstPosition > LastPosition

FirstPosition

+-

0
FirstPosition

LastPosition
accepted

accepted

Figure 41: Examples of windows, where trigger events are accepted (for modulo axes)

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 87/ 141

3.34. MC_AbortTrigger

FB-Name MC_AbortTrigger
This Function Block is used to abort function blocks which are connected to trigger events (e.g. MC_TouchProbe)

VAR_IN_OUT

B Axis AXIS_REF Reference to the axis

E TriggerInput MC_TRIGGER_REF Reference to the trigger signal source. ‘TriggerInput’ may be
specified by the AXIS_REF. See Chapter 3.33 MC_TouchProbe

VAR_INPUT

B Execute BOOL Aborts trigger event at rising edge

VAR_OUTPUT

B Done BOOL Trigger functionality aborted

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes: -

MC_AbortTrigger
AXIS_REF Axis Axis AXIS_REF

MC_TRIGGER_REF TriggerInput TriggerInput MC_TRIGGER_REF

BOOL Execute Done BOOL

Busy BOOL

Error BOOL

ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 88/ 141

4. Multi-Axis Function Blocks

With Multi-Axis Function Blocks a synchronized relationship exists between two or more axes. The synchronization
can be related to time or position. Often this relationship is between a master axis and one or more slave axes. A master
axis can be a virtual axis.
From the state diagram point of view, the multi-axis Function Blocks related to Camming and Gearing can be looked at
as a master axis in one state (for instance: MC_MoveContinuous) and the slave axis in a specific synchronized state,
called ‘SychronizedMotion’ (see State Diagram, chapter 2.1).

4.1. Remarks to Camming

A mechanical cam is a rotating or sliding piece in a mechanical linkage used especially in transforming rotary motion
into linear motion or vice versa. It is often a part of a rotating wheel (e.g. an eccentric wheel) or shaft (e.g. a cylinder
with an irregular shape) that strikes a lever at one or more points on its circular path. The cam can be a simple tooth, as
is used to deliver pulses of power to a steam hammer, for example, or an eccentric disc or other shape that produces a
smooth reciprocating (back and forth) motion in the follower, which is a lever making contact with the cam.
As such a cam creates a link between a master and one or more slaves in a position / position mode (see figure here-
under).
With motors and drives one can create the same position / position relationship but in this case via a so called Cam table
listing the positions. So the relationship is converted to software and control.

Position

Postion

Slave

Master

Figure 42: CAM profile illustration

Basically, one can differentiate between two types of Camming for both modulo and linear (or finite) master axes:
 Periodic mode - repeats the execution of the Cam profile on a continuous basis, even if the CAM profile does not

match the modulo. This means that for a modulo axis with modulo is 360 degrees, and the CAM profiles is speci-
fied for 90 degrees it will be executed 4 times in a modulo. In reverse mode the profile is executed the inverse way.

 Non-periodic mode – the CAM profile is run only once. If the master position is outside of the Cam profile, the
slave axis stays in synchronized motion and keeps the last position. In reverse mode, the CAM profile is not exe-
cuted after having reached the ‘EndOfProfile’ position. The 90 degrees example above will be run only once.

Camming may be done with several combined cam tables which are executed sequentially, like a ramp-in, a production
cycle, and a ramp-out. Between the different cam curves may be a gap (wait for trigger) in the execution. However, one
could the buffered mode or use the output ‘EndOfProfile’ to start the next profile.

CAM table
Camming is done with one table (two dimensional – describing master and slave positions together) or two tables - for
master and slave positions separately. The table should be strictly monotonic rising or falling, going both reverse and
forward with the master.
It is allowed and possible to change tables while CAM is running and to change elements in the table while the CAM is
running.
The generation and filling of the CAM table (master, slave) is performed by an external tool, which is supplier specific.
The coupling of the FB MC_CamIn to the table is also supplier-specific.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 89/ 141

Value presentation types
Master and slave axes may have different presentations:
 Absolute values
 Relative to a starting position
 Relative steps (difference to the previous position)
 Equidistant or non-equidistant values.
 Polynomial Format. In this case the cam is described completely in the slave-table. The master-table is zero.

CAM Function Blocks
The advantages of having different Function Blocks for the camming functionality are a more transparent program exe-
cution flow and better performance in execution.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 90/ 141

4.2. MC_CamTableSelect

FB-Name MC_CamTableSelect
This Function Block selects the CAM tables by setting the connections to the relevant tables

VAR_IN_OUT

E Master AXIS_REF Reference to the master axis

E Slave AXIS_REF Reference to the slave axis

B CamTable MC_CAM_REF Reference to CAM description

VAR_INPUT

B Execute BOOL Selection at rising edge

E Periodic BOOL 1 = periodic, 0 = non periodic (single-shot)

E MasterAbsolute BOOL 1 = absolute; 0 = relative coordinates

E SlaveAbsolute BOOL 1 = absolute; 0 = relative coordinates

E ExecutionMode MC_EXECUTION_
MODE

Defines the chronological sequence of the FB.
mcImmediately - the functionality is immediately valid and may
influence the on-going motion but not the state (note: is the
default behaviour)
mcQueued - Same functionality as buffer mode ‘Buffered’.

VAR_OUTPUT

B Done BOOL Pre-selection done

E Busy BOOL The FB is not finished and new output values are to be ex-
pected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

E CamTableID MC_CAM_ID Identifier of CAM Table to be used in the MC_CamIn FB

Notes:
 A virtual axis can be used as master axis
 MC_CAM_REF is a supplier specific data type
 MC_CAM_ID is a supplier specific data type
 MC_CamTableSelect makes data available. This can include:

1. Starting point of a download of a profile
2. Start to generate a CAM profile

 When the Done output is SET, the CamTableID is valid and ready for use in a MC_CamIn FB.
 Possible parameters within the structure CAM_TABLE_REF are:

o E MasterPositions REAL, List of expressions of the MasterValues for the ‘CamTable’
o E SlavePositions REAL, List of expressions of the SlaveValues for the ‘CamTable’

MC_CamTableSelect
AXIS_REF Master Master AXIS_REF

AXIS_REF Slave Slave AXIS_REF

MC_CAM_REF CamTable CamTable MC_CAM_REF

BOOL Execute Done BOOL

BOOL Periodic Busy BOOL

BOOL MasterAbsolute Error BOOL

BOOL SlaveAbsolute ErrorID WORD

MC_EXECUTION_MODE ExecutionMode CamTableID MC_CAM_ID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 91/ 141

4.3. MC_CamIn

FB-Name MC_CamIn
This Function Block engages the CAM

VAR_IN_OUT

B Master AXIS_REF Reference to the master axis

B Slave AXIS_REF Reference to the slave axis

VAR_INPUT

B Execute BOOL Start at rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

E MasterOffset REAL Offset of the master shaft to cam.

E SlaveOffset REAL Offset of slave table.

E MasterScaling REAL Factor for the master profile (default = 1.0). From the
slave point of view the master overall profile is multiplied
by this factor

E SlaveScaling REAL Factor for the slave profile (default = 1.0). The overall
slave profile is multiplied by this factor.

E MasterStartDistance REAL The master distance for the slave to start to synchronize to
the master.

E MasterSyncPosition REAL The position of the master in the CAM profile where the
slave is in-sync with the master. (if the ‘MasterSyncPosi-
tion’ does not exist, at the first point of the CAM profile
the master and slave are synchronized.) Note: the inputs
acceleration, decelerations and jerk are not added here

E StartMode MC_START_MODE Start mode: mcAbsolute, mcRelative, or mcRampIn

E MasterValueSource MC_SOURCE Defines the source for synchronization:
mcSetValue - Synchronization on master set value
mcActualValue - Synchronization on master actual value

E CamTableID MC_CAM_ID Identifier of CAM Table to be used, linked to output of
MC_CamTableSelect

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B InSync BOOL Is TRUE if the set value = the commanded value.

E Busy BOOL The FB is not finished and new output values are to be
expected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function
Block

E ErrorID WORD Error identification

E EndOfProfile BOOL Pulsed output signaling the cyclic end of the CAM Profile
It is displayed every time the end of the cam profile is
reached. In reverse direction, the ‘EndOfProfile’ is dis-
played also at the end of the cam profile (in this case the
first point of the cam profile)

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 92/ 141

Notes:
 It is not required that the master is stationary
 If the actual master and slave positions do not correspond to the offset values when MC_CamIn is executed,
either an error occurs or the system deals with the difference automatically
 The Cam is placed either absolute or relative to the current master and slave positions.
Absolute: the profile between master and slave is seen as an absolute relationship.
Relative: the relationship between master and slave is in a relative mode.
 Ramp-in is a supplier specific mode. It can be coupled to additional parameters, such as a master-distance pa-
rameter, acceleration parameter, or other supplier specific parameters where the slave to ramp-in into the cam profile
(“ flying coupling”)
 This FB is not merged with the MC_CamTableSelect FB because this separation enables changes on the fly
 A mechanical analogy to a slave offset is a cam welded with additional constant layer thickness. Because of this
the slave positions have a constant offset and the offset could be interpreted as axis offset of the master shaft, if lin-
ear guided slave tappets are assumed.

MC_CamIn
AXIS_REF Master Master AXIS_REF

AXIS_REF Slave Slave AXIS_REF

BOOL Execute InSync BOOL

BOOL ContiunousUpdate Busy BOOL

REAL MasterOffset Active BOOL

REAL SlaveOffset CommandAborted BOOL

REAL MasterScaling Error BOOL

REAL SlaveScaling ErrorID WORD

REAL MasterStartDistance EndOfProfile BOOL

REAL MasterSyncPosition

MC_START_MODE StartMode

MC_SOURCE MasterValueSource

MC_CAM_ID CamTableID

MC_BUFFER_MODE BufferMode

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 93/ 141

4.4. MC_CamOut

FB-Name MC_CamOut
This Function Block disengages the Slave axis from the Master axis immediately

VAR_IN_OUT

B Slave AXIS_REF Reference to the slave axis

VAR_INPUT

B Execute BOOL Start to disengage the slave from the master

VAR_OUTPUT

B Done BOOL Disengaging completed

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes:
 It is assumed that this command is followed by another command, for instance MC_Stop, MC_GearIn, or

any other command. If there is no new command, the default condition should be: maintain last velocity.
 After issuing the FB there is no FB active on the slave axis till the next FB is issued (what can result in prob-

lems because no motion command is controlling the axis). Alternatively one can read the actual velocity via
MC_ReadActualVelocity and issue MC_MoveVelocity on the slave axis with the actual velocity as input.
The FB is here because of compatibility reasons

MC_CamOut
AXIS_REF Slave Slave AXIS_REF

BOOL Execute Done BOOL

Busy BOOL

Error BOOL

ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 94/ 141

4.5. MC_GearIn

FB-Name MC_GearIn
This Function Block commands a ratio between the VELOCITY of the slave and master axis.

VAR_IN_OUT

B Master AXIS_REF Reference to the master axis

B Slave AXIS_REF Reference to the slave axis

VAR_INPUT

B Execute BOOL Start the gearing process at the rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate

B RatioNumerator INT Gear ratio Numerator

B RatioDenominator UINT Gear ratio Denominator

E MasterValueSource MC_SOURCE Defines the source for synchronization:
mcSetValue - Synchronization on master set value
mcActualValue - Synchronization on master actual value

E Acceleration REAL Acceleration for gearing in

E Deceleration REAL Deceleration for gearing in

E Jerk REAL Jerk of Gearing

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B InGear BOOL Is TRUE if the set value = the commanded value.

E Busy BOOL The FB is not finished and new output values are to be
expected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function
Block

E ErrorID WORD Error identification

Notes:
1. The slave ramps up to the ratio of the master velocity and locks in when this is reached. Any lost distance

during synchronization is not caught up.
2. The gearing ratio can be changed while MC_GearIn is running, using a consecutive MC_GearIn command

without the necessity to MC_GearOut first
3. After being ‘InGear’, a position locking or just a velocity locking is system specific.

MC_GearIn
AXIS_REF Master Master AXIS_REF

AXIS_REF Slave Slave AXIS_REF

BOOL Execute InGear BOOL

BOOL ContinuousUpdate Busy BOOL

INT RatioNumerator Active BOOL

UINT RatioDenominator CommandAborted BOOL

MC_SOURCE MasterValueSource Error BOOL

REAL Acceleration ErrorID WORD

REAL Deceleration

REAL Jerk

MC_BUFFER_MODE BufferMode

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 95/ 141

Figure 43: Gear timing diagram

First.Execute

MySlave.Velocity

First.InGear

Ratio
Reached

1

1

0

0

Second.Execute

Second.InGear

Ratio
Reached

1

1

0

0

t

t

t

t

t

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 96/ 141

4.6. MC_GearOut

FB-Name MC_GearOut
This Function Block disengages the Slave axis from the Master axis

VAR_IN_OUT

B Slave AXIS_REF Reference to the slave axis

VAR_INPUT

B Execute BOOL Start disengaging process at the rising edge

VAR_OUTPUT

B Done BOOL Disengaging completed

E Busy BOOL The FB is not finished and new output values are to be expected

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Notes:
 It is assumed that this command is followed by another command, for instance MC_Stop, MC_GearIn, or

any other command. If there is no new command, the default condition should be: maintain last velocity.
 After issuing the FB there is no FB active on the slave axis till the next FB is issued (what can result in prob-

lems because no motion command is controlling the axis). Alternatively one can read the actual velocity via
MC_ReadActualVelocity and issue MC_MoveVelocity on the slave axis with the actual velocity as input.
The FB is here because of compatibility reasons

MC_GearOut
AXIS_REF Slave Slave AXIS_REF

BOOL Execute Done BOOL

Busy BOOL

Error BOOL

ErrorID WORD

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 97/ 141

4.7. MC_GearInPos

FB-Name MC_GearInPos
This Function Block commands a gear ratio between the position of the slave and master axes from the synchroniza-
tion point onwards.

VAR_IN_OUT

B Master AXIS_REF Reference to the master axis

B Slave AXIS_REF Reference to the slave axis

VAR_INPUT

B Execute BOOL Start the gearing process at the rising edge

B RatioNumerator INT Gear ratio Numerator

B RatioDenominator UINT Gear ratio Denominator

E MasterValueSource MC_SOURCE Defines the source for synchronization:
mcSetValue - Synchronization on master set value
mcActualValue - Synchronization on master actual value

B MasterSyncPosition REAL The position of the master in the CAM profile where the
slave is in-sync with the master. (if the ‘MasterSyncPosi-
tion’ does not exist, at the first point of the CAM profile
the master and slave are synchronized.) Note: the inputs
acceleration, decelerations and jerk are not added here

B SlaveSyncPosition REAL Slave Position at which the axes are running in sync

E SyncMode MC_SYNC_MODE Defines the way to synchronize (like ‘mcShortest’;
‘mcCatchUp’; ‘mcSlowDown’). Vendor specific

E MasterStartDistance REAL Master Distance for gear in procedure (when the Slave
axis is started to get into synchronization)

E Velocity REAL Maximum Velocity during the time difference ‘StartSync’
and ‘InSync’

E Acceleration REAL Maximum Acceleration during the time difference ‘Start-
Sync’ and ‘InSync’

E Deceleration REAL Maximum Deceleration during the time difference ‘Start-
Sync’ and ‘InSync’

E Jerk REAL Maximum Jerk during the time difference ‘StartSync’ and
‘InSync’

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

E StartSync BOOL Commanded gearing starts

B InSync BOOL Is TRUE if the set value = the commanded value (is calcu-
lated set of values derived of master position and gear
ratio.)

E Busy BOOL The FB is not finished and new output values are to be
expected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function
Block

E ErrorID WORD Error identification

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 98/ 141

Notes:
1. If ‘MasterStartDistance’ is implemented, any previous motion is continued until master crosses ‘Master-

SyncPosition’ – ‘MasterStartDistance’ in the correct direction (according to the sign of ‘MasterStartDis-
tance’). At that point in time the output ‘StartSync’ is set. When a ‘Stop’ command is executed on the
‘Slave’ axis before the synchronization has happened, it inhibits the synchronization and the function block
issues ‘CommandAborted’

2. If the ‘MasterStartDistance’ is not specified, the system itself could calculate the set point for ‘StartSync’
based on the other relevant inputs.

3. The difference between the ‘SyncModes’ ‘CatchUp’ and ‘SlowDown’ is in the energy needed to synchro-
nize. ‘SlowDown’ costs the lowest energy vs. ‘CatchUp’.

MC_GearInPos
AXIS_REF Master Master AXIS_REF

AXIS_REF Slave Slave AXIS_REF

BOOL Execute StartSync BOOL

INT RatioNumerator InSync BOOL

UINT RatioDenominator Busy BOOL

MC_SOURCE MasterValueSource Active BOOL

REAL MasterSyncPosition CommandAborted BOOL

REAL SlaveSyncPosition Error BOOL

MC_SYNC_MODE SyncMode ErrorID WORD

REAL MasterStartDistance

REAL Velocity

REAL Acceleration

REAL Deceleration

REAL Jerk

MC_BUFFER_MODE BufferMode

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 99/ 141

InSync

FALSE

TRUE

Execute

FALSE

TRUE

FALSE

TRUE

MasterSyncPosition

SlaveSyncPosition

t

t

t

t

t

StartSync

MasterStartDistance

Figure 44: Timing Diagram of MC_GearInPos

Velocity

Time

Master Velocity

Initial Slave velocity lower
than Master velocity

Initial Slave velocity higher
than Master velocity

Figure 45: Example of the difference between ‘SyncModes’ ‘SlowDown’ (green) and ‘CatchUp’ (red) with dif-
ferent initial velocities of the slave

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 100/ 141

Figure 46: Example of MC_GearInPos where the initial velocity of the slave is in the same direction of the mas-
ter

S
S

y
n
c

Figure 47: Example of MC_GearInPos where the initial velocity of the slave is in the inverse direction of the
master

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 101/ 141

4.8. MC_PhasingAbsolute

FB-Name MC_PhasingAbsolute
This Function Block creates an absolute phase shift in the master position of a slave axis. The master position is
shifted in relation to the real physical position. This is analogous to opening a coupling on the master shaft for a
moment, and is used to delay or advance an axis to its master. The phase shift is seen from the slave. The master
does not know that there is a phase shift experienced by the slave (MasterPos as seen from the SlaveAxis = Physi-
calMasterPos + PhaseShiftValueSlaveAxis, the phase shift value has the character of a position offset) The phase
shift remains until another ‘Phasing’ command changes it again.

VAR_IN_OUT

B Master AXIS_REF Reference to the master axis

B Slave AXIS_REF Reference to the slave axis

VAR_INPUT

B Execute BOOL Start the phasing process at the rising edge

B PhaseShift REAL Absolut phase difference in master position of the slave
axis [u]

E Velocity REAL Maximum Velocity to reach phase difference [u/s]

E Acceleration REAL Maximum Acceleration to reach phase difference [u/s2]

E Deceleration REAL Maximum Deceleration to reach phase difference [u/s2]

E Jerk REAL Maximum Jerk to reach phase difference [u/s3]

E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B Done BOOL Commanded phasing reached

E Busy BOOL The FB is not finished and new output values are to be
expected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function
Block

E ErrorID WORD Error identification

E AbsolutePhaseShift REAL Displays continuously the absolute phase shift [u] while
Busy is set.

Note:
 ‘Phase’, ‘Velocity’, ‘Acceleration’, ‘Deceleration’ and ‘Jerk’ of a phase shift are controlled by the FB.
 For comparison: MC_MoveSuperimposed could also be used to act on the slave axis. MC_Phasing acts on the

master side, as seen from the slave

MC_PhasingAbsolute
AXIS_REF Master Master AXIS_REF

AXIS_REF Slave Slave AXIS_REF

BOOL Execute Done BOOL

REAL PhaseShift Busy BOOL

REAL Velocity Active BOOL

REAL Acceleration CommandAborted BOOL

REAL Deceleration Error BOOL

REAL Jerk ErrorID WORD

MC_BUFFER_MODE BufferMode AbsolutePhaseShift REAL

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 102/ 141

Figure 48: Timing example of MC_Phasing – both for absolute and relative

phase shift
position

360

t

master position "seen" by slave

physical master position

master velocity

phase velocity

0

0

velocity

t

t

t

Execute

Done

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 103/ 141

In this example the slave axis follows the master axis (in red – periodically) with a sine cam profile. Both the slave
positions (green) and the slave velocity (blue) are shown. The effect of phasing is shown on the slave axis.

Figure 49: Example of MC_Phasing – both for absolute and relative

Slave velocity with Phasing Slave position with Phasing

Master position

x 10

1 2 3 4 5 6

Takte

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 104/ 141

4.9. MC_PhasingRelative

FB-Name MC_PhasingRelative
This Function Block creates a phase shift in the master position of a slave axis relative to the existing phase shift.
The master position is shifted in relation to the real physical position. This is analogous to opening a coupling on
the master shaft for a moment, and is used to delay or advance an axis to its master. The phase shift is seen from
the slave. The master does not know that there is a phase shift experienced by the slave. (MasterPos as seen from
SlaveAxis = PhysicalMasterPos + PhaseShiftValueSlaveAxis, the phase shift value has the character of a position
offset) The phase shift remains until another ‘Phasing’ command changes it again. Relative phase shifts are added
to each other for the applicable phase shift

VAR_IN_OUT

B Master AXIS_REF Reference to the master axis

B Slave AXIS_REF Reference to the slave axis

VAR_INPUT

B Execute BOOL Start the phasing process at the rising edge

B PhaseShift REAL Additional phase difference in master position of the slave axis
[u]

E Velocity REAL Maximum Velocity to reach phase difference [u/s]

E Acceleration REAL Maximum Acceleration to reach phase difference [u/s2]

E Deceleration REAL Maximum Deceleration to reach phase difference [u/s2]

E Jerk REAL Maximum Jerk to reach phase difference [u/s3]

E BufferMode MC_BUFFER_
MODE

Defines the chronological sequence of the FB. See 2.4.2
Aborting versus Buffered modes

VAR_OUTPUT

B Done BOOL Commanded phasing reached

E Busy BOOL The FB is not finished and new output values are to be ex-
pected

E Active BOOL Indicates that the FB has control on the axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

E CoveredPhaseShift REAL Displays continuously the covered phase shift since it was
started

Note:
 ‘Phase’, ‘Velocity’, ‘Acceleration’, ‘Deceleration’ and ‘Jerk’ of a phase shift are controlled by the FB.
 For comparison: MC_MoveSuperimposed could also be used to act on the slave axis. MC_Phasing acts on the

master side, as seen from the slave

MC_PhasingRelative
AXIS_REF Master Master AXIS_REF

AXIS_REF Slave Slave AXIS_REF

BOOL Execute Done BOOL

REAL PhaseShift Busy BOOL

REAL Velocity Active BOOL

REAL Acceleration CommandAborted BOOL

REAL Deceleration Error BOOL

REAL Jerk ErrorID WORD

MC_BUFFER_MODE BufferMode CoveredPhaseShift REAL

For examples, see at MC_PhasingAbsolute in the previous paragraph.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 105/ 141

4.10. MC_CombineAxes

FB-Name MC_CombineAxes
This Function Block combines the motion of 2 axes into a third axis with selectable combination method. Basically it
is a calculation of a new position setpoint based on the 2 position setpoints of the input axes.
This FB is reflected in the state diagram like a synchronized motion type. As application example one can work with
a separate profile synchronized to an object on a moving belt, or a rotating knife with flexible covered distance to be
cut.

VAR_IN_OUT

B Master1 AXIS_REF Reference to the first master axis

B Master2 AXIS_REF Reference to the second master axis

B Slave AXIS_REF Reference to the resulting combined axis. Can be a virtual
axis or linked directly to a real axis

VAR_INPUT

B Execute BOOL Start the combination process at the rising edge

E ContinuousUpdate BOOL See 2.4.6 The input ‘ContinuousUpdate’

E CombineMode MC_COM-
BINE_MODE

Defines the type of combination applied to AxisOut :
mcAddAxes : Addition of the 2 input axes positions
mcSubAxes : Substraction of the 2 input axes positions

E GearRatioNumeratorM1 INT Numerator for the gear factor for master axis 1 towards the
slave

E GearRatioDenominatorM1 INT Corresponding denominator for master axis 1

E GearRatioNumeratorM2 INT Numerator for the gear factor for master axis 2 towards the
slave

E GearRatioDenominatorM2 INT Corresponding denominator for master axis 2

E MasterValueSourceM1 MC_SOURCE Defines the source for synchronization for master axis 1:
mcSetValue - Synchronization on master set value
mcActualValue - Synchronization on master actual value

E MasterValueSourceM2 MC_SOURCE Defines the source for synchronization for master axis 2:
mcSetValue - Synchronization on master set value
mcActualValue - Synchronization on master actual value

E BufferMode MC_BUFFER_
MODE

Defines the behavior of the axis: modes are ‘Aborting’,
‘Buffered’, ‘Blending’

VAR_OUTPUT

B InSync BOOL Is TRUE if the set value = the commanded value.

E Busy BOOL The FB is not finished and new output values are to be
expected

E Active BOOL Indicates that the FB has control on the combined axis

E CommandAborted BOOL ‘Command’ is aborted by another command

B Error BOOL Signals that an error has occurred within the Function Block

E ErrorID WORD Error identification

Note: To stop the motion, the FB has to be interrupted by another FB issuing a new command

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 106/ 141

MC_CombineAxes
AXIS_REF Master1 Master1 AXIS_REF

AXIS_REF Master2 Master2 AXIS_REF

AXIS_REF Slave Slave AXIS_REF

BOOL Execute InSync BOOL

BOOL ContinuousUpdate Busy BOOL

MC_COMBINE_MODE CombineMode Active BOOL

INT GearRatioNumeratorM1 CommandAborted BOOL

INT GearRatioDenominatorM1 Error BOOL

INT GearRatioNumeratorM2 ErrorID WORD

INT GearRatioDenominatorM2

MC_SOURCE mcMasterValueSourceM1

MC_SOURCE mcMasterValueSourceM2

MC_BUFFER_MODE BufferMode

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 107/ 141

MC_CombineAxes can generate special synchronized
movements that are not possible or complex to gener-
ate in other ways. In the following example, a CAM
FB and the result of a Gear FB are both synchronized
to a conveyor master, are added to generate a virtual
master for a MC_GearInPos function of the final axis
that will execute the movement.
The particular application of this example could be a
machine to deposit the icecream waving layers on top
of the icecream base travelling through the freezer line
in icecream factory. The dosing axis has to synchronize
with a waving manner to the conveyor carrying the
icecream base block. And it has to do this in a particu-
lar starting position and wave phase to achieve the
expected result (therefore the GearInPos). With the
CAM FB one can define different wave patterns easily
(like the one longer in the top of icecream).

Another case application can be chocolate bars with decoration
(individual bars in mouldings). The dosificator makes the wave
synchronized with conveyor and returns for the next

Figure 50: Application example of MC_CombineAxes

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 108/ 141

0

0

CombinedVirtual

0

0

SecondVirtual

MasterConveyor

FirstVirtual
MC_CamIn FB

Vel

Vel

Vel

Vel

MC_GearIn FB on the second virtual axis

The combined axes of the virtual axes
(MC_CamIn and MC_GearIn) is still a virtual axis

0
StartCAM

1

0
StartGear

1

0
StartCombine

1

Start MC_CamIn with FirstVirtual axis following MasterConveyor

Start MC_GearIn with SecondVirtual axis and MasterConveyor

Start the combination of the 2 virtual axes

MasterConveyor is moving

0

RealAxis

Vel

The RealAxis performs a MC_GearInPos with
the virtual axis created by MC_CombineAxes

0
StartGearInPos

1

Start MC_GearInPos of GearAxis to follow CombinedVirtual axes

MC_GearInPos
starts after
MasterDist

0
WaveInSynch

1

MC_GearInPos InGear

Figure 51: The corresponding timing diagram for MC_CombineAxes example

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 109/ 141

5. Application of MC FB – A Drilling Example with ‘Aborting’ versus ‘Blending’

FF F

REV

Figure 52: Example of a simple drilling unit

This simple example of drilling a hole shows the difference between two modes.
In order to drill the hole, the following steps have to be done:
Step 1: Initialization, for instance at power up.
Step 2: Move forward to drilling position and start the drill turning. In this way it will be fully operational before the
position is reached and then check if both actions are completed.
Step 3: Drill the hole.
Step 4: After drilling the hole we have to wait for the step-chain sequence to finish dwelling to free the hole of any de-
bris, which might have been stuck in the hole.
Step 5: Move drill back to starting position and shut the spindle off. Combining the completion of moving backwards
and stopping the spindle we signal the step-chain to start over.

FFWD FWD DWELL REV

Velocity

Position

t

t

Velocity

Position

t

t

FFWD FWD DWELL REV

Figure 53: Timing diagrams for drilling. Left side no blending, right side with blending

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 110/ 141

5.1. Solution with Function Block diagram

Both examples can be described with the same program in FBD. The difference is in the input of the ‘BufferMode’ at
the second FB, the MC_MoveRelative. The modes shown in this example are ‘Aborting’ or ‘BlendingLow’.

Figure 54: Solution with Function Block diagram

5.2. Solution with Sequential Function Chart

This is the classical approach using Sequential Function Charts for the specification of sequencing steps.
The SFC implements the timing diagram given in the example above.

Figure 55: Straight forward step-transition chain for drilling example in SFC

Done

Initialization

Ton

MoveAbsolute

MoveRelative

MoveAbsolute

Done

Done

Done

Done

INT

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 111/ 141

Appendix A. Examples of the different buffer modes

Example 1: Standard behaviour of 2 following absolute movements

Figure 56: Basic example with two MC_MoveAbsolute on same axis

Figure 57: Timing diagram for example above without interference between FB1 and FB2 (‘Aborting’ Mode)

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 112/ 141

Example 2: ‘Aborting’ motion

Figure 58: Timing diagram for example above with FB2 interrupting FB1 (‘Aborting’ Mode)

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 113/ 141

Example 3: ‘Buffered’ motion

Figure 59: Timing diagram for example above in ‘Buffered’ Mode

(Stopping to velocity 0 and starting FB2 at that point without delay)

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 114/ 141

Example 4: ‘BlendingLow’ motion

Figure 60: Timing diagram for example above with mode ‘BlendingLow’

(Using lowest velocity (=velocity 2) from final position of FB1 until final position of FB2)
With the blending (and other FBs working on the same axis at the same time (like MC_MoveAdditive)), the system has
to combine the different values working on the axis before giving the positions to the relevant axis.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 115/ 141

Example 5: ‘BlendingPrevious’ motion

Figure 61: Timing diagram for example above with mode ‘Merging1’
(Uses velocity FB1 at final position FB1)

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 116/ 141

Example 6: ‘BlendingNext’ motion

Start_1

Busy_1

Done_1

CA_1

Velocity

Position

Start_2

Busy_2

Done_2

Active_1

CA_2

Active_2

2000

1000

Start_3

Busy_3

Done_3

CA_3

Active_3

Figure 62: Timing diagram for example above with mode ‘BlendingNext’ motion

With a 2nd FB following MC_MoveVelocity all blending modes should work like blending previous or create an error.

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 117/ 141

Example 7: ‘BlendingHigh’ motion

Figure 63: Timing diagram for example above with mode ‘BlendingHigh’ motion

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 118/ 141

Appendix B. Compliance Procedure and Compliance List

Listed in this Appendix are the requirements for the compliance statement from the supplier of the Motion Control
Function Blocks. The compliance statement consists of two main groups: supported data types and supported Function
Blocks, in combination with the applicable inputs and outputs. The supplier is required to fill out the tables for the used
data types and Function Blocks, according to their product, committing their support to the specification.

By submitting these tables to PLCopen, and after approval by PLCopen, the list will be published on the PLCopen web-
site, www.plcopen.org as well as a shortform overview, as specified in Appendix B 2 Supported Data types and
Appendix B 3 Overview of the Function Blocks as below.

In addition to this approval, the supplier is granted access and usage rights of the PLCopen Motion Control logo, as
described in Appendix B 4:

The PLCopen Motion Control Logo and Its Usage..

Data types
The data type REAL listed in the Function Blocks and parameters (e.g. for velocity, acceleration, distance, etc.) may be
exchanged to SINT, INT, DINT or LREAL without to be seen as incompliant to this standard, as long as they are con-
sistent for the whole set of Function Blocks and parameters.
Implementation allows the extension of data types as long as the basic data type is kept. For example: WORD may be
changed to DWORD, but not to REAL.

Function Blocks and Inputs and Outputs
An implementation which claims compliance with this PLCopen specification shall offer a set of Function Blocks for
motion control, meaning one or more Function Blocks, with at least the basic input and output variables, marked as “B”
in the tables. These inputs and outputs have to be supported to be compliant.
For higher-level systems and future extensions any subset of the extended input and output variables, marked as “E” in
the tables can be implemented.
Vendor specific additions are marked with “V”, and can be listed as such in the supplier documentation.

- Basic input/output variables are mandatory Marked in the tables with the letter “B”
- Extended input /output variables are optional Marked in the tables with the letter “E”
- Vendor Specific additions Marked in the vendor’s compliance documentation with “V”

All the vendor specific items will not be listed in the comparison table on the PLCopen website, but in the detailed ven-
dor specific list, which also is published.
All vendor specific in- and outputs of all FBs must be listed in the certification list of the supplier. With this, the certifi-
cation listing from a supplier describes all the I/Os of the relevant FBs, including vendor-specific extensions, and thus
showing the complete FBs as used by the supplier.

http://www.plcopen.org/

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 119/ 141

Appendix B 1. Statement of Supplier

Supplier name
Supplier address
City
Country
Telephone
Fax
Email address
Product Name
Product version
Release date

I hereby state that the following tables as filled out and submitted do match our product as well as the accompanying
user manual, as stated above.

Name of representation (person):

Date of signature (dd/mm/yyyy):

Signature:

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 120/ 141

Appendix B 2. Supported Data types

Defined datatypes with MC library: Supported If not supported, which datatype used
BOOL
INT
WORD
REAL
ENUM
UINT

Table 6: Supported datatypes

Within the specification the following derived datatypes are defined. Define which of these structures are used in this
system:

Derived datatypes: Where used Supported Which structure
AXIS_REF Nearly all FBs
MC_DIRECTION
(extended)

MC_MoveAbsolute
MC_MoveVelocity
MC_TorqueControl
MC_MoveContinuousAbsolute

MC_TP_REF MC_PositionProfile
MC_TV_REF MC_VelocityProfile
MC_TA_REF MC_AccelerationProfile
MC_CAM_REF MC_CamTableSelect
MC_CAM_ID
(extended)

MC_CamTableSelect
MC_CamIn

MC_START_MODE
(extended)

MC_CamIn
MC_CamTableSelect

MC_BUFFER_MODE Buffered FBs
MC_EXECUTION_MODE MC_SetPosition

MC_WriteParameter
MC_WriteBoolParameter
MC_WriteDigitalOutput
MC_CamTableSelect

MC_SOURCE MC_ReadMotionState
MC_CamIn
MC_GearIn
MC_GearInPos
MC_CombineAxes
MC_DigitalCamSwitch

MC_SYNC_MODE MC_GearInPos
MC_COMBINE_MODE MC_CombineAxes
MC_TRIGGER_REF MC_TouchProbe

MC_AbortTrigger
MC_INPUT_REF MC_ReadDigitalInput
MC_OUTPUT_REF MC_DigitalCamSwitch

MC_ReadDigitalOutput
MC_WriteDigitalOutput

MC_CAMSWITCH_REF MC_DigitalCamSwitch
MC_TRACK_REF MC_DigitalCamSwitch

Table 7: Supported derived datatypes

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 121/ 141

Appendix B 3. Overview of the Function Blocks

Single Axis Function Blocks Supported as
V1.0/ V1.1/
V2.0 or Not

Comments (<= 48 char.)

MC_Power
MC_Home
MC_Stop
MC_Halt
MC_MoveAbsolute
MC_MoveRelative
MC_MoveAdditive
MC_MoveSuperimposed
MC_HaltSuperimposed
MC_MoveVelocity
MC_MoveContinuousAbsolute
MC_MoveContinuousRelative
MC_TorqueControl
MC_PositionProfile
MC_VelocityProfile
MC_AccelerationProfile
MC_SetPosition
MC_SetOverride
MC_ReadParameter &
MC_ReadBoolParameter
MC_WriteParameter &
MC_WriteBoolParameter
MC_ReadDigitalInput
MC_ReadDigitalOutput
MC_WriteDigitalOutput
MC_ReadActualPosition
MC_ReadActualVelocity
MC_ReadActualTorque
MC_ReadStatus
MC_ReadMotionState
MC_ReadAxisInfo
MC_ReadAxisError
MC_Reset
MC_DigitalCamSwitch
MC_TouchProbe
MC_AbortTrigger
Multi-Axis Function Blocks Supported as

V1.0/ V1.1/
V2.0 or Not

Comments (<= 48 char.)

MC_CamTableSelect
MC_CamIn
MC_CamOut
MC_GearIn
MC_GearOut
MC_GearInPos
MC_PhasingAbsolute
MC_PhasingRelative
MC_CombineAxes

Table 8: Short overview of the Function Blocks

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 122/ 141

Appendix B 3.1 MC_Power
If Supported MC_Power Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Enable
E EnablePositive
E EnableNegative
VAR_OUTPUT
B Status
E Valid
B Error
E ErrorID

Appendix B 3.2 MC_Home
If Supported MC_Home Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Execute
B Position
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix B 3.3 MC_Stop
If Supported MC_Stop Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Execute
E Deceleration
E Jerk
VAR_OUTPUT
B Done
E Busy
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 123/ 141

Appendix B 3.4 MC_Halt
If Supported MC_Halt Sup. Y/N

VAR_IN_OUT

B Axis

VAR_INPUT

B Execute

E Deceleration

E Jerk

E BufferMode

VAR_OUTPUT

B Done

E Busy

E Active

E CommandAborted

B Error

E ErrorID

Appendix B 3.5 MC_MoveAbsolute
If Supported MC_MoveAbsolute Sup.Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Execute
E ContinuousUpdate
B Position
B Velocity
E Acceleration
E Deceleration
E Jerk
B Direction
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 124/ 141

Appendix B 3.6 MC_MoveRelative
If Supported MC_MoveRelative Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Execute
E ContinuousUpdate
B Distance
E Velocity
E Acceleration
E Deceleration
E Jerk
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix B 3.7 MC_MoveAdditive
If Supported MC_MoveAdditive Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Execute
E ContinuousUpdate
B Distance
E Velocity
E Acceleration
E Deceleration
E Jerk
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 125/ 141

Appendix B 3.8 MC_MoveSuperimposed
If Supported MC_MoveSuperimposed Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Execute
E ContinuousUpdate
B Distance
E VelocityDiff
E Acceleration
E Deceleration
E Jerk
VAR_OUTPUT
B Done
E Busy
E CommandAborted
B Error
E ErrorID
E CoveredDistance

Appendix B 3.9 MC_HaltSuperimposed
If Supported MC_HaltSuperimposed Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Execute
E Deceleration
E Jerk
VAR_OUTPUT
B Done
E Busy
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 126/ 141

Appendix B 3.10 MC_MoveVelocity
If Supported MC_MoveVelocity Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Execute
E ContinuousUpdate
E Velocity
E Acceleration
E Deceleration
E Jerk
E Direction
E BufferMode
VAR_OUTPUT
B InVelocity
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix B 3.11 MC_MoveContinuousAbsolute
If Supported MC_MoveContinuousAbsolute Sup. Y/N Comments

VAR_IN_OUT

B Axis

VAR_INPUT

B Execute

E ContinuousUpdate

B Position

B EndVelocity

B Velocity

E Acceleration

E Deceleration

E Jerk

E Direction

E BufferMode

VAR_OUTPUT

B InEndVelocity

E Busy

E Active

E CommandAborted

B Error

E ErrorID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 127/ 141

Appendix B 3.12 MC_MoveContinuousRelative
If Supported MC_MoveContinuousRelative Sup. Y/N Comments

VAR_IN_OUT

B Axis

VAR_INPUT

B Execute

E ContinuousUpdate

B Distance

B EndVelocity

B Velocity

E Acceleration

E Deceleration

E Jerk

E BufferMode

VAR_OUTPUT

B InEndVelocity

E Busy

E Active

E CommandAborted

B Error

E ErrorID

Appendix B 3.13 MC_TorqueControl
If Supported MC_TorqueControl Sup.Y/N Comments

VAR_IN_OUT

B Axis

VAR_INPUT

B Execute

E ContinuousUpdate

B Torque

E TorqueRamp

E Velocity

E Acceleration

E Deceleration

E Jerk

E Direction

E BufferMode

VAR_OUTPUT

B InTorque

E Busy

E Active

E CommandAborted

B Error

E ErrorID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 128/ 141

Appendix B 3.14 MC_PositionProfile
If Supported MC_PositionProfile Sup. Y/N Comments
VAR_IN_OUT
B Axis
B TimePosition
VAR_INPUT
B Execute
E ContinuousUpdate
E TimeScale
E PositionScale
E Offset
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix B 3.15 MC_VelocityProfile
If Supported MC_VelocityProfile Sup. Y/N Comments
VAR_IN_OUT
B Axis
B TimeVelocity
VAR_INPUT
B Execute
E ContinuousUpdate
E TimeScale
E VelocityScale
E Offset
E BufferMode
VAR_OUTPUT
B ProfileCompleted
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 129/ 141

Appendix B 3.16 MC_AccelerationProfile
If Supported MC_AccelerationProfile Sup. Y/N Comments
VAR_IN_OUT
B Axis
B TimeAcceleration
VAR_INPUT
B Execute
E ContinuousUpdate
E TimeScale
E AccelerationScale
E Offset
E BufferMode
VAR_OUTPUT
B ProfileCompleted
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix B 3.17 MC_SetPosition
If Supported MC_SetPosition Sup.Y/N Comments

VAR_IN_OUT

B Axis

VAR_INPUT

B Execute

B Position

E Relative

E ExecutionMode

VAR_OUTPUT

B Done

E Busy

B Error

E ErrorID

Appendix B 3.18 MC_SetOverride
If Supported MC_SetOverride Sup.Y/N Comments

VAR_IN_OUT

B Axis

VAR_INPUT

B Enable

B VelFactor

E AccFactor

E JerkFactor

VAR_OUTPUT

B Enabled

E Busy

B Error

E ErrorID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 130/ 141

Appendix B 3.19 MC_ReadParameter & MC_ReadBoolParameter
If Supported MC_ReadParameter Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Enable
B ParameterNumber
VAR_OUTPUT
B Valid
E Busy
B Error
E ErrorID
B Value

If Supported MC_ReadBoolParameter Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Enable
B ParameterNumber
VAR_OUTPUT
B Valid
E Busy
B Error
E ErrorID
B Value

Name B/E R/W Supp.
Y/N

Comments

CommandedPosition B R
SWLimitPos E R/W
SWLimitNeg E R/W
EnableLimitPos E R/W
EnableLimitNeg E R/W

EnablePosLagMonitoring E R/W

MaxPositionLag E R/W
MaxVelocitySystem E R
MaxVelocityAppl B R/W
ActualVelocity B R
CommandedVelocity B R
MaxAccelerationSystem E R
MaxAccelerationAppl E R/W
MaxDecelerationSystem E R
MaxDecelerationAppl E R/W
MaxJerkSystem E R
MarkJerkAppl E R/W

Table 9: Parameters for MC_Read(Bool)Parameter and MC_Write(Bool)Parameter

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 131/ 141

Appendix B 3.20 MC_WriteParameter & MC_WriteBoolParameter
If Supported MC_WriteParameter Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Execute
B ParameterNumber
B Value
E ExecutionMode
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID

If Supported MC_WriteBoolParameter Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Execute
B ParameterNumber
B Value
E ExecutionMode
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID

Appendix B 3.21 MC_ReadDigitalInput
If Supported MC_ReadDigitalInput Sup.Y/N Comments

VAR_IN_OUT

B Input

VAR_INPUT

B Enable

E InputNumber

VAR_OUTPUT

B Valid

E Busy

B Error

E ErrorID

B Value

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 132/ 141

Appendix B 3.22 MC_ReadDigitalOutput
If Supported MC_ReadDigitalOutput Sup.Y/N Comments

VAR_IN_OUT

B Output

VAR_INPUT

B Enable

E OutputNumber

VAR_OUTPUT

B Valid

E Busy

B Error

E ErrorID

B Value

Appendix B 3.23 MC_WriteDigitalOutput
If Supported MC_WriteDigitalOutput Sup.Y/N Comments

VAR_IN_OUT

B Output

VAR_INPUT

B Execute

E OutputNumber

B Value

E ExecutionMode

VAR_OUTPUT

B Done

E Busy

B Error

E ErrorID

Appendix B 3.24 MC_ReadActualPosition
If Supported MC_ReadActualPosition Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Enable
VAR_OUTPUT
B Valid
E Busy
B Error
E ErrorID
B Position

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 133/ 141

Appendix B 3.25 MC_ReadActualVelocity
If Supported MC_ReadActualVelocity Sup.Y/N Comments

VAR_IN_OUT

B Axis

VAR_INPUT

B Enable

VAR_OUTPUT

B Valid

E Busy

B Error

E ErrorID

B Velocity

Appendix B 3.26 MC_ReadActualTorque
If Supported MC_ReadActualTorque Sup.Y/N Comments

VAR_IN_OUT

B Axis

VAR_INPUT

B Enable

VAR_OUTPUT

B Valid

E Busy

B Error

E ErrorID

B Torque

Appendix B 3.27 MC_ReadStatus
If Supported MC_ReadStatus Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Enable
VAR_OUTPUT
B Valid
E Busy
B Error
E ErrorID
B ErrorStop
B Disabled
B Stopping
E Homing
B Standstill
E DiscreteMotion
E ContinuousMotion
E SynchronizedMotion

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 134/ 141

Appendix B 3.28 MC_ReadMotionState
If Supported MC_ReadMotionState Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Enable
E Source
VAR_OUTPUT
B Valid
E Busy
B Error
E ErrorID
E ConstantVelocity
E Accelerating
E Decelerating
E DirectionPositive
E DirectionNegative

Appendix B 3.29 MC_ReadAxisInfo
If Supported MC_ReadAxisInfo Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Enable
VAR_OUTPUT
B Valid
E Busy
B Error
E ErrorID
E HomeAbsSwitch
E LimitSwitchPos
E LimitSwitchNeg
E Simulation
E CommunicationReady
E ReadyForPowerOn
E PowerOn
E IsHomed
E AxisWarning

Appendix B 3.30 MC_ReadAxisError
If Supported MC_ReadAxisError Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Enable
VAR_OUTPUT
B Valid
E Busy
B Error
B ErrorID
E AxisErrorID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 135/ 141

Appendix B 3.31 MC_Reset
If Supported MC_Reset Sup. Y/N Comments
VAR_IN_OUT
B Axis
VAR_INPUT
B Execute
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID

Appendix B 3.32 MC_DigitalCamSwitch
If Supported MC_DigitalCamSwitch Sup.Y/N Comments

VAR_IN_OUT

B Axis

B Switches

E Outputs

E TrackOptions

VAR_INPUT

B Enable

E EnableMask

E ValueSource

VAR_OUTPUT

B InOperation

E Busy

B Error

E ErrorID

Basic elements within the array structure of MC_CAMSWITCH_REF

B/E Parameter Sup.Y/N Comments

B TrackNumber

B FirstOnPosition [u]

B LastOnPosition [u]

E AxisDirection

E CamSwitchMode

E Duration

Basic elements within the array structure of MC_TRACK_REF
B/E Parameter Sup.Y/N Comments
E OnCompensation
E OffCompensation
E Hysteresis [u]

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 136/ 141

Appendix B 3.33 MC_TouchProbe
If Supported MC_TouchProbe Sup.Y/N Comments

VAR_IN_OUT

B Axis

E TriggerInput

VAR_INPUT

B Execute

E WindowOnly

E FirstPosition

E LastPosition

VAR_OUTPUT

B Done

E Busy

E CommandAborted

B Error

E ErrorID

B RecordedPosition

Appendix B 3.34 MC_AbortTrigger
If Supported MC_AbortTrigger Sup.Y/N Comments

VAR_IN_OUT

B Axis

E TriggerInput

VAR_INPUT

B Execute

VAR_OUTPUT

B Done

E Busy

B Error

E ErrorID

Appendix B 3.35 MC_CamTableSelect
If Supported MC_CamTableSelect Sup. Y/N Comments
VAR_IN_OUT
E Master
E Slave
B CamTable
VAR_INPUT
B Execute
E Periodic
E MasterAbsolute
E SlaveAbsolute
E ExecutionMode
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID
E CamTableID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 137/ 141

Appendix B 3.36 MC_CamIn
If Supported MC_CamIn Sup. Y/N Comments
VAR_IN_OUT
B Master
B Slave
VAR_INPUT
B Execute
E ContinuousUpdate
E MasterOffset
E SlaveOffset
E MasterScaling
E SlaveScaling
E MasterStartDistance
E MasterSyncPosition
E StartMode
E MasterValueSource
E CamTableID
E BufferMode
VAR_OUTPUT
B InSync
E Busy
E Active
E CommandAborted
B Error
E ErrorID
E EndOfProfile

Appendix B 3.37 MC_CamOut
If Supported MC_CamOut Sup. Y/N Comments
VAR_IN_OUT
B Slave
VAR_INPUT
B Execute
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 138/ 141

Appendix B 3.38 MC_GearIn
If Supported MC_GearIn Sup. Y/N Comments
VAR_IN_OUT
B Master
B Slave
VAR_INPUT
B Execute
E ContinuousUpdate
B RatioNumerator
B RatioDenominator
E MasterValueSource
E Acceleration
E Deceleration
E Jerk
E BufferMode
VAR_OUTPUT
B InGear
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix B 3.39 MC_GearOut
If Supported MC_GearOut Sup. Y/N Comments
VAR_IN_OUT
B Slave
VAR_INPUT
B Execute
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 139/ 141

Appendix B 3.40 MC_GearInPos
If Supported MC_GearInPos Sup.Y/N Comments

VAR_IN_OUT

B Master

B Slave

VAR_INPUT

B Execute

B RatioNumerator

B RatioDenominator

E MasterValueSource

B MasterSyncPosition

B SlaveSyncPosition

E SyncMode

E MasterStartDistance

E Velocity

E Acceleration

E Deceleration

E Jerk

E BufferMode

VAR_OUTPUT

E StartSync

B InSync

E Busy

E Active

E CommandAborted

B Error

E ErrorID

Appendix B 3.41 MC_PhasingAbsolute
If Supported MC_PhasingAbsolute Sup. Y/N Comments
VAR_IN_OUT
B Master
B Slave
VAR_INPUT
B Execute
B PhaseShift
E Velocity
E Acceleration
E Deceleration
E Jerk
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID
E AbsolutePhaseShift

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 140/ 141

Appendix B 3.42 MC_PhasingRelative
If Supported MC_PhasingRelative Sup. Y/N Comments
VAR_IN_OUT
B Master
B Slave
VAR_INPUT
B Execute
B PhaseShift
E Velocity
E Acceleration
E Deceleration
E Jerk
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID
E CoveredPhaseShift

Appendix B 3.43 CombineAxes
If Supported MC_CombineAxes Sup. Y/N Comments
VAR_IN_OUT
B Master1
B Master2
B Slave
VAR_INPUT
B Execute
E ContinuousUpdate
E CombineMode
E GearRationNumeratorM1
E GearRatioDenominatorM1
E GearRatioNumeratorM2
E GearRatioDenominatorM2
E MasterValueSourceM1
E MasterValueSourceM2
E BufferMode
VAR_OUTPUT
B InSync
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 Task Force Motion Control March 17, 2011 © 1999 - 2011 copyright by PLCopen
Function Blocks for Motion Control Version 2.0, Published page 141/ 141

Appendix B 4. The PLCopen Motion Control Logo and Its Usage

For quick identification of compliant products, PLCopen has developed a logo for the Motion Control Function Blocks:

Figure 64: The PLCopen Motion Control Logo

This motion control logo is owned and trademarked by PLCopen.

In order to use this logo free-of-charge, the relevant company has to fulfill all the following requirements:
1. the company has to be a voting member of PLCopen;
2. the company has to comply with the existing specification, as specified by the PLCopen Task Force Motion

Control, and as published by PLCopen, and of which this statement is a part;
3. this compliance application is provided in written form by the company to PLCopen, clearly stating the appli-

cable software package and the supporting elements of all the specified tables, as specified in the document it-
self;

4. in case of non-fulfillment, which has to be decided by PLCopen, the company will receive a written statement
concerning this from PLCopen. The company will have a one month period to either adopt their software pack-
age in such a way that it complies, represented by the issuing of a new compliance statement, or remove all ref-
erence to the specification, including the use of the logo, from all their specification, be it technical or promo-
tional material;

5. the logo has to be used as is - meaning the full logo. It may be altered in size providing the original scale and
color setting is kept.

6. the logo has to be used in the context of Motion Control.

	1.	General
	1.1.	Objectives
	1.1.1.	Language context goals
	1.1.2.	Definition of a set of Function Blocks
	1.1.3.	Overview of the defined Function Blocks
	1.1.4.	Compliance and Portability
	1.1.5.	Length of names and ways to shorten them
	1.1.6.	History
	2.	Model
	2.1.	The State Diagram
	2.2.	Error handling
	2.2.1.	Centralized versus Decentralized
	Buffered Commands
	2.2.3.	Timing example for the ‘Enable’ input
	2.3.	Definitions
	2.4.	FB interface
	2.4.1.	General rules
	2.4.2.	Aborting versus Buffered modes
	AXIS_REF Data type
	2.4.4.	Technical Units
	Why the command input is edge sensitive
	2.4.6.	The input ‘ContinuousUpdate’
	2.5.	Example 1: the same Function Block instance controls different motions of an axis
	2.6.	Example 2: different Function Block instances control the motions of an axis
	3.	Single-Axis Function Blocks
	3.1.	MC_Power
	3.2.	MC_Home
	3.3.	MC_Stop
	3.4.	MC_Halt
	3.5.	MC_MoveAbsolute
	3.6.	MC_MoveRelative
	3.7.	MC_MoveAdditive
	3.8.	MC_MoveSuperimposed
	3.9.	MC_HaltSuperimposed
	3.10.	MC_MoveVelocity
	3.11.	MC_MoveContinuousAbsolute
	3.12.	MC_MoveContinuousRelative
	3.13.	MC_TorqueControl
	3.14.	MC_PositionProfile
	3.15.	MC_VelocityProfile
	3.16.	MC_AccelerationProfile
	3.17.	MC_SetPosition
	3.18.	MC_SetOverride
	3.19.	MC_ReadParameter & MC_ReadBoolParameter
	3.20.	MC_WriteParameter & MC_WriteBoolParameter
	3.21.	MC_ReadDigitalInput
	3.22.	MC_ReadDigitalOutput
	3.23.	MC_WriteDigitalOutput
	3.24.	MC_ReadActualPosition
	3.25.	MC_ReadActualVelocity
	3.26.	MC_ReadActualTorque
	3.27.	MC_ReadStatus
	3.28.	MC_ReadMotionState
	3.29.	MC_ReadAxisInfo
	3.30.	MC_ReadAxisError
	3.31.	MC_Reset
	3.32.	MC_DigitalCamSwitch
	3.33.	MC_TouchProbe
	3.34.	MC_AbortTrigger
	4.	Multi-Axis Function Blocks
	4.1.	Remarks to Camming
	4.2.	MC_CamTableSelect
	4.3.	MC_CamIn
	4.4.	MC_CamOut
	4.5.	MC_GearIn
	4.6.	MC_GearOut
	4.7.	MC_GearInPos
	4.8.	MC_PhasingAbsolute
	4.9.	MC_PhasingRelative
	4.10.	MC_CombineAxes
	5.	Application of MC FB – A Drilling Example with ‘Aborting’ versus ‘Blending’
	5.1.	Solution with Function Block diagram
	5.2.	Solution with Sequential Function Chart
	Appendix A.	Examples of the different buffer modes
	Appendix B.	Compliance Procedure and Compliance List
	Appendix B 1.	Statement of Supplier
	Appendix B 2.	Supported Data types
	Appendix B 3.	Overview of the Function Blocks
	Appendix B 4.	The PLCopen Motion Control Logo and Its Usage

