
PLCopen
for efficiency in automation

Technical Paper

PLCopen Technical Committee 2

Function Blocks for Motion Control:
Part 3 - User Guidelines

PLCopen Document, Published as Version 2.0.

DISCLAIMER OF WARANTIES

THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS AND MAY BE SUBJECT TO FUTURE ADDITIONS,
MODIFICATIONS, OR CORRECTIONS. PLCOPEN HEREBY DISCLAIMS ALL WARRANTIES OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE, FOR THIS DOCUMENT. IN NO EVENT WILL PLCOPEN BE RESPONSIBLE FOR ANY LOSS OR DAMAGE
ARISING OUT OR RESULTING FROM ANY DEFECT, ERROR OR OMISSION IN THIS DOCUMENT OR FROM
ANYONE’S USE OF OR RELIANCE ON THIS DOCUMENT.

Copyright © 2002 - 2013 by PLCopen. All rights reserved.

Date: Feb. 21, 2013

 Total number of pages: 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 2/ 94

Function Blocks for Motion Control

The following paper is a document created by the PLCopen Task Force Motion Control. As such it is an addition to other
documents of the PLCopen Task Force Motion Control, such as Part 1 – Function Blocks for Motion Control, and Part 2 –
Extensions. As such it is released on an on-going basis, if new examples become available.

It summarizes the results of the PLCopen Task Force Motion Control, containing contributions of all its members.
The present specification was written thanks to the following members of the Task Force:

Istvan Ulvros Tetrapak
Hilmar Panzer 3S Smart Software Solutions
Joachim Unfried B & R Automation
Klaus Bernzen Beckhoff
Roland Schaumburg Danfoss
Djafar Hadiouche GE
Harald Buchgeher KEBA
Johannes Kühn Lenze
Candido Ferrio Omron
Carlos Ruiz Omron
Willi Gagsteiger Siemens
Günter Neumann Siemens
Kevin Hull Yaskawa
Eelco van der Wal PLCopen

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 3/ 94

Change Status List:

Version
number

Date Change comment

V 0.1 September, 04 2003 Fist version – result of the decision on the meeting of July 2003, to
separate this part from the overall V0.8

V 0.2 December 8, 2003 Second version – includes all information in conjunction with the release
of part 2 – extensions

V 0.3 April 16, 2004 First draft for release
V 0.3a May 24, 2006 As result of the meeting in Sitges, Spain and previous feedback, spec.

OMAC Packaging Workgroup related.
V 0.3b September 21, 2006 As result of meeting Hamburg – Enable vs. Execute added
V 0.4 April 18, 2008 Several edits. Released draft version
V 0.41 May 19, 2010 Start of an update of the document due to V 2.0 of Part 1 & 2

Result of meeting in Kempten, Germany
V 0.42 April 29, 2011 Further in-house update after release of Version 2.0 of Part 1 and 2
V 0.43 December 12, 2011 Added example on synchronized motion and published to group
V 0.5 September 12, 2012 As result of the meeting in July in the vicinity of Amsterdam as well as

extended editing of the document by PLCopen
V 0.51 October 11, 2012 As a result of the webmeeting
V 0.52 October 25, 2012 Minor editing done throughout the document. Last open issues resolved.

New drawings added at Camming. In parallel are 2 examples from
Yaskawa.

V 0.53 December 10, 2012 Basis for webmeeting. FBs Jog to Position and Axes Interlock added.
V 0.54 December 14, 2012 Result webmeeting.
V 0.55 January 18, 2012 Result of the webmeeting that week. MC_Jog, MC_Inch and

MC_AxesInterlock changed, and some minor editorial issues
V 0.56 February 21, 2013 As a result of the webmeeting on Jan. 29 and last changes included.
V 2.0 February 21, 2013 Version 0.56 finalized for publication as V 2.0

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 4/ 94

Table of Contents

1. GENERAL ..7

1.1. OBJECTIVES...7
1.2. USER DERIVED FUNCTION BLOCKS ...7
1.3. GRAPHICAL VERSUS TEXTUAL REPRESENTATION...7
1.4. HISTORY..8

2. APPLICATION OF MC FB..9

2.1. GETTING STARTED...9
2.2. LABEL MACHINE..10

2.2.1. Application description...10
2.2.2. Programming example ...10
2.2.3. Possible Improvements ...11

2.3. WAREHOUSING EXAMPLE..12
2.3.1. Application description...12
2.3.2. First programming example (using Part 1)..13
2.3.3. Timing diagram ..14
2.3.4. Second programming example (using Part 4) ..15
2.3.5. Timing diagram ..16

2.4. JOGGING ..17
2.4.1. Short Explanation ...19

2.5. INCHING ..20
2.6. JOG TO POSITION ...23

2.6.1. Application Example using Jog_To_Positon..30
2.7. AXES INTERLOCK ..33

2.7.1. Application Example using Axes Interlock. ..36
2.8. MASTER ENGINE ...38

2.8.1. Program example for the use of MC_MasterEngine ..41
2.8.2. The inside of the Function Block MC_MasterEngine...41

2.9. EXPLANATION OF CAMMING IN COMBINATION WITH MC_MASTERENGINE ..44
2.9.1. The Basic Use of MC_CamTableSelect ..44
2.9.2. The Extended Use of MC_CamTableSelect ..46

2.10. USING THREE SEGMENTS CAM PROFILE..47
2.10.1. General User-Derived Function Block (UDFB) – Three-segment Cam profile...47

2.11. CUT TO LENGTH EXAMPLE ...49
2.11.1. Specialized User-Derived Function Block (UDFB) – Cutting axis Cam profile ..51

2.12. REGISTRATION FUNCTION USING MC_TOUCHPROBE AND MC_PHASING ...53
2.12.1. Introduction into web handling and registration..53
2.12.2. Registration functionality ...53
2.12.3. Example of registration ..54
2.12.4. Example 2 of registration ...56

2.13. CAPPING APPLICATION ..59
2.14. MC_FLYINGSHEAR ...62
2.15. SYNCHRONIZED MOTION WITH SFC..68
2.16. SHIFT REGISTER AS USER DERIVED FUNCTION BLOCK ...72
2.17. SHIFTREGISTER LOGIC ..76
2.18. FIFO FUNCTION BLOCK ..78

3. PLCOPEN SOLUTIONS FOR OMAC PACKAL..81

3.1. WIND / UNWIND – GENERAL INTRODUCTION...84
3.2. OMAC PACKAL DANCER CONTROL ..86
3.3. PACKAL WIND / UNWIND AXIS (CONSTANT SURFACE VELOCITY, CSV MODE) ..91

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 5/ 94

Table of Figures

FIGURE 1 -INITIALIZATION PROGRAM ... 9

FIGURE 2 -EXTENDED INITIALIZATION PROGRAM .. 9

FIGURE 3 -LABELING MACHINE .. 10

FIGURE 4 -PROGRAM EXAMPLE FOR THE LABELING MACHINE... 11

FIGURE 5 -WAREHOUSING EXAMPLE.. 12

FIGURE 6 -FIRST PROGRAM FOR WAREHOUSING EXAMPLE.. 13

FIGURE 7 -TIMING DIAGRAM FOR WAREHOUSING EXAMPLE ... 14

FIGURE 8 -SECOND PROGRAM EXAMPLE FOR WAREHOUSING... 15

FIGURE 9 -PROGRAMMING EXAMPLE OF AXES INTERLOCK ... 37

FIGURE 10 -‘START’-‘STOP’ BEHAVIOR OF MC_MASTERENGINE .. 39

FIGURE 11 -INCHING WITH A COMPLETE ‘INCHINGSTEP’... 40

FIGURE 12 -PROGRAM EXAMPLE FOR THE USE OF MC_MASTERENGINE.. 41

FIGURE 13 -THE FIRST PART OF THE FB MC_MASTERENGINE... 42

FIGURE 14 -THE SECOND PART OF THE FB MC_MASTERENGINE FOR INCHING.............................. 43

FIGURE 15 -BASIC USE OF MC_CAMTABLESELECT .. 45

FIGURE 16 -EXTENDED USE OF MC_CAMTABLE_SELECT .. 46

FIGURE 17 -GENERAL THREE-SEGMENT CAM PROFILE ... 47

FIGURE 18 -LOGIC EXAMPLE FOR A GENERAL THREE-SEGMENT CAM PROFILE........................... 48

FIGURE 19 -CUT-TO-LENGTH, ROUND TABLE MACHINE... 49

FIGURE 20 -BREAKDOWN OF MACHINE FUNCTIONALITIES.. 50

FIGURE 21 -SYNCHRONIZATION DIAGRAM CUT-TO-LENGTH ROUND TABLE MACHINE.............. 51

FIGURE 22 -CUTTING AXIS THREE-SEGMENT CAM PROFILE.. 52

FIGURE 23 -VIEW OF THE NESTED UDFB ‘THREEPHASECAM’ IN THE NEW UDFB ‘CUTTING’..... 52

FIGURE 24 -FIRST APPLICATION EXAMPLE REGISTRATION... 54

FIGURE 25 -PRINCIPLE OF OPERATION... 54

FIGURE 26 -PRINTMARK LAYOUT ... 55

FIGURE 27 -PROGRAM IN FUNCTION BLOCK DIAGRAM ... 55

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 6/ 94

FIGURE 28 -SECOND EXAMPLE OF REGISTRATION .. 56

FIGURE 29 -SECOND EXAMPLE OF REGISTRATION .. 58

FIGURE 30 -TIMING EXAMPLE FOR CAPPING APPLICATION .. 60

FIGURE 31 -PROGRAM EXAMPLE IN LD FOR CAPPING APPLICATION... 61

FIGURE 32 -FLYING SHEAR.. 63

FIGURE 33 -ROTATING CUTTER... 63

FIGURE 34 -TIMING DIAGRAM FOR A SINGLE CUT... 64

FIGURE 35 -SFC FOR FLYING SHEAR.. 66

FIGURE 36 -LAYOUT OF THE EXAMPLE .. 68

FIGURE 37 -OVERVIEW OF THE MAIN PROGRAM.. 68

FIGURE 38 -MAIN SFC PROGRAM .. 69

FIGURE 39 -SHIFTREGISTER EXECUTION SEQUENCE.. 76

FIGURE 40 -PRINCIPLE OF A FIFO ... 78

FIGURE 41 -OVERVIEW DIFFERENT LEVELS OF MAPPING OMAC... 81

FIGURE 42 -PROGRAM EXAMPLE FOR 2CYCLE APPROACH .. 82

FIGURE 45 -PS_DANCER_CONTROL TIMING DIAGRAM... 87

FIGURE 46 -PS_DANCER_CONTROL STRUCTURE... 87

FIGURE 47 -PROGRAMMING EXAMPLE IN FBD .. 88

FIGURE 48 -TIMING DIAGRAM PS_WIND_CSV... 92

FIGURE 49 -PROGRAMMING EXAMPLE WINDING PART 1 .. 93

FIGURE 50 -PROGRAMMING EXAMPLE WINDING PART 2 .. 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 7/ 94

1. General
This document is the third part of a set of documents of the PLCopen Task Force Motion Control. Currently, the set consists of 6
documents:

• Part 1 – Basics Function Blocks for Motion Control
• Part 2 – Extensions. Included in Part 1 since V 2.0
• Part 3 – User Guidelines
• Part 4 – Coordinated Motion
• Part 5 – Homing Procedures
• Part 6 – Fluid Power

With the publication of the first two parts of the motion control specification, it became clear that there was a need for
application examples. For this reason this part was created.
This document is released on an on-going basis. With every release new examples are added. The first release was as version 0.3,
in April 2004. The second release in April 2008 as Version 0.4. This version is the 3rd release and with the update and integration
of part 1 and 2 it was decided to make the release in line with the other specifications.

1.1. Objectives
The objective of this document is to define a set of examples and clarifications for users of the other PLCopen documents on
Motion Control. The examples presented here are for explanations only, are not seen as the only way to solve the application, or
the only correct way to do this.
This document is not intended as an IEC 61131-3 tutorial – basic understanding of IEC 61131-3 is seen as a pre-requisite.
These examples are to be seen as examples only – they have not been tested in practice on real implementations. Also they are
shown in somewhat different representation and languages, matching small differences in look and feel of implementations.

1.2. User Derived Function Blocks
The IEC 61131-3 defines Program Organization Units, POUs, consisting of Functions, Function Blocks and Programs. Within
this concept, a user can generate own libraries of POUs. Of particular interest are the User Derived Libraries of Function Blocks.
Within such a library, a user identifies the reusable parts of an application program, created with the standard available POUs, as
well as with the PLCopen Motion Control Function Blocks.
This document shows how users can generate their own library, dedicated to their own application area. By creating such a
library, and making it available throughout their organization, one can save a tremendous amount of time in the next project.
Moreover, the usage of own libraries enhance the readability and transparency of the application programs generated.

1.3. Graphical versus textual representation
In the existing documents of the PLCopen Motion Control Function Blocks, there is a graphical representation used for
clarification of the Function Blocks. Of course, this also can be represented in a textual representation. The following example
shows how this can be done.

MC_MoveAbsolute
Graphical representation

 MC_MoveAbsolute
AXIS_REF Axis Axis AXIS_REF

BOOL Execute Done BOOL
BOOL ContinuousUpdate Busy BOOL
REAL Position Active BOOL
REAL Velocity CommandAborted BOOL
REAL Acceleration Error BOOL
REAL Deceleration ErrorID WORD
REAL Jerk

MC_DIRECTION Direction
MC_BUFFER_MODE BufferMode

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 8/ 94

Textual representation

FUNCTION_BLOCK MC_MoveAbsolute
 VAR_INPUT
 Execute : BOOL;
 ContinuousUpdate : BOOL;
 Position : REAL;
 Velocity : REAL;
 Acceleration : REAL;
 Deceleration : REAL;
 Jerk : REAL;
 Direction : MC_DIRECTION
 BufferMode : MC_BUFFER_MODE
 END_VAR

 VAR_IN_OUT
 Axis : AXIS_REF;
 END_VAR

 VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Active : BOOL;
 CommandAborted : BOOL;
 Error : BOOL;
 ErrorID : WORD;
 END_VAR

 VAR
 (* define local variables here *)
 END_VAR

 (* define the internal code here *)

END_FUNCTION_BLOCK

1.4. History
Not all history is included here – just after release of version 0.4 in 2008.
Version 0.42 – included example on ‘cut-to-length’ and update of functionality at MC_Jog
Version 0.43 – Added example on synchronized motion and preparation for the face2face meeting
Version 0.5 – general overhaul, update to Version 2.0 of Part 1 and 2, and new examples added: label machine, and warehousing,
and split of three segment CAM and Cut-to-Length.
Version 2.0 – a longer introduction added and making it in line with Version 2.0 of Part 1. For this reason (input
ContinuousUpdate) this document was also released as Version 2.0.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2. Application of MC FB
In the following subchapters several application examples are explained. The intent is just to show how the PLCopen Motion
Control Function Blocks can be used in practical applications. This does not mean that these examples will exactly fit any
particular application: they are listed for clarifications only, are not tested in practice on any system, and adaptations can be
required.

2.1. Getting started
This will show the simple startup procedure by using MC_Power, MC_Home and MC_MoveAbsolute.

The startup of a motion control axis goes via issuing the following FBs:

• One MC_Power per axis to enable the axis
• For absolute positioning MC_Home is needed to define the home position. (Note: MC_Home is not always needed, for

instance with MC_MoveVelocity and a rotating axis)
• Now it is possible to position the axis, for instance via issuing MC_MoveAbsolute

The picture below shows the graphical representation of this combined functionality.

Figure 1 - Initialization program

Note: for clarity sake not all inputs are connected to a value

The referred axis is called here Axis1, and is linked to all 3 Function Blocks. MC_Power is enabled via setting ‘PowerEnable’.
Thereafter ‘Start’ is set to execute MC_Home. After the homing position is reached the ‘Done’ output of MC_Home is set. This
executes the MC_MoveAbsolute Function Block which moves to the set position. The output ‘Ready’ will be set when the
position is reached.
This basic functionality can be extended upfront with the use of the MC_ReadAxisInfo Function Block. In this way one can
check if the communication to the drive is established, and can use the output ‘ReadyForPowerOn’ to enable MC_Power.
Feedback is given via the output ‘PowerOn’ which can be the trigger to start MC_Home. This is than reflected in the output
‘IsHomed’ which can then be used to start the absolute movement.

Figure 2 - Extended Initialization program

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 9/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.2. Label machine

2.2.1. Application description
The task is to place a label at a particular position on a product.
The application has two drives, one to feed the product via a conveyor belt, the other to feed the labels and to place the labels on
the products. The labeling process is triggered by a position detection sensor. From the detection of the product to the start of the
label movement there is a delay depending on the velocity of the conveyor, the position of the sensor and the position of the label
on the product.

Figure 3 - Labeling machine

2.2.2. Programming example
This example shows a way to solve this task.
Both axes move with the same velocity setpoint. The delay for TON is calculated from the sensor distance and the velocity. After
a labeling step the LabelDrive stops again and waits for the next trigger, while the conveyor continuously moves.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 10/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Conveyor

LabelDrive

Axis

Execute

Axis

InVelocity

MC_MoveVelocity

MC_MoveVelocity

Velocity Active

CommandAborted

Jerk

Direction

Busy

Buffermode

Acceleration

Deceleration Error

ErrorID

Product
Detection

TON
IN

PT
Q

ET

Velocity

Start

SensorDistance
DIV

Axis

Execute

Axis

Done

MC_MoveRelative

MC_MoveRelative

Position

Velocity Active

CommandAborted

Jerk

Direction

Busy

Buffermode

Acceleration

Deceleration Error

ErrorID

LabelLength

Delay

Figure 4 - Program example for the labeling machine

2.2.3. Possible Improvements
Although this principle is working, there are some possibilities to improve the functionalities and performance to achieve faster
and more precise machines. Ways to do this are:

• Compensate for the drift of the label position as a result of the sum of incremental errors.
• A fast touch-probe input to detect the start position of the product more precisely
• A MC_CamIn or MC_GearInPos function to synchronize the label and product position in order to position the label

more exact on the product. The conveyor should be the Master axis and the LabelDrive the Slave axis. In this way a
mismatch caused by acceleration of the conveyor during labeling can be avoided.

• If the product is smaller than the sensor distance a kind of FIFO for product tracking can be necessary. See e.g. 2.18
FIFO Function Block.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 11/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.3. Warehousing example

2.3.1. Application description
The purpose of this application is to automatically retrieve goods from a storage cabinet with shelves. The goods are stored in
pallets that can be retrieved with a fork system.

Axis_Z

Figure 5 - Warehousing example

The warehouse task is to move the fork with three axes to place or take the pallet:

• Axis X moves along the floor;
• Axis Y moves to the needed height;
• Axis Z moves the fork into the shelf to fetch the pallet.

The sequence is to move the axes X and Y to the requested position. As soon as both axes have reached this position, the Z axis
moves into the shelf under the pallet, in this example for 1000 mm. Then the Y axis lifts the pallet for another 100 mm to lift the
pallet from the shelf, so it can be moved out of the shelf and to the required position to deliver it.

This example can be implemented in different ways. A straightforward approach is to use Part 1 Function Blocks.
Alternatively, a XYZ group could be defined in controllers supporting PLCopen Part 4, Coordinated Motion, which can simplify
and optimize the movements.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 12/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.3.2. First programming example (using Part 1)
This version could be implemented in the following way by only using Function Blocks from Part 1.

Figure 6 - First Program for warehousing example

Note: not all the specified inputs are shown in FBs above.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 13/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.3.3. Timing diagram
The following graphics shows the sequence to fetch a pallet from the storage system.

Motion

Velocity Axis X
0

Velocity Axis Y

t

t0

Velocity Axis Z t0

MoveToPalletX

Start

Finished t

t

Signals

MoveToPalletY

LiftPallet

MoveToDeliveryX

MoveToDeliveryY

ForkInPallet
ForkOutWithPallet

Figure 7 - Timing diagram for warehousing example

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 14/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.3.4. Second programming example (using Part 4)
This version is implemented using coordinated motion commands from PLCopen Part 4, Coordinated Motion. For information
on how to create Axis Groups and enable them for coordinated operation, refer to chapter 4.1 of Part 4 specification. In this
example, the group XYZLifter is made up from Axis_X, Axis_Y and Axis_Z. Blending is used to optimize the approach time to
the end positions (The motion of the fork Axis_Z does not have to wait for completion of the movement of the Axis_X and
Axis_Y to enter the pallet). This has to be done with a “TMCornerDistance” method to avoid collision with the shelf (in this
particular case, we assume the distance from fork to shelf is bigger than 100). For this cornering to become effective, the ‘Busy’
output of precedent Function Blocks is triggering the ‘Execute’ of the buffered movement.

XYZLifter
Start

Pos_X, Pos_Y, 0
20.040.0

AxisGroup

Execute

AxisGroup

Done

MC_MoveLinearAbsolute

MoveToPallet

Positions
Velocity Active

CommandAborted

Busy

Error
ErrorID

AxisGroup

Execute

AxisGroup

Done

MC_MoveLinearRelative

ForkInPallet

Positions
Velocity Active

CommandAborted

Busy

Error
ErrorID

0, 0, 1000

20.0

AxisGroup

Execute

AxisGroup

Done

MC_MoveLinearRelative

LiftPallet

Positions
Velocity Active

CommandAborted

TransitionParameter

Busy

BufferMode
TransitionMode Error

ErrorID

0, 100, 0
20.0

AxisGroup

Execute

AxisGroup

Done

MC_MoveLinearRelative

ForkOutWithPallet

Positions
Velocity Active

CommandAborted

Busy

Error
ErrorID

0, 0, -1000

0, 0, 0
40.0

AxisGroup

Execute

AxisGroup

Done

MC_MoveLinearAbsolute

MoveToDelivery

Positions
Velocity Active

CommandAborted

Busy

Error
ErrorID

Finished

TransitionParameter

BufferMode
TransitionMode

TransitionParameter

BufferMode
TransitionMode

TransitionParameter

BufferMode
TransitionMode

TransitionParameter

BufferMode
TransitionMode

Aborting
TMNone

BlendingNext
TMCornerDistance

100

Aborting
TMNone

BlendingNext
TMCornerDistance

100

Figure 8 - Second program example for warehousing

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 15/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.3.5. Timing diagram
The following figure shows the sequence with the use of Part 4 Function Blocks. Blending between movements provides
optimization.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 16/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 17/ 94

2.4. Jogging
The following shows an example of a User Derived Function Block with the usage of MC_MoveVelocity and MC_Halt FBs
internally and an Enable behavior via the combination of the inputs JogForward and JogBackward.

FB-Name MC_Jog
This User Derived Function Block commands a jogged movement to an axis as long as the input ‘JogForward’ or
‘JogBackward’ is SET.
VAR_IN_OUT

Axis AXIS_REF Reference to the axis
VAR_INPUT

JogForward BOOL Start the jogged motion in positive direction
JogBackward BOOL Start the jogged motion in negative direction
Velocity REAL Value of the maximum ‘Velocity’ (not necessarily reached) [u/s].
Acceleration REAL Value of the ‘Acceleration’ (always positive) (increasing energy of

the motor) [u/s2]
Deceleration REAL Value of the ‘Deceleration’ (always positive) (decreasing energy

of the motor) [u/s2]
Jerk REAL Value of the ‘Jerk’ [u/s3] (always positive)

VAR_OUTPUT
Done BOOL This output is set for 1 cycle when MC_Halt is ‘Done’
Busy BOOL The FB is not finished and new output values are to be expected
CommandAborted BOOL ‘Command’ is aborted by another command
Error BOOL Signals that an error has occurred within the Function Block
ErrorID WORD Error identification

Note:

 MC_Jog
AXIS_REF Axis Axis AXIS_REF

BOOL JogForward Done BOOL
BOOL JogBackward Busy BOOL
REAL Velocity CommandAborted BOOL
REAL Acceleration Error BOOL
REAL Deceleration ErrorID WORD
REAL Jerk

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 18/ 94

Program written in Structured Text, using MC_Halt and MC_MoveVelocity:

FUNCTION_BLOCK MC_Jog
 VAR_IN_OUT
 Axis : AXIS_REF;
 END_VAR

 VAR_INPUT
 JogForward : BOOL;
 JogBackward : BOOL;
 Velocity : REAL;
 Acceleration : REAL;
 Deceleration : REAL;
 Jerk : REAL;
 END_VAR

 VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 CommandAborted : BOOL;
 Error : BOOL;
 ErrorID : WORD;
 END_VAR

 VAR
 fbHalt : MC_Halt;
 fbMoveVelocity : MC_MoveVelocity;
 iState : INT;
 END_VAR

 CASE iState OF
 0: (* wait for start conditions *)

 Done := FALSE;

 (* error conditions *)
 IF Error OR CommandAborted THEN
 IF NOT JogForward AND NOT JogBackward THEN
 Error := FALSE;
 CommandAborted := FALSE;
 ErrorID := 0;
 END_IF
 END_IF

 IF JogForward AND NOT JogBackward THEN
 iState := 10;
 END_IF

 IF JogBackward AND NOT JogForward THEN
 iState := 20;
 END_IF

 IF iState <> 0 THEN
 fbMoveVelocity(Execute := FALSE,
 Velocity := Velocity,
 Acceleration := Acceleration,
 Deceleration := Deceleration,
 Jerk := Jerk,
 Axis := Axis);

 Busy := TRUE;
 ELSE
 Busy := FALSE;
 END_IF

 10: (* move forward *)
 fbMoveVelocity(Execute := TRUE,
 Direction := mcPositiveDirection,
 Axis := Axis);

 IF fbMoveVelocity.Error THEN
 Error := TRUE;
 ErrorID := fbMoveVelocity.ErrorID;
 iState := 0;
 ELSIF fbMoveVelocity.CommandAborted THEN
 CommandAborted := TRUE;
 iState := 0;
 ELSIF NOT JogForward OR JogBackward THEN
 iState := 30;

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 19/ 94

 fbHalt(Execute := FALSE,
 Deceleration := Deceleration,
 Axis := Axis);
 END_IF

 20: (* move backwards *)
 fbMoveVelocity(Execute := TRUE,
 Direction := mcNegativeDirection,
 Axis := Axis);

 IF fbMoveVelocity.Error THEN
 Error := TRUE;
 ErrorID := fbMoveVelocity.ErrorID;
 iState := 0;
 ELSIF fbMoveVelocity.CommandAborted THEN
 CommandAborted := TRUE;
 iState := 0;
 ELSIF NOT JogBackward OR JogForward THEN
 iState := 30;

 fbHalt(Execute := FALSE,
 Deceleration := Deceleration,
 Axis := Axis);
 END_IF

 30: (* halt *)
 fbHalt(Execute := TRUE,
 Axis := Axis);

 IF fbHalt.Error THEN
 Error := TRUE;
 ErrorID := fbHalt.ErrorID;
 iState := 0;
 ELSIF fbHalt.CommandAborted THEN
 CommandAborted := TRUE;
 iState := 0;
 ELSIF fbHalt.Done THEN
 Done := TRUE;
 iState := 0;
 END_IF
 END_CASE

END_FUNCTION_BLOCK

2.4.1. Short Explanation
The program code above shows, how the FB MC_Jog can be programmed using the basic PLCopen FBs MC_MoveVelocity and
MC_Halt. A state machine is applied that makes sure, that the FBs are controlled in the correct way:

In state 0 the FB generally is idle. It first checks, if its Error or CommandAborted output (that might have been occurred during
previous operations) can be reset. Then, when one of the move commands in positive or negative direction is TRUE, it calls the
MC_MoveVelocity instance with Execute=FALSE to reset it and switches to the moving state 10 or 20.

In state 10 (or 20) the MC_MoveVelocity instance is started. When it shows an error or is aborted, the corresponding signals are
set in the MC_Jog FB and the FB immediately goes back to state 0. When the commanding input signal (JogBackward or
JogForward) becomes FALSE, the MC_Halt instance is reset (being called with Execute = FALSE) and the state is switched to
30.
In state 30 the MC_Halt FB is executed, until an error occurs, the FB is aborted or until the axis has been halted successfully.
Then, the state machine is reset into state 0 and waits for new commands.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 20/ 94

2.5. Inching
This FB is similar to MC_Jog. In contrast to it, the distance that is travelled by the axis is limited by a certain distance value, at
which the axis stops the latest (meaning it can stop also before, when the Boolean inputs are released earlier). To travel more
than this distance, the user must retrigger the input.

FB-Name MC_Inch
This User Derived Function Block commands an inching movement to an axis as long as the moving distance is not
reached and the input ‘InchForward’ or ‘InchBackward’ is set.
VAR_IN_OUT

Axis AXIS_REF Reference to the axis
VAR_INPUT

InchForward BOOL Start the inched motion in positive direction
InchBackward BOOL Start the inched motion in negative direction
Distance REAL Maximum moving distance
Velocity REAL Value of the maximum ‘Velocity’ (not necessarily reached) [u/s].
Acceleration REAL Value of the ‘Acceleration’ (always positive) (increasing energy of the

motor) [u/s2]
Deceleration REAL Value of the ‘Deceleration’ (always positive) (decreasing energy of the

motor) [u/s2]
Jerk REAL Value of the ‘Jerk’ [u/s3] (always positive)

VAR_OUTPUT
Done BOOL The ‘Done’ output is TRUE when MC_Halt is ‘Done’ OR

MC_MoveRelative is ‘Done’
Busy BOOL The FB is not finished and new output values are to be expected
CommandAborted BOOL ‘Command’ is aborted by another command
Error BOOL Signals that an error has occurred within the Function Block
ErrorID WORD Error identification

Note:

 MC_Inch
AXIS_REF Axis Axis AXIS_REF

BOOL InchForward Done BOOL
BOOL InchBackward Busy BOOL
REAL Distance CommandAborted BOOL
REAL Velocity Error BOOL
REAL Acceleration ErrorID WORD
REAL Deceleration
REAL Jerk

ST Code of MC_Inch is very similar to the code at MC_Jog above, with the difference that MC_MoveRelative is used versus
MC_MoveVelocity to create the inching behavior:

FUNCTION_BLOCK MC_Inch
 VAR_IN_OUT
 Axis : AXIS_REF;
 END_VAR

 VAR_INPUT
 InchForward : BOOL;
 InchBackward : BOOL;
 Distance: REAL;
 Velocity : REAL;
 Acceleration : REAL;
 Deceleration : REAL;
 Jerk : REAL;

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 21/ 94

 END_VAR

 VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 CommandAborted : BOOL;
 Error : BOOL;
 ErrorID : WORD;
 END_VAR

 VAR
 fbHalt : MC_Halt;
 fbMoveRelative : MC_MoveRelative;
 iState : INT;
 END_VAR

 CASE iState OF
 0: (* wait for start conditions *)

 Done := FALSE;
 (* error conditions *)
 IF Error OR CommandAborted THEN
 IF NOT InchForward AND NOT InchBackward THEN
 Error := FALSE;
 CommandAborted := FALSE;
 ErrorID := 0;
 END_IF
 END_IF

 IF InchForward AND NOT InchBackward THEN
 iState := 10;
 fbMoveRelative.Distance := Distance;
 END_IF

 IF InchBackward AND NOT InchForward THEN
 iState := 20;
 fbMoveRelative.Distance := -Distance;
 END_IF

 IF iState <> 0 THEN
 fbMoveRelative(Execute := FALSE,
 Velocity := Velocity,
 Acceleration := Acceleration,
 Deceleration := Deceleration,
 Jerk := Jerk,
 Axis := Axis);

 Busy := TRUE;
 ELSE
 Busy := FALSE;
 END_IF

 10: (* move forwards *)
 fbMoveRelative(Execute := TRUE,
 Axis := Axis);

 IF fbMoveRelative.Error THEN
 Error := TRUE;
 ErrorID := fbMoveRelative.ErrorID;
 iState := 0;
 ELSIF fbMoveRelative.CommandAborted THEN
 CommandAborted := TRUE;
 iState := 0;
 ELSIF fbMoveRelative.Done THEN
 Done := TRUE;
 ELSIF NOT InchForward OR InchBackward THEN
 iState := 30;

 fbHalt(Execute := FALSE,
 Deceleration := Deceleration,
 Jerk := Jerk,
 Axis := Axis);
 END_IF

 20: (* move backwards *)
 fbMoveRelative(Execute := TRUE,
 Axis := Axis);

 IF fbMoveRelative.Error THEN
 Error := TRUE;

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 22/ 94

 ErrorID := fbMoveRelative.ErrorID;
 iState := 0;
 ELSIF fbMoveRelative.CommandAborted THEN
 CommandAborted := TRUE;
 iState := 0;
 ELSIF fbMoveRelative.Done THEN
 Done := TRUE;
 ELSIF NOT InchBackward OR InchForward THEN
 iState := 30;
 fbHalt(Execute := FALSE,
 Deceleration := Deceleration,
 Jerk := Jerk,
 Axis := Axis);
 END_IF

 30: (* halt *)
 fbHalt(Execute := TRUE,
 Axis := Axis);

 IF fbHalt.Error THEN
 Error := TRUE;
 ErrorID := fbHalt.ErrorID;
 iState := 0;
 ELSIF fbHalt.CommandAborted THEN
 CommandAborted := TRUE;
 iState := 0;
 ELSIF fbHalt.Done THEN
 Done := TRUE;
 iState := 0;
 END_IF
 END_CASE

END_FUNCTION_BLOCK

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 23/ 94

2.6. Jog to Position
FB-Name MC_JogToPosition
This User Derived Function Block commands a jogged movement to an axis as long as the input ‘Forward’ or
‘Reverse’ is SET. Once they are removed, the axis will start a deceleration path to stop at a specified position. This
function block is designed for use with rotary axes that may require several rotations at the specified deceleration rate
before coming to a complete stop.
VAR_IN_OUT

Axis AXIS_REF Reference to the axis
VAR_INPUT

Forward BOOL Start the jogged motion in positive direction
Reverse BOOL Start the jogged motion in negative direction
Velocity REAL Value of the maximum ‘Velocity’ (not necessarily reached) [u/s].
Acceleration REAL Value of the ‘Acceleration’ (always positive) (increasing energy of

the motor) [u/s2]
Deceleration REAL Value of the ‘Deceleration’ (always positive) (decreasing energy

of the motor) [u/s2]
Jerk REAL Value of the ‘Jerk’ [u/s3] (always positive)
StopPosition REAL Final stop position in a rotary axis system.

VAR_OUTPUT
Done BOOL This function block will pulse the ‘Done’ bit for one scan only at

the completion of the deceleration to the StopPosition
Busy BOOL The FB is not finished and new output values are to be expected
CommandAborted BOOL ‘Command’ is aborted by another command
Error BOOL Signals that error has occurred within Function Block
ErrorID WORD Error identification

Note:

 MC_Jog_To_Position
AXIS_REF Axis Axis AXIS_REF

BOOL Forward Done BOOL
BOOL Reverse Busy BOOL
REAL Velocity CommandAborted BOOL
REAL Acceleration Error BOOL
REAL Deceleration ErrorID WORD
REAL Jerk
REAL StopPosition

Variable Declaration:

FUNCTION_BLOCK Jog_To_Position
 VAR_IN_OUT
 Axis : AXIS_REF;
 END_VAR

 VAR_INPUT
 Forward : BOOL;
 Reverse : BOOL;
 Velocity : REAL;
 Acceleration : REAL;
 Deceleration : REAL;
 Jerk : REAL;
 StopPosition: REAL;
 END_VAR

 VAR_OUTPUT
 Done : BOOL;
 Busy: BOOL;

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 24/ 94

 CommandAborted : BOOL;
 Error : BOOL;
 ErrorID : WORD;
 END_VAR

 VAR
 (* define the internal variables here *)
 Active : BOOL
 CommandedPositionCyclic : REAL
 DecNotZero : BOOL
 Dir : INT
 DirectionValid : BOOL
 DirError : BOOL
 DistanceToStop : REAL
 F_TRIG_1 : F_TRIG
 F_TRIG_Jog : F_TRIG
 IdealDecelPosition : REAL
 JogExe : BOOL
 JogFwd : BOOL
 JogRev : BOOL
 MachineCycle : REAL
 MC_MoveAbsolute_1 : MC_MoveAbsolute
 MC_MoveVelocity_1 : MC_MoveVelocity
 MC_MoveVelocity_2 : MC_MoveVelocity
 MC_ReadBoolParameter_1 : MC_ReadBoolParameter
 MC_ReadParameter_1 : MC_ReadParameter
 MC_ReadParameter_2 : MC_ReadParameter
 MC_ReadParameter_3 : MC_ReadParameter
 MOVE_INT_1 : MOVE_INT
 MOVE_INT_2 : MOVE_INT
 MOVE_REAL_1 : MOVE_REAL
 MOVE_REAL_2 : MOVE_REAL
 MOVE_REAL_3 : MOVE_REAL
 MOVE_UINT_1 : MOVE_UINT
 MOVE_UINT_2 : MOVE_UINT
 MOVE_UINT_3 : MOVE_UINT
 MOVE_UINT_4 : MOVE_UINT
 MOVE_UINT_5 : MOVE_UINT
 MoveAbsBusy : BOOL
 MoveAbsError : BOOL
 MoveAbsErrorID : UINT
 OldSpeed : REAL
 OneCycleToStop : BOOL
 R_TRIG_1 : R_TRIG
 R_TRIG_2 : R_TRIG
 R_TRIG_Jog : R_TRIG
 RotaryType : BOOL
 SlowBusy : BOOL
 SlowDone : BOOL
 SlowExe : BOOL
 SlowNow : BOOL
 SpeedChanged : BOOL
 StopAtPositionExe : BOOL
 StopDone : BOOL
 vel : REAL
 Velocify2Error : BOOL
 Velocity1Busy : BOOL
 Velocity1Error : BOOL
 Velocity1ErrorID : UINT
 Velocity2Error : BOOL
 Velocity2ErrorID : UINT
 END_VAR

END_FUNCTION_BLOCK;

Internal code in Ladder Diagram:

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 25/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Optional: Use a vendor specific method to obtain the axis configuration. (In this example, Parameter UINT#1807 returns
0=linear, 1=Rotary.)

Optional: Use a vendor specific method to obtain the Machine Cycle of the axis. (In this example, Parameter UINT#1833 is the
Machine Cycle.)

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 26/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

ST code inside the REM function
block is explained at the end of this
POU.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 27/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 28/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 29/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

(* The purpose of the REM function block is to act like a MOD function, but for floating point values.*)

FUNCTION_BLOCK REM
 VAR_INPUT
 Denominator : REAL;
 Numerator : REAL;
 END_VAR

 VAR_OUTPUT
 REM : REAL;
 END_VAR

 VAR
 IntegerResult : DINT;
 END_VAR

 IF Denominator <> REAL#0.0 THEN
 IntegerResult := TRUNC_DINT(Numerator / Denominator);
 REM := Numerator - (Denominator * DINT_TO_REAL(IntegerResult));
 ELSE
 REM := REAL#0.0;
 END_IF;

END_FUNCTION_BLOCK;

2.6.1. Application Example using Jog_To_Positon
This function block allows a rotary axis to jog indefinitely, then to be decelerated and stopped at a specific angular position.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 30/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 31/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 32/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 33/ 94

2.7. Axes Interlock

FB-Name MC_Axes_Interlock
This User Derived Function Block monitors two axes which are mechanically linked to ensure that the position of both
axes is within specified tolerances, and that both axes are free from alarms. The Locked output provides a way to
confirm these conditions.
VAR_IN_OUT

Axis1 AXIS_REF Reference to the axis
Axis2 AXIS_REF Reference to the axis

VAR_INPUT
Enable BOOL The function block will continuously monitor the two axes and

provide output while enable is held high.
Tolerance REAL Specifies the maximum allowable position difference between the

two axes before the ‘ Locked’ output should become FALSE.
Offset REAL Specify any intentional position offset to be ignored when

comparing the position of Axis1 and Axis2
VAR_OUTPUT

Valid BOOL Indicates that the function is enabled and there are no internal
errors preventing it from providing its output.

Locked BOOL Indicates that both axes are within the specified position Tolerance
and that neither axis has an alarm.

Deviation REAL The positional difference between the two axes.
Error BOOL Signals that an error has occurred within the Function Block
ErrorID UINT Error identification

Note:

 MC_Axes_Interlock
AXIS_REF Axis1 Axis1 AXIS_REF
AXIS_REF Axis2 Axis2 AXIS_REF

BOOL Enable Valid BOOL
REAL Tolerance Locked BOOL
REAL Offset Deviation REAL

 Error BOOL
 ErrorID WORD

Textual representation
Variable Declaration:
FUNCTION_BLOCK Axes_Interlock
 VAR_INPUT
 Enable : BOOL;
 Tolerance : REAL;
 Offset : REAL;
 END_VAR

 VAR_IN_OUT
 Axis1 : AXIS_REF;
 Axis2 : AXIS_REF;
 END_VAR

 VAR_OUTPUT
 Valid : BOOL;
 Locked : BOOL;
 Deviation : REAL;
 Error : BOOL;
 ErrorID : WORD;
 END_VAR

 VAR
 Active : BOOL

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 34/ 94

 Axis1Error : BOOL
 Axis2Error : BOOL
 AxisConfigError : BOOL
 AxisDefError : BOOL
 CycleError : BOOL
 DrivesOK : BOOL
 MachineCycle : REAL
 MC_ReadActualPositionNC_1 : MC_ReadParameter
 MC_ReadActualPositionNC_2 : MC_ReadParameter
 MC_ReadAxisError_1 : MC_ReadAxisError
 MC_ReadAxisError_2 : MC_ReadAxisError
 MC_ReadBoolParameter_1 : MC_ReadBoolParameter
 MC_ReadBoolParameter_2 : MC_ReadBoolParameter
 MC_ReadParameter_1 : MC_ReadParameter
 MC_ReadParameter_2 : MC_ReadParameter
 PositionOK : BOOL
 R_TRIG_Enable : R_TRIG
 Read1Error : BOOL
 Read2Error : BOOL
 ReadBoolPrmError : BOOL
 ReadPrmError : BOOL
 RotaryAxis : BOOL
 END_VAR

(* define the internal code here *)

(* This function was designed to monitor axes that are mechanically coupled together or otherwise must move

together within critical tolerances. It compares the actual position deviation to a tolerance input.
(* It also monitors MC_ReadAxisAlarm of each axis specified. This block simply supplies an output to

indicate if the axes are with the specified tolerance and neither servo has an alarm.

The application program must then use the output to interlock the servos from enabling.

A note about the offset input: a positive value means it's expected that Axis1 is AHEAD of Axis2 *)

(******************************** Event Handling Section ********************************)
(* Never put R_TRIG / F_TRIG functions under conditional logic such as IF statements *)

R_TRIG_Enable(CLK:=Enable); (* For capturing the rising edge of Enable *)

(* This line causes the function block to exit if the execute, and all outputs are off. (For efficiency.)
 IMPORTANT, be sure to include CommandAborted in the interlock logic if a motion block will be used. *)

IF NOT(Enable) AND NOT(Active) THEN RETURN;
END_IF;

Active:= Enable OR Valid OR Error;
(* This keeps the function executing while enable held on or an internal state is still busy *)

(******************************** Initialization Section ********************************)
IF R_TRIG_Enable.Q THEN
 AxisConfigError := FALSE;
 ReadPrmError := FALSE;
 CycleError := FALSE;
 RotaryAxis := FALSE;
 MachineCycle := REAL#1.0;

 (* Axes must both be defined *)
 AxisDefError := (Axis1.AxisNum = UINT#0) OR (Axis2.AxisNum = UINT#0);

 IF NOT AxisDefError THEN

 (* Determine axis configuration for Axis1 (Rotary or Linear? *)

 (* Add other error checking code here *)

(* For example, if one axis is configured as a rotary type, verify both axes have the same
configuration and Machine Cycle *)

 (* Add other initialization code here *)

(* For example, if rotary axes, read the machine cycle as a parameter or create another
function block input *)

 END_IF;

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 35/ 94

(* Set Error flag here to prevent the main section from running even once is there is a problem *)
(* “OR” any other errors generated in the initialization section *)

 Error:=AxisDefError;
END_IF;

(******************************** Main Operation Section ********************************)
IF Enable AND NOT Error THEN

 (**** Compare Positions of the two mechanically interlocked axes ****)
 MC_ReadActualPosition_1(Axis := Axis1, Enable := TRUE);
 Read1Error := MC_ReadActualPosition_1.Error;

 MC_ReadActualPosition_2(Axis := Axis2, Enable := TRUE);
 Read2Error := MC_ReadActualPosition_2.Error;

 Deviation := ((MC_ReadActualPosition_1.Value - Offset) - MC_ReadActualPosition_2.Value);
 PositionOK := ABS(Deviation) <= Tolerance;

 (**** Check for alarms on the two mechanically interlocked axes ****)
 MC_ReadAxisError_1(Axis := Axis1, Enable := TRUE);
 Axis1Error := MC_ReadAxisError_1.Error;

 MC_ReadAxisError_2(Axis := Axis2, Enable := TRUE);
 Axis2Error := MC_ReadAxisError_2.Error;

 DrivesOK := (MC_ReadAxisError_1.ErrorClass = UINT#0) AND (MC_ReadAxisError_2.ErrorClass = UINT#0);

 Locked := PositionOK AND DrivesOK;
ELSE
 Locked := FALSE;
 Deviation := REAL#0.0;
END_IF;

(******************************** Error Handling Section ********************************)
Error := Enable AND (Error OR AxisDefError OR ReadBoolPrmError OR Read1Error OR
 Read2Error OR Axis1Error OR Axis2Error);
IF Error THEN
 IF AxisDefError THEN ErrorID := UINT#4625; END_IF;
 IF Read1Error THEN ErrorID := MC_ReadActualPosition_1.ErrorID; END_IF;
 IF Read2Error THEN ErrorID := MC_ReadActualPosition_2.ErrorID; END_IF;
 IF Axis1Error THEN ErrorID := MC_ReadAxisError_1.ErrorID; END_IF;
 IF Axis2Error THEN ErrorID := MC_ReadAxisError_2.ErrorID; END_IF;
 (* Add other errors if necessary *)
ELSE
 ErrorID := UINT#0;
END_IF;

(*********************************** Valid Section ************************************)
Valid := Enable AND NOT Error;

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.7.1. Application Example using Axes Interlock.
This function block is for use when two servos are operating the same mechanical load, and must remain in operation
simultaneously. The Axes_Interlock.Locked output is used as part of the logic sequence for each axes MC_Power function
block.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 36/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Figure 9 - Programming example of Axes Interlock

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 37/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 38/ 94

2.8. Master Engine
It can be practical to create a Function Block, using the PLCopen Motion Control Function Blocks (FB’s) and IEC 61131-3 FB's,
representing the classical mechanically coupled master axis in a machine in a virtual way. The other axes can be coupled to this
virtual master axis for synchronization. This example consists of multiple parts, starting with the representation of the Function
Block itself.

FB-Name MC_MasterEngine
The FB is used for driving the virtual Master Axis in packaging machine. It behaves like a real mechanical main
shaft. It runs at a predetermined velocity, can be stopped at certain positions, it has an inching mode for startup or
run in, and serves as a Master for the Slave Axes which are connected to Cam and Gear functionalities.
VAR_IN_OUT

Axis AXIS_REF Reference to the axis
VAR_INPUT

Enable BOOL Enables and initializes the FB
Start BOOL Start the motion at rising edge, Stop on falling edge at ‘StopPosition’
StopPosition REAL Stop position [u]
Velocity REAL Velocity for continuous motion [u/s]
Acceleration REAL Acceleration for continuous motion [u/s2]
Deceleration REAL Deceleration for continuous motion [u/s2]
Jerk REAL Jerk for continuous motion [u/s3]
InchingForw BOOL Input to start Inching in the forward direction (Axis stops, if input reset

before reaching ‘InchingStep’)
InchingBackw BOOL Input to start Inching in the backward direction (Axis stops, if input reset

before reaching ‘InchingStep’)
InchingStep REAL Maximum distance for inching [u]
InchingVelocity REAL Velocity for inching [u/s]
InchingAcceleration REAL Acceleration for inching [u/s2]
InchingDeceleration REAL Deceleration for inching [u/s2]
InchingJerk REAL Jerk for inching [u/s3]

VAR_OUTPUT
Active BOOL FB enabled
MotionActive BOOL Motion active
InVelocity BOOL Set Velocity reached (continuous motion)
Error BOOL Signals that an error has occurred within the Function Block
ErrorID WORD Error identification

Notes: The inching mode is a manual controlled mode with a movement over a pre-defined distance (‘InchingStep’).
It is stopped immediately when the related input is reset.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

 MC_MasterEngine

AXIS_REF Axis Axis AXIS_REF
BOOL Enable Active BOOL
BOOL Start MotionActive BOOL
REAL StopPosition InVelocity BOOL
REAL Velocity Error BOOL
REAL Acceleration ErrorID WORD
REAL Deceleration
REAL Jerk
BOOL InchingForw
BOOL InchingBackw
REAL InchingStep
REAL InchingVelocity
REAL InchingAcceleration
REAL InchingDeceleration
REAL InchingJerk

Below a graphical example of the ‘Start’ – ‘Stop’ behavior:

Figure 10 - ‘Start’-‘Stop’ behavior of MC_MasterEngine

Explanation:

• The first channel (on top) shows the ‘Start’ input.
• The second channel shows the position of the axis
• Channel 3 shows the velocity of the axis
• Channel 4 shows the acceleration of the axis

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 39/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

This second example deals with inching (slowly moving) over a complete ‘InchingStep’

Figure 11 - Inching with a complete ‘InchingStep’

Explanation:

• The first channel (on top) shows the ‘InchingForw’ input.
• The second channel shows the position of the axis
• Channel3 shows the velocity of the axis
• Channel4 shows the acceleration of the axis

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 40/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.8.1. Program example for the use of MC_MasterEngine
Axis1 is the virtual Master; Axis5 is coupled via Gear to the Master.

Figure 12 - Program example for the use of MC_MasterEngine

2.8.2. The inside of the Function Block MC_MasterEngine
The content of the User derived FB MC_MasterEngine consists of two sections as described here.
The first part of the FB generates the continuous motion and calculates the ‘StopPosition’ in a way, that the axis always

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 41/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

maintains its ‘Deceleration’.

Axis

Execute

Axis

InVelocity

MC_MoveVelocity

MVel

Velocity Active
CommandAborted

Jerk
Direction

Busy

BufferMode

Acceleration

Deceleration Error
ErrorID

ContinuousUpdate

Axis

Velocity
Acceleration
Deceleration

Jerk
POSITIVE_DIRECTION

Start InVelocity

MVel_error
MVel_errorid

Axis

Execute

Axis

Done

MC_MoveAbsolute

MAbs

Position
Velocity

Active
CommandAborted

Jerk
Direction

Busy

BufferMode

Acceleration

Deceleration

Error
ErrorID

ContinuousUpdate

Axis

CURRENT_DIRECTION

Start

Velocity
Acceleration
Deceleration

Jerk

StopPosition

MAbs_error
MAbs_errorid

Figure 13 - The first part of the FB MC_MasterEngine

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 42/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

This next part is dedicated to the inching mode.

Figure 14 - The second part of the FB MC_MasterEngine for inching

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 43/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 44/ 94

2.9. Explanation of Camming in combination with MC_MasterEngine
In Part 1, the following Function Blocks are defined for the Camming functionality:

1. MC_CamTableSelect
2. MC_CamIn
3. MC_CamOut

The principle Tasks of MC_CamTableSelect:

• Initialization of one ‘CamTable’ or a whole set of CAM tables for MC_CAM_REF. For this operation a reference to the
master or slave axis is not always necessary;

• Selection of one curve within MC_CAM_REF for MC_CamIn. For this operation a reference to the master and slave
axis is not always necessary;

• The whole process of preparing the ‘CamTable’ (ID) switch (selection). For this operation a reference to the master and
slave axis is necessary.

The generation of the ‘CamTable’ can be done via an independent software tool in a preparation phase, or in real time by the
controller. The table is generated in the MC_CAM_REF structure. The ‘CamTable’ to be processed is identified with the
‘CamTableID’ output. The combination of it all is shown in the figures below, for basic use and extended use.

2.9.1. The Basic Use of MC_CamTableSelect
The call of MC_CamTableSelect and MC_CamIn are done in 2 separate tasks due to possible limitations of the system.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Tool

PLC-Calculated

1.

2.

3.

4.

MC_CAM_REF

Y=f(x)

Task 1

MC_CamTableSelect_1

MC_CamTableSelect

CamTable

Execute Done

CamTableID

No1No1

Select_No1 No1_Selected

Reference_No1

Task 2

MC_MasterEngine_1

MC_MasterEngine

MasterVirtual

MC_Camin_1

MC_Camin

Master

SlaveDrive Drive

Virtual

Execute

CamTableID

InSync No1_InSync

Reference_No1

ExecuteCam

Figure 15 - Basic use of MC_CamTableSelect

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 45/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.9.2. The Extended Use of MC_CamTableSelect
In this example both the MC_CamTableSelect and MC_CamIn are called in the same task and cycle.

Tool

PLC-Calculated

1.

2.

3.

4.

MC_CAM_REF

Y=f(x)

Task

MC_MasterEngine_1

MC_MasterEngine

MasterVirtual

MC_Camin_1

MC_Camin

Master

SlaveDrive

Virtual

Execute

CamTableID InSync No1_InSync

No1_Selected

ExecuteCam

Master

Slave

No1

Select_No1 Execute

CamTableID

Drive

No1CamTable

MC_CamTableSelect_1

MC_CamTableSelect

M
as

te
r P

os
iti

on

C
ur

ve
 sw

itc
h

U
p-

D
ow

n
sy

nc
hr

on
is

at
io

n
Done

1.

Figure 16 - Extended use of MC_CamTable_Select

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 46/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.10. Using three segments CAM profile
Many machine operations, or even sub operations, have a start sequence, a repetitive normal operation sequence, and a stopping
sequence. For this reason it makes sense to combine these three phases in one function.
The basis consists of a virtual axis to which the other axes are linked via a CAM profile. This means that such a system has no
time base, but works via position-position basis between the virtual master and the slave(s). In case of multiple slave axes, the
sequences run in parallel. The position-based diagram describing the synchronized parallel execution of these functions is called
the synchronization diagram (see Figure 17 - General three-segment cam profile for one coupled axis). The top graphics shows
the virtual master axis position on the vertical axis, with a modulo 360 degrees. This is the common reference to all slave axes,
servos and Digital Cam Switches (DCS). Because all elements are synchronized to the same master, they are all synchronized
together. When the master travels a full cycle in the second CAM segment, like the distance [0-360), one production cycle has
been produced. The distance [0-360) represents one production cycle.

2.10.1. General User-Derived Function Block (UDFB) – Three-segment Cam profile
Looking at the axis position profile on the synchronization diagram, we can see that the axis executes a profile that is composed
of three “segments”. The connecting points between those segments are not fixed, i.e. their position may vary depending on the
machine production parameters. Therefore each of these Cam profile can be a subset of a general “three-segments Cam profile”,
which therefore makes sense to create. Each segment is a separate Cam profile, and the application program will need to take
care that these cam profiles are properly buffered and executed one after the other, and continuously.
The following figures show the position profile of a general three-segment Cam profile, and an example of the corresponding
logic. This logic can be embedded into a UDFB that be re-used and specialized for different axes.

Figure 17 - General three-segment cam profile

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 47/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Figure 18 - Logic example for a general three-segment Cam profile

The parameter MCycles should be set in a different part of the program when the required number of production cycles is done.
This is combined with the EndOfProfile to abort the CamInProducing FB with the CamInStopping FB.

These kind of segmented profiles are now used in the example on the Cut-to-Length example in Chapter 2.11 hereunder although
the cyclic behavior is different.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 48/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.11. Cut to length example
The following application example is material cut-to-length (e.g. plastic tube here) combined with an assembly round table. The
plastic tube is un-winded, i.e. a certain length is pulled off, then cut and finally assembled in a round table. The figure below
shows a simplified view of the machine. In this example also a ‘three segment CAM profile’ is used. However in this case the
repetitive mode of the second CAM is only one cycle, and all three segments are combined in every production cycle.

Figure 19 - Cut-to-length, round table machine

The different sequences of operation within a machine cycle are the following:

• Un-wind plastic tube, i.e. pull-off a certain tube length, and then stop
• Clamp the tube
• Cut the tube
• Un-clamp the tube (free fall on the round table)
• Turn the round table to move the tube to the first tool
• Run the first tool, e.g. to seal one extremity of the tube
• Turn the round table to move the tube to the second tool
• Run the second tool
• Further possible processing steps (not shown here)
• Product is finished

Three motion functions done with servomotors can be identified:

• Pulling axis
• Cutting axis
• Round-table axis

Several other functions, driven by digital outputs, can be identified. Each function corresponds to a tool in the assembly round
table:

• Clamping / un-clamping
• Sealing
• Filling
• Capping
• Further possible processing steps (not shown here)

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 49/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

For the sake of simplicity we will only consider the first two ones.

The figure below shows a more detailed view of each element and breaks down the machine functionalities.

Slave1
Cutting Axis

Slave2
Pulling Axis Slave3

Round Table Axis

Tool 1:
Tube Clamps Tool 2 :

Tube Sealing

Tool 3 :
Filling, capping

Tool 4 :
…

Virtual
Master

Figure 20 - Breakdown of machine functionalities

All the functions / steps described above could be run sequentially, i.e. respond to events or time, executed one after the other.
However, in order to obtain higher machine throughputs, it is possible to run these functions partially in parallel, whenever
possible. To do so, the functions cannot be run based on time or events, but on position. The position-based diagram describing
the synchronized parallel execution of these functions is called the synchronization diagram.
A simplified synchronization diagram for the cut-to-length round table application is shown in the figure below:

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 50/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 51/ 94

Virtual Master Axis position
0-1 represents the production cycle

On-compensation OFF-compensation

On-compensation

Servo-
motors

DCS

0
0 0.125 0.25 0.375 0.50 0.625 0.75 0.875 1

0
0 0.125 0.25 0.375 0.50 0.625 0.75 0.875 1

A D

0
0 0.125 0.25 0.375 0.50 0.625 0.75 0.875 1

1

1

1

A

B

D
B C

B

A

Cutting
Axis

Pulling
Axis

Round-Table
Axis

Dwell Profile

Dwell Profile

Pulling Profile 1

Cutting
Profile

Turning
Profile

Dwell Profile

Dwell Profile

Pulling Profile 1

OFF
0 0.125 0.25 0.375 0.50 0.625 0.75 0.875 1

BA

ON
Tube

Sealing Tube Sealing

ON
0 0.125 0.25 0.375 0.50 0.625 0.75 0.875 1

A

OFF
Tube

Clamping Clamp

Cutting Speed

Cutting Angle

C

B

100 ms

Figure 21 - Synchronization diagram cut-to-length round table machine

The three first plots describe the position of the servo-axes. The vertical coordinates are dimensionless, i.e. (0-1) represents the
default distance the axes have to travel:

• Cutting axis: 1 represents one revolution of the knife
• Pulling axis: 1 represents the default tube length, e.g. 100mm
• Round-Table axis: 1 represents the default angle, e.g. 60 Deg.

The next two plots describe the state of the Digital Cam Switches (DCS) outputs, controlling the clamping tool and the sealing
tool.

The horizontal coordinate is the virtual master axis position. This is the common reference to all five slave elements, servos and
DCS. Because all elements are synchronized to the same master, they are all synchronized together.
When the master travels the distance (0-1), one product has been produced.
The distance (0-1) represents one production cycle.

2.11.1. Specialized User-Derived Function Block (UDFB) – Cutting axis Cam profile
With the general three-segment cam UDFB been created in Chapter 2.10 Using three segments CAM profile, it can be-re-used
and specialized to fit to different axes. For example, to obtain the position profile of the cutting axis the specialization consists in
setting the following MC_CamIn input:

• MO1 := 0 ; MO2 := 0 ; MO3 := 0 ; SO1 := 0 ; SO2 := 0 ; SO2 := 0 ;
• MS2 := Constant * MachineSpeed / CuttingSpeed ;
• MS1 := (1 – MS2)/2 ; MS3 := (1 – MS2)/2
• SS1 : = 0 ; SS1 : = 1 ; SS1 : = 0 ;

The Constant above depends on the rising Cam profile used the middle segment.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

We have now a UDFB with reduced number of input parameters, and now directly linked to machine parameters.

0
0 0.125 0.25 0.375 0.50 0.625 0.75 0.875 1

A

B

Master Engine position

Slave Position
1

Figure 22 - Cutting axis three-segment cam profile

The following figure shows a Ladder logic view of the general three-segment cam profile UDFB and the specialized cutting-axis
three-segment cam profile UDFB. This view shows well the principle of UDFB nesting.

Figure 23 - View of the nested UDFB ‘ThreePhaseCam’ in the new UDFB ‘Cutting’

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 52/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 53/ 94

2.12. Registration function using MC_TouchProbe and MC_Phasing

2.12.1. Introduction into web handling and registration
When looking at products that are bought off the shelf today, almost all of them are packaged. In many cases, the product is
actually packaged and wrapped more than once. For example, candy bars come with wrappers around each bar and all of the bars
are either in a bag or a box. When shipping the individual bags or boxes to the store, the product is usually placed into a
corrugated cardboard box.
Without considering how the product itself is made, let us consider how the packaging that holds the product is made and then
placed around the product. The materials used in most packages are plastic, paper or cardboard. Many times the final product is
enclosed in all of these types of packaging. All of these products begin as a raw product and are extruded into continuous sheets
of material referred to as a web.
As the web material is moved and converted into the final packaging, the product will change shape and color many times before
enclosing around the final product. There are many factors that influence the quality of the final product. By using automated
control systems it is possible to gather these factors together to allow production of a consistent quality product.
Web processing can be broken down into a variety of different industries. Many of them require the use of registration within the
web processing. Examples of some of these industries are listed below:

• Elastic webs - Polycarbonates and Plastics
• Non-elastic Webs - Paper, cardboard and steel
• Sheeters - Cut to print
• Die Cutters - Intermittent and continuous material feed
• Printing - Print to print, Print to cut, Glue to print

Web materials are sensitive to many controllable factors such as temperature, humidity, tension and pressure. Since these
elements can not always be perfectly controlled, variations are created which may need to be compensated for. One form of
compensation is registration.

2.12.2. Registration functionality
These diverse industries require different types of registration techniques. Some examples of the different registration variations
include:

1. Clear lane registration
2. Print registration
3. Product registration

Clear lane and print registration are very similar. Both typically use length as the component that is important to registration.
Clear lane registration is the most common type of registration used in the industry. A lane of material is reserved solely for
registration purposes. The only marks that will trigger the fast input will be the registration marks. Print registration involves
picking out a distinct distance between marks, which is unique. Print registration is used when it is not practical to use clear lane.
Product registration uses cycle position registration. The important relationship is the position of the product in the cycle.

Registration is most frequently used in master/slave applications. When used with master/slave movements, it has the additional
ability of compensating for errors that may occur. The end result is a system that remains synchronized with no accumulated
error. Repeatable accuracy throughout a process can be maintained.

In many closed-loop servo systems, it is often necessary to maintain synchronization and accurate positioning repeatability
throughout a process. This can be difficult when the product or process itself is inconsistent. Using registration allows you to
overcome this difficulty.
Typically, when using registration, sensors are used to detect the position of the product. With non-rigid materials which may
stretch or shrink, a photo-eye can detect registration marks on the material. With rigid products, a proximity switch could detect
material spacing.

The fast input on the feedback module allows a position at a registration event to be captured. When this occurs, the system
generates the referenced axis position.
This is important in applications such as packaging or converting where the process must be precisely coordinated and any non-
rigid material cannot be depended upon to retain dimensional relationships. These applications usually involve master/slave
moves. The fast input signals can be used as reference to which the master and all subsequent slaves synchronize.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

In order to use the registration functionality, a generic block called MC_TouchProbe has been defined within the PLCopen
Function Blocks for (extensions). This Function Block provides a very fast recording of the position of a specified axis at the
trigger event. The examples below use this to create the registration functionality.

2.12.3. Example of registration
In this example, a foil is continuously fed from a feeder into a cutter. A print mark on the foil is detected from a touch probe
sensor, TP-Sensor, which is connected in the software to the MC_TouchProbe.

TP-Sensor

Feeder
Cutter

Figure 24 - First Application Example Registration

Principle of operation:

Axis

Cutter

MC_PhasingMC_TouchProbe

Phase Shift

Cutter Cam

Slave
Axis

Feeder

Master

Master Position of Cutter =
Position Feeder + Phase Shift

Position of Feeder Axis

+

Done Execute

Reference Position of Print Mark

Recorded Position -

TP Input

+

Figure 25 - Principle of Operation

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 54/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

The Function Block MC_TouchProbe latches the Position of the Feeder Axis at the time it sees the Print Mark. The difference to
a Reference Position is given to a MC_Phasing, which creates a phase shift between the Feeder Axis and the master position of
the Cutter Axis. The Cutter is advancing or delaying in regard to the Feeder.

Possible print mark layout:

RefPosition RefPosition RefPosition

Print mark Cut position

StartIgnore StopIgnore StartIgnore StopIgnoreStopIgnore StartIgnore

Figure 26 - Printmark Layout

Figure 27 - Program in Function Block Diagram

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 55/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.12.4. Example 2 of registration
This example uses the MC_CamIn Function Block. The move has a defined cycle length. Registration compensation, when
required, takes place within this cycle with the insertion of an offset value calculated by the software.
Looking at a packaging process where a labeled product coming off a web of non-rigid material must be cut with a knife to 50
cm lengths so that the label is always in the center of the product, you would want to compensate for any variation in product
length during each cycle. This is illustrated below:

Figure 28 - Second example of registration

Without compensation, any error would accumulate and the label would no longer be centered. As an example, the product is
being cut at a rate of 500 per minute. If the product becomes stretched so that the actual length is 501 mm, in 1 minute the label
on the product would be off by 500mm (50cm) and in 2 minutes by 1m, etc.
By using a photo eye to detect registration marks on the product, any error in product length will be detected. The rotary knife
will adjust its position to compensate for any error in product length so that the product is always cut at the correct position.
Because the stretching of the material is gradual, the compensation will be minimal. If there is no stretching of the product, no
compensation will occur.
The photo eye is watching for registration marks and sending a signal when it sees one. The Window, with ‘FirstPosition’ and
‘LastPosition’, within the MC_TouchProbe helps to find a correct mark. Additional checking could be done via an additional
“good mark detector”, which could decide if a mark is recognized as good.
When a mark is detected, that information is sent to MC_TouchProbe. The resulted ‘RecordedPosition’ output is the basis for the
calculation of an offset for the master axis. This offset value is sent to the master/slave profile.
Two ways in which registration can be explained are shown below. In the first diagram, every mark is recognized. This can be
realized with the WindowOnly input ‘Reset’. This will mean every mark is recognized as good. This is acceptable when there is
no chance that the photo eye will trigger off any other mark on the product. This is not the case in the 2nd diagram below which
shows more than the registration marks. It is then possible to skip unwanted marks by using registration.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 56/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

 Registration Marks

 Product Length
 Registration Marks

 Product Length

In order to apply this to use the PLCopen Function Blocks we have to consider the breakdown of the machine functionality – i.e.
what the machines program will look like. The machine program can be broken down into the following actions:

1. AxisRef - set up the master and slave axis to be used in the application
2. Close the servo loop - initialize the drives
3. Home routine - set the master and slave to home positions
4. Cam profile - initialize all the data for the cam profile using table select and use cam-in before

motion begins
5. Move velocity - Start the master axis running at a constant velocity
6. Registration - Make sure registration is present when the motion begins.

Certain things need to be done to ensure smooth operation with registration. In order to do this, it would be necessary to add the
following parameters to the program, possibly on a separate Function Block.

1. Reading registration position change – It may be necessary to examine the amount of position change incurred by
registration.

2. Reading consecutive bad marks – It may be necessary to read the number of consecutive bad marks since the last good
mark for reference.

3. Status of registration – This should include the likes of fast input distance, position, number of good and bad marks and
the total number of fast inputs that have occurred.

4. Filtering for slave and master – Filtering may be applied to either the slave or master to make the registration changes
smoother when executed or to prevent registration changes when in contact with the material.

Below the basic layout of what the code could look like.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 57/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Figure 29 - Second example of registration

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 58/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 59/ 94

2.13. Capping application
Example of MC_TorqueControl in an application for placing a cap on a bottle. The cap includes a tamper ring and liner
tightening. This means that there are several stages:

1. getting the cap at the right angle on the top of the bottle
2. turn till the tamper ring goes over the extension in the neck of the bottle
3. tighten the cap in the liner with a certain torque over a certain time, so it is closed correctly

With this, the following phases can be identified:

1. Start with MC_MoveVelocity with velocity value ‘HiVelocity’
2. When acceleration phase is over, and after time delay ‘T1’, start to check the actual torque by using

MC_ReadActualTorque.
3. When reaching angle ‘NoCapStuck’, reduce speed via MC_MoveVelocity to value ‘MidVelocity’, in order to lower the

amount of axis´ kinetic energy
4. When ‘TravlTorq’ exceeds ‘Torq’, it signals that the tamper ring is reached. Start MC_TorqueControl with torque

‘CapOnTorq’ and ‘LowVelocity’ as inputs.
5. First the Velocity is very low activating the tamper ring. When the tamper ring is on place, the Velocity goes up to

‘LowVelocity’.
6. When ‘LowVelocity’ and position ‘CapOnDeg’ achieved it signals that you run fine beyond the tamper ring, then

MC_TorqueControl is used with ‘LinerTorq’ and ‘CreepVelocity’ as inputs. The ‘CreepVelocity’ limits the torque in
the beginning.

7. When the cap liner meets the neck, the Velocity goes to zero and the torque increases.
8. When ‘MoveTorq’ is on for the time ‘TorqTime’ the liner has been compressed correctly!

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Time

Time

Angle

Time

MidVelocity

LowVelocity

NoCapStuck

CapOnDeg

Act Velocity

CapOnTorq

LinerTorq

TorqPLim

Act Torq

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

 3 4 5 6 7 8

TorqTime

T1

Figure 30 - Timing example for capping application

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 60/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

CapOnTorq

LowVelocity

Q1
LE

GE

LowSpeed

Speed

Q1

TON

T1

TravlTorque

GE

AxisPos

Start

HiSpeed

MidVelocity

MC_ReadActualPosition

Enable

Axis

Done

Position

MC_ReadActualTorque

Enable

Axis

Done

Torque

MC_MoveVelocity

Execute

Velocity

InVelocity

Axis

MC_MoveVelocity

Execute

Velocity

InVelocity

Axis

MC_TorqueControl

Execute

Axis

InTorque

Velocity

Torque

S
Q1

NoCapStuck

GE

MC_TorqueControl

Execute

Axis

InTorque

Velocity

Torque
TON

TorqTime

R
Q1

S
Ready

CapOnDeg

LinerTorq

CreepVelocity

MC_ReadActualPosition

Enable

Axis

Done

Position

MC_ReadActualVelocity

Enable

Axis

Done

Velocity

Figure 31 - Program example in LD for capping application

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 61/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 62/ 94

2.14. MC_FlyingShear
In many applications one needs to cut the material to a certain length while this is moving. This Function Block solves this
aspect.

FB-Name MC_FlyingShear
This Function Block performs a defined synchronized motion between a continuously running master axis and a
slave axis.
VAR_IN_OUT

Master AXIS_REF
Slave AXIS_REF

VAR_INPUT
Enable BOOL Enables the Function Block
Start BOOL Starts a synchronizing sequence
MasterStartPosition REAL Master position that determines the phase relation between master

and slave axis [u]
MasterSyncPosition REAL Master position where synchronized motion starts [u]
SlaveSyncPosition REAL Corresponding slave position [u]
SlaveEndPosition REAL Slave position where synchronized motion ends [u]
SlaveWaitPosition REAL Slave position where slave axis waits [u]
SlaveVelocity REAL Value of the maximum slave velocity (always positive) (not

necessarily reached) [u/s].
SlaveAcceleration REAL Value of the acceleration (always positive) (increasing energy of the

motor) [u/s2]
SlaveDeceleration REAL Value of the deceleration (always positive) (decreasing energy of

the motor) [u/s2]
SlaveJerk REAL Value of the Jerk [u/s3]. (always positive)

VAR_OUTPUT
InSync BOOL Synchronized motion in progress
Done BOOL Slave has reached waiting position

Notes: -

 MC_FlyingShear
AXIS_REF Master Master AXIS_REF
AXIS_REF Slave Slave AXIS_REF

BOOL Enable InSync BOOL
BOOL Start Done BOOL
REAL MasterStartPosition
REAL MasterSyncPosition
REAL SlaveSyncPosition
REAL SlaveEndPosition
REAL SlaveWaitPosition
REAL SlaveVelocity
REAL SlaveAcceleration
REAL SlaveDeceleration
REAL SlaveJerk

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Slave Position

Master Position

Slave Position

Master Position

Figure 32 - Flying Shear Figure 33 - Rotating Cutter

The figures above give a sketch that shows the function to be solved with this Function Block for the flying shear and rotating
cutter respectively. The primary task is to cut a moving continuous flow of material at specified positions into discrete pieces (i.e.
products). Many other applications are also possible with the same Function Block, like printing, filling, etc.

Both functions are quite similar, with the difference that for the Flying Shear the slave axis features a finite range of motion and
for the rotating cutter the slave axis continues to move in one direction.

The motion can be split into two parts:

1. Synchronization between master and slave axis and synchronous motion of both axes (where the actual task is
performed)

2. Slave axis moves to a defined waiting position and waits for next action request

For the first part, the master and slave axes have to operate at synchronous speeds while maintaining a specified phase
relationship (e.g. to assure an accurate cutting point). For the standard MC_GearIn Function Block no phase relationship can be
given, and thus MC_GearInPos is used. With this Function Block, the sequence of actions can be easily generated by a
combination of MC_GearInPos and MC_MoveAbsolute. Figure 34 - shows a timing diagram of this process, where the solid line
shows the Flying Shear, and the dashed line the Rotating Cutter.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 63/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

InSync

Done

FALSE

TRUE

FALSE

TRUE

Enable

Start

FALSE

TRUE

FALSE

TRUE

MasterStartPosition

MasterSyncPosition

SlaveEndPosition

SlaveSyncPosition
SlaveWaitPosition

Disabled
Move

To
Wait
Pos

GearInCut MoveTo
WaitPos Disabled

t

t

t

t

t

t

Master
Position

Slave
Position

Figure 34 - Timing diagram for a single cut

(Note: solid line = Flying Shear; dashed line = Rotating Cutter)

The following Function Block (specified as an SFC) performs such a sequence. The difference between Flying Shear and
Rotating Cutter is only within the parameters of the MC_MoveAbsolute Function Block that specifies the motion towards the
waiting position of the slave.

A gear ratio of 1:1 between master and slave axis is assumed. This means that both axes have the same position scaling. If this
assumption does not apply in a user's case, the user can adapt this ratio to his needs.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 64/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 65/ 94

Variable Declaration:

FUNCTION_BLOCK MC_FlyingShear
 VAR_INPUT
 Enable : BOOL;
 Start : BOOL;
 MasterStartPosition : REAL;
 MasterSyncPosition : REAL;
 SlaveSyncPosition : REAL;
 SlaveEndPosition : REAL;
 SlaveWaitPosition : REAL;
 SlaveVelocity : REAL;
 SlaveAcceleration : REAL;
 SlaveDeceleration : REAL;
 SlaveJerk : REAL;
 END_VAR

 VAR_IN_OUT
 Master : AXIS_REF;
 Slave : AXIS_REF;
 END_VAR

 VAR_OUTPUT
 InSync : BOOL;
 Done : BOOL;
 END_VAR

 VAR
 NoEnable : BOOL;
 MoveAbsSlave : MC_MoveAbsolute;
 GearInPosSlave : MC_GearInPos;
 ReadSlavePosition : MC_ReadActualPosition;
 END_VAR

END_FUNCTION_BLOCK

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

SFC Diagram:

Disabled
N aDisabledP

MoveAbsSlave(Axis:=Slave,
 Execute:=FALSE);
FirstSync:= TRUE;

N aDisabledN

IF NOT Enable
 NoEnable:=FALSE;
END_IF;

R aWaitingS

Enable AND NOT NoEnable
Disabled2Stopping

GearInCut
P aCuttingP

Done := FALSE;
FirstSync := FALSE;
MoveAbsSlave(Axis:=Slave, Execute:=FALSE);
GearInPosSlave(Master:=Master,
 Slave:=Slave,
 Execute:=TRUE,
 RatioNumerator:=1,
 RatioDenominator:=1,
 MasterSyncPosition:=MasterSyncPosition,
 SlaveSyncPosition:=SlaveSyncPosition,
 SyncMode:=MC_CatchUp,
 MasterStartDistance:= MasterSyncPosition-MasterStartPosition,
 Velocity:=SlaveVelocity,
 Acceleration:=SlaveAcceleration,
 Deceleration:=SlaveDeceleration,
 Jerk:=SlaveJerk);

N aCuttingN

ReadSlavePosition(Enable:=TRUE);
GearInPosSlave(Execute:=TRUE);
IF NOT Enable THEN
 NoEnable := TRUE;
END_IF;
InSync:=GearInPosSlave.InSync;

NOT NoEnable AND Start AND MoveAbsSlave.Done
StartGearIn

Disabled

NoEnable AND MoveAbsSlave.Done
Disabled

MoveToWait
Pos

P aWaitingP
GearInPosSlave(Master:=Master,
 Slave:=Slave,
 Execute:=FALSE);
MoveAbsSlave(Axis:=Slave,
 Execute:=TRUE,
 Position:=SlaveWaitPosition,
 Velocity:=SlaveVelocity,
 Acceleration:= SlaveAcceleration,
 Deceleration:= SlaveDeceleration,
 Jerk:= SlaveJerk,
 Direction:=Current);
InSync:=FALSE;

N aWaitingN
MoveAbsSlave(Execute:=TRUE);
IF NOT Enable THEN
 NoEnable := TRUE;
END_IF;
IF MoveAbsSlave.Done AND NOT FirstSync THEN
 Done := TRUE;
END_IF;

(ReadSlavePosition.Position
 > SlaveEndPosition)
AND (GearInSlave.InGear)

CutDone

Figure 35 - SFC for Flying Shear

(Note: Italic "Direction" parameter is necessary only for Rotating Cutter)

According to the above mentioned two phases of the operating sequence two working states are introduced. ‘In
MoveToWaitPosition’ the slave axis is moved to ‘SlaveWaitPosition’ and stops there.

As soon as the ‘Start’ input is activated, a transition to the ‘GearInCut’ state is performed, where the synchronized motion is

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 66/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 67/ 94

initiated by means of ‘GearInPosSlave’. In this state, the position of the slave axis is monitored, and as soon as it exceeds
‘SlaveEndPosition’, the ‘MoveToWaitPosition’ state is activated again.

There are two control signals that influence the state sequence:

1. The ‘Enable’ signal enables the block. As soon as it is activated, the slave axis moves to ‘SlaveWaitPosition’. If the ‘Enable’

signal is deactivated, the sequence is stopped as soon as the slave axis has reached ‘SlaveWaitPosition’ (in case of an active
sequence at the moment when the ‘Enable’ signal is deactivated). This assures a defined and save state where the action of
the Function Block is disabled. An immediate stop of the slave axis would cause serious harm in most applications.

2. The rising edge of the ‘Start’ signal initiates a single sequence of action. The parameters for this single action can be
influenced until the moment of this rising edge, this means that each cut can be parameterized separately, e.g. by the result of
a MC_TouchProbe Block. Thus registration applications can also be solved by means of this Function Block.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.15. Synchronized Motion with SFC

This example uses Sequential Function Charts to program 4 motors (and drives) in total:

• 2 for horizontal movement (MotorHorLeft and MotorHorRight)
• 2 for rotating movements (MotorRotLeft and MotorRotRight))

At the axis of the rotating motors are a grated cylinder, here represented via 4 tubes, but normally with a smaller discrepancy
(space between the grates especially if they are merged together in the same space). The axis of these motors are aligned for this.
The rotating motors are synchronized, and then moved to each other in such a way that the ‘gratings’ (on the cylinders) fit. This
synchronization starts wit a low speed, which is increased over time. Also, both synchronized motors are moved horizontally to
the left and the right as a ‘set’ (via the other 2 motors in also a synchronized mode).

MotorHorLeft

MotorHorRight

MotorRotLeft
MotorRotRight

Figure 36 - Layout of the example

Short description of the application program:

Initializing

Homing

MoveToBasic

Sequence1

Sequence2

Sequence3

Loop

Restart

Initializing

Homing

MoveToBasic

Sequence1

Sequence2

Sequence3

Loop

Restart

Figure 37 - Overview of the main program

1. MC_CamIn:

Master: MotorRotRight
Slave: MotorRotLeft
MC_MoveSuperImp. MotorRotLeft

2. MC_MoveRelative MotorHorLeftt

3. MC_CamIn:

Master: MotorHorLeft

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 68/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Slave: MotorHorRight

4. MC_MoveAbsolute - MotorHorLeft

Main Program in SFC:

Figure 38 - Main SFC Program

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 69/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 70/ 94

Main SFC Program

Step 1 – Init
Actions:
 N A_IdleMachine
 S A_StartupMachine
 R A_ShutDownMachine

Transition Condition:
 Phase_4_Active AND bResetDone AND A_StartMachine

Step 2 – Switch Power Stage ON
Actions:
 S bPowerEnable1
 S bPowerEnable2
 S bPowerEnable3
 S bPowerEnable4

Transition Condition:
bPowerStatus1 AND bPowerStatus2 AND bPowerStatus3 AND bPowerStatus4

Step 3: Homing procedures
Actions:
 N bHomeExecute_1
 N bHomeExecute_2
 N bHomeExecute_3
 N bHomeExecute_4

Transition Condition:
(bHomeDone1 AND bHomeDone2 AND bHomeDone3 AND bHomeDone4)

STEP 4: Move to Initial Positions
Actions:
 S bMoveAbsExecute_1
 S bMoveAbsExecute_2
 S bMoveAbsExecute_3
 S bMoveAbsExecute_4

Transition Condition:
(bMoveAbsDone_1 AND bMoveAbsDone_2 AND bMoveAbsDone_3 AND bMoveAbsDone_4)

STEP 5 - RunMachineProgram
Actions:
 N A_RunMachine
 R A_StartupMachine
 R bMoveAbsExecute_1
 R bMoveAbsExecute_2
 R bMoveAbsExecute_3
 R bMoveAbsExecute_4

TransitionCondition: NOT A_StartMachine

STEP 6: Start shutting down machine program
Actions:
 N SetInitialPositions
 N A006
 S A_ShutDownMachine

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 71/ 94

Transition Condition: PositionSet

STEP 7 – Move Servo 3 and 4
Actions:
 S bMoveAbsExecute_3a
 S bMoveAbsExecute_4a
 R PositionSet

Transition Condition: (bMoveAbsDone_3 AND bMoveAbsDone_4)

STEP 8: Move horizontal (Axis 1 and 2)
Actions:
 R bMoveAbsExecute_3a
 R bMoveAbsExecute_4a
 S bMoveAbsExecute_1
 S bMoveAbsExecute_2a

Transition Condition: (bMoveAbsDone_1 AND bMoveAbsDone_2)

Step 9: Turn Off Machine
Actions:
 R bMoveAbsExecute_1a
 R bMoveAbsExecute_2a
 R bPowerEnable_1
 R bPowerEnable_2
 R bPowerEnable_3
 R bPowerEnable_4

Transition Condition:
(bPowerStatus_1 AND bPowerStatus_2 AND bPowerStatus_3 AND bPowerStatus_4)

Return to Step 1

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 72/ 94

2.16. Shift Register as User Derived Function Block
In applications with machines with several stations, where information is transported with the product through the machine, a
shift register can be used.
To avoid pointers in Shift Registers or FIFO's, one way is to define for each data type needed it's own FB.
If there is multiple Data to shift, a user FB can be made out of this Basic FB's. Almost all data types can be realized in this way.
The FB hereunder is just one of the whole possible set.

FB-Name SR_DINT_32
This FB is a Shift Register for DINT Values with a number of 2-32 elements.
VAR_INPUT

Enable BOOL Initializes the Shift Register on pos. edge. Sets the active elements to 0
Put BOOL Writes value into Shift Register on positive edge
Get BOOL Reads value from Shift Register on positive edge
Position DINT Number of Element to read or write
PutValue DINT Value for Put
RightShift BOOL Shifts all values one position to the right
LeftShift BOOL Shifts all values one position to the left
ShiftMode DINT 0 = Shift with last element into first element (rotate)

1 = Shift with 0 into first element
2 = Shift with first element stays the same (filling)

NumberOfElements DINT Number of active Elements (2-32)
VAR_OUTPUT

Active BOOL FB is enabled
GetValue DINT Value for Get
Error BOOL Signals that error has occurred within Function block
ErrorID WORD Error number

Notes:

 SR_DINT_32
BOOL Enable Active BOOL
BOOL Put GetValue DINT
BOOL Get Error BOOL
DINT Position ErrorID WORD
DINT PutValue

BOOL RightShift
BOOL LeftShift
DINT ShiftMode
DINT NumberOfElements

Examples:

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

00000001

1 2 3 4 5 6 7 8

Put, PutValue = 1, Position = 1

00000012 ShiftRight, ShiftMode = 0

00000120 ShiftRight, ShiftMode = 0

20000001 Put, PutValue = 2, Position = 8

Program in ST Code

FUNCTION_BLOCK DINT_SR32

(* Function: The FB is a ShiftRegister Type Buffer for DINT Values with the maximum size of 32 Elements. *)

 (* Variable declaration*)

 VAR_INPUT
 Enable : BOOL; (* Initializes the Shift Register on pos. edge *)
 (* Sets the active elements to Zero *)
 Put : BOOL; (* Writes value into Shift Register on positive edge *)
 Get : BOOL; (* Reads value from Shift Register on positive edge *)
 Position : DINT; (* Position (number) of Element for Put and Get *)
 PutValue : DINT; (* Value for Put *)
 RightShift : BOOL; (* Shifts all values one position to the right *)
 LeftShift : BOOL; (* Shifts all values one position to the left *)
 ShiftMode : DINT; (* 0 = Shifts last element into first element (rotate) *)
 (* 1 = Shifts a Zero into first element *)
 (* 2 = Shift and first element stays the same (filling) *)
 NumberOfElements : DINT; (* Number of active Elements (2-32) *)
 END_VAR

 VAR_OUTPUT
 Active : BOOL; (* Goes high with Enable *)
 GetValue : DINT; (* Value for Get *)
 Error : BOOL; (* Set on Error in FB *)
 ErrorID : DINT; (* -1 = PositionOutOfRange *)
 (* -2 = NumberOfElementsOutOfRange *)
 END_VAR

 VAR CONSTANT
 MaxElements : DINT := 32; (* defines the maximum size *)
 PositionOutOfRange : DINT := -1; (* ErrorID *)
 NumberOfElementsOutOfRange : DINT := -2; (* ErrorID *)
 END_VAR

 VAR
 SRARRAY : ARRAY[1..MaxElements] OF DINT;
 EnableFlag : BOOL;
 GetFlag : BOOL;
 PutFlag : BOOL;
 RightShiftFlag : BOOL;
 LeftShiftFlag : BOOL;
 Index : DINT;
 StartPos : DINT;
 LastValue : DINT;
 END_VAR

 (* Code Sequence*)

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 73/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 74/ 94

 IF Enable AND NOT EnableFlag THEN (* Inits FB at pos. edge of Enable *)
 Active := TRUE;
 EnableFlag := TRUE;

 IF NumberOfElements < 2 OR NumberOfElements > MaxElements THEN
 ErrorID:= NumberOfElementsOutOfRange;
 Error:= TRUE;
 ELSE
 FOR Index:= 1 TO NumberOfElements DO (* delete active buffer *)
 SRARRAY[Index] := 0;
 END_FOR

 ErrorID := 0;
 Error := FALSE;
 PutFlag := FALSE;
 GetFlag := FALSE;
 RightShiftFlag := FALSE;
 LeftShiftFlag := FALSE;
 StartPos := 1;
 END_IF
 ELSIF NOT Enable AND EnableFlag THEN (* Disables FB at neg. edge of Enable *)
 EnableFlag := FALSE;
 Active := FALSE;
 END_IF

 IF Enable AND NOT Error THEN
 IF Put AND NOT PutFlag THEN (* pos.edge at Put *)
 PutFlag := TRUE;

 IF Position < 1 OR Position > NumberOfElements THEN
 ErrorID:= PositionOutOfRange;
 Error := TRUE;
 ELSE
 Index := (StartPos -1 + Position);

 IF Index > NumberOfElements THEN
 Index := Index - NumberOfElements;
 END_IF

 SRARRAY[Index]:= PutValue;
 END_IF

 ELSIF NOT Put AND PutFlag THEN
 PutFlag := FALSE;
 END_IF

 IF Get AND NOT GetFlag THEN (* pos. edge at Get *)
 GetFlag := TRUE;

 IF Position < 1 OR Position > NumberOfElements THEN
 ErrorID := PositionOutOfRange;
 Error := TRUE;
 ELSE
 Index := (StartPos -1 + Position);
 IF Index > NumberOfElements THEN
 Index := Index - NumberOfElements;
 END_IF

 GetValue := SRARRAY[Index];
 END_IF

 ELSIF NOT Get AND GetFlag THEN
 GetFlag := FALSE;
 END_IF

 IF RightShift AND NOT RightShiftFlag THEN (* pos. edge at RightShift *)
 RightShiftFlag := TRUE;
 LastValue := SRARRAY[StartPos]; (* is used in Mode 2 *)
 StartPos := StartPos -1; (* that is the shift right operation *)

 IF StartPos < 1 THEN
 StartPos := NumberOfElements;
 END_IF
 IF ShiftMode = 1 THEN (* 0 --> first element *)
 SRARRAY[StartPos] := 0;
 ELSIF ShiftMode = 2 THEN (* LastValue --> first element *)
 SRARRAY[StartPos] := LastValue;
 END_IF

 ELSIF NOT RightShift AND RightShiftFlag THEN

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 75/ 94

 RightShiftFlag := FALSE;
 END_IF

 IF LeftShift AND NOT LeftShiftFlag THEN (* pos.edge at LeftShift *)
 LeftShiftFlag := TRUE;
 Index := StartPos -1; (* Index for last element *)

 IF Index < 1 THEN
 Index := NumberOfElements;
 END_IF
 LastValue := SRARRAY[Index]; (* is needed in Mode2 *)
 Index := StartPos; (* is needed in Mode1 + 2 *)
 StartPos := StartPos +1; (* that is the shift left operation *)

 IF StartPos > NumberOfElements THEN
 StartPos := 1;
 END_IF
 IF ShiftMode = 1 THEN (* 0 --> last element *)
 SRARRAY[Index] := 0;
 ELSIF ShiftMode = 2 THEN (* LastValue --> first element *)
 SRARRAY[Index] := LastValue;
 END_IF

 ELSIF NOT LeftShift AND LeftShiftFlag THEN
 LeftShiftFlag := FALSE;
 END_IF
 END_IF

END_FUNCTION_BLOCK

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.17. ShiftRegister Logic

FB-Name ShiftRegister
This Function Block handles the management of a shift register in conjunction with a user supplied array that
contains the data to be shifted. It avoids the usage of non-IEC-standard language elements such as pointers.
VAR_INPUT

Execute BOOL Increments shift register position
LowerBound INT Lower index bound of data array
UpperBound INT Upper index bound of data array
Increment INT By how many data fields should shift take place
ActSize INT Actual size of shift register (for partial usage of the data array)

VAR_OUTPUT
Done BOOL Shift Operation was successful
Error BOOL Signals that error has occurred within Function Block
ErrorID WORD Error identification
WriteIndex INT Array index where data should be written
ReadIndex INT Array index where data should be read
Notes:

 ShiftRegister

BOOL Execute InSync BOOL
INT LowerBound Error BOOL
INT UpperBound ErrorID WORD
INT Increment WriteIndex INT
INT ActSize ReadIndex INT

.

LB LB+1 LB+2 UB-2 UB-1 UB

RdIdx WrIdx

.

RdIdxWrIdx

Increment = 1
 Execute

.

RdIdxWrIdx

Increment = 1
 Execute

.

RdIdxWrIdx

Increment = -1
 Execute

Figure 39 - ShiftRegister Execution Sequence

Sample code:

 TYPE
 tMySampleData : STRUCT (* for example: user defined data type for shift register content *)
 rData : REAL;

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 76/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 77/ 94

 bData : BOOL;
 END_STRUCT;
 tMyData : ARRAY[1..10] OF tMySampleData; (* user declares data storage array *)
 END_TYPE

 VAR
 aMyData : tMyData;
 myShiftReg : MC_ShiftRegister;
 readData : tMySampleData; (* data that is read from the shift reg. *)
 writeData : tMySampleData; (* data that is written to the shift reg. *)
 newProduct : BOOL; (* indicates that a new product is to be worked on *)
 init : BOOL; (* indicates the first usage of the shift reg. *)
 END_VAR

 IF init THEN (* initialization *)
 myShiftReg(Execute := FALSE,
 LowerBound := 1,
 UpperBound := 10,
 Increment := 1,
 ActSize := 10);
 END_IF
 IF newProduct THEN
 ...
 aMyData[myShifReg.WriteIndex] := writeData; (* write data to shift reg. *)
 readData := aMyData[myShifReg.ReadIndex]; (* read data from shift reg. *)
 myShiftReg(Execute := TRUE); (* forward shift register *)
 myShiftReg(Execute := FALSE);
 ...
 END_IF

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

2.18. FIFO Function Block
Applications:
Touch Probe capturing with multiple parts between TP-Sensor and process (Cutting, Sealing, Filling).
Every TP performs a Put to the FIFO and every process action (Cut) performs a Get.

FB-Name LREAL_FIFO32
The FB 'MC_LREAL_FIFO32' is a 'first in first out' type ring buffer of the for LREAL values with a depth of max.
32 elements.
VAR_INPUT

Enable BOOL Initializes the FIFO buffer on pos. edge
Put BOOL Writes value into FIFO on positive edge
Get BOOL Reads value from FIFO on positive edge
PutValue LREAL Value for Put

VAR_OUTPUT
Active BOOL FB is enabled
NoOfElementsInFIFO DINT Shows the number of elements in Buffer
GetValue LREAL Value for Get
Error BOOL Signals that error has occurred within Function Block
ErrorID INT Error number

Notes :

 LREAL_FIFO32
BOOL Enable Active BOOL
BOOL Put NoOfElementsInFIFO DINT
BOOL Get GetValue LREAL

LREAL PutValue Error BOOL
 ErrorID WORD

Principal of a FIFO with a depth of 8 elements:

1
2

3

45

6

7

8

GetIndex

PutIndex

FIFO

Figure 40 - Principle of a FIFO

A FIFO is a ring buffer with a pointer to the ‘GetValue’ and ‘PutValue’. As long as ‘NoOfElementsInFIFO’ stays below 32 there
can be arbitrarily performed puts and gets.
At the beginning both pointers point to element one and the ‘NoOfElementsInFIFO’ is zero.
With writing into the FIFO the ‘PutValue’ is written into the first element and the ‘Put’ pointer is incremented by one. The ‘Get’

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 78/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 79/ 94

pointer stays at one and the ‘NoOfElementsInFIFO’ gets incremented by one.

Performing a ‘Get’ will then read the value out of the FIFO into the ‘GetValue’ and incremented the ‘Get’ pointer. The
‘NoOfElementsInFIFO’ gets decremented by one.

Program in ST:

FUNCTION_BLOCK LREAL_FIFO32

 (* Function: The FB is a first in first out (FIFO) type Buffer for
 LREAL Values with the size of 32 Elements. *)

 (* Variable declaration*)
 VAR_INPUT
 Enable : BOOL; (* Inits the FIFO buffer on pos. edge *)
 Put : BOOL; (* Writes value into FIFO on positive edge *)
 Get : BOOL; (* Reads value into FIFO on positive edge *)
 PutValue : LREAL; (* Value for Put *)
 END_VAR

 VAR_OUTPUT
 Active: BOOL; (* Goes high with Enable *)
 NoOfElementsInFIFO: DINT; (* Shows the number of elements in Buffer *)
 GetValue: LREAL; (* Value for Get *)
 Error: BOOL; (* is set at Error in FB *)
 ErrorID: DINT; (* -1 = FIFO empty, -2 = FIFO full *)
 END_VAR

 VAR CONSTANT
 MaxElements: DINT:= 32;
 FIFO_Empty: DINT:= -1;
 FIFO_Full: DINT:= -2;
 END_VAR

 VAR (* local variables *)
 FIFOARRAY: ARRAY[1..MaxElements] OF LREAL;
 EnableFlag: BOOL;
 GetFlag: BOOL;
 PutFlag: BOOL;
 GetIndex: DINT;
 PutIndex: DINT;
 END_VAR

 (* Code Sequence*)

 IF Enable AND NOT EnableFlag THEN (* Initialisation at pos.edge of Enable *)
 EnableFlag := TRUE;
 Active := TRUE;
 ErrorID := 0;
 Error := FALSE;
 GetIndex := 1;
 PutIndex := 1;
 NoOfElementsInFIFO := 0;
 PutFlag := FALSE;
 GetFlag := FALSE;

 ELSIF NOT Enable AND EnableFlag THEN (* Disable FB at neg.edge of Enable *)
 EnableFlag := FALSE;
 Active := FALSE;
 END_IF

 IF Enable AND NOT Error THEN
 IF Put AND NOT PutFlag THEN (* pos.edge at Put *)
 PutFlag := TRUE;

 IF NoOfElementsInFIFO >= MaxElements THEN
 ErrorID := FIFO_Full;
 Error := TRUE;
 ELSE
 NoOfElementsInFIFO := NoOfElementsInFIFO + 1;
 FIFOARRAY[PutIndex] := PutValue;
 PutIndex := PutIndex + 1;
 IF PutIndex > MaxElements THEN
 PutIndex := 1;
 END_IF
 END_IF

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 80/ 94

 ELSIF NOT Put AND PutFlag THEN (* neg.edge at Put *)
 PutFlag := FALSE;
 END_IF

 IF Get AND NOT GetFlag THEN (* pos.Edge of Get *)
 GetFlag := TRUE;

 IF NoOfElementsInFIFO < 1 THEN
 ErrorID := FIFO_Empty;
 Error := TRUE;
 ELSE
 NoOfElementsInFIFO := NoOfElementsInFIFO - 1;
 GetValue := FIFOARRAY[GetIndex];
 GetIndex := GetIndex + 1;

 IF GetIndex > MaxElements THEN
 GetIndex := 1;
 END_IF
 END_IF

 ELSIF NOT Get AND GetFlag THEN (* neg.edge at Get *)
 GetFlag := FALSE;
 END_IF
 END_IF

END_FUNCTION_BLOCK

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

3. PLCopen Solutions for OMAC PackAL
The OMAC Packaging Workgroup has defined a PackAL specification as an Application Layer for Packaging. Within this
specification, a number of Function Blocks have been defined at a higher level, like technology functions, specifically aimed at
packaging machines. For more details on this set, refer to www.omac.org . If referred to PackAL in this specification, we refer to
Version 1.01 of March 29, 2005.
One can represent the different levels in a diagram. The top layer is here represented by the OMAC PackML state diagram.
However at this level other state diagrams can be implemented also.

Application
Program

PLCopen
Motion FBs MC_CamInMC_Power

MC_MoveAbsolute

Generic
UDFB Class

AxisManagement 3SegmentCam

…

MasterEngine NSegmentCam

Application
UDFB Class /
OMAC PackAL

…

FillingCutting Sealing
…Capping

OMAC PackML State Diagram / OEE

… UDFB instances calls …

Figure 41 - Overview different levels of mapping OMAC

This specification shows how some of these functionalities can be created from the set of Function Blocks as defined by
PLCopen for Motion Control as well as by the IEC 61131-3 standard concerning the basic functionalities, here represented at the
lowest level. With these basic functionalities one can create generic User Derived Function Blocks, UDFBs, like MasterEngine,
for which one encapsulates the lower level functionalities. The next higher level contains functionalities closer to the application
level, like cutting and sealing. Based on these functionalities it becomes quite straightforward to implement the application
program itself. As such, the coupling to a state diagram like PackML helps to structure the software development process, while
providing a harmonized look-and-feel of the machines application.

PackAL has defined 3 sets of functionalities: Package Process Functions, Machine Communications, and Machine Behavior
Organization. In this specification we only deal with the ‘Packaging Process Functions’. They consist of:

• Wind / Unwind Axis (constant surface velocity)
• Wind / Unwind Axis (constant torque, ct mode)
• Dancer Control

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 81/ 94

http://www.omac.org/

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

• Registration
• Registration Correction
• Indexing
• Batch Counter
• Digital PLS (Digital CAM Switch)
• Set Override
• Jog Axis
• Flying Sync
• Gear_In with Dynamic Gear Factor
• Motion Command Stop with oriented halt

Some of these functionalities can be directly coupled to PLCopen Motion Control Function Blocks. However, some other
functions need additional programming, or alternatives are possible especially concerning different inputs or feedback. For this
reason we elaborated on the following functionalities:

• Wind / Unwind Axis with constant surface velocity and with constant torque, ct mode
• Dancer Control

‘Enable’ versus ‘Execute’
The name ‘Enable’ refers to a level-sensitive input signal, whereas the name ‘Execute’ refers to an edge-trigger input signal.
The PackAL specification uses ‘Enable’ for all defined functions, creating a more continuous approach in the activation of the
Function Blocks. The classical PLCopen approach is a more discrete version, where the inputs are maintained for a longer time
till a new set of inputs are ready and the Function Block is re-triggered.
However, from Version 2.0 of Part 1, in par. 2.4.6 the input ‘ContinuousUpdate’ is defined. It is an extended input to all
applicable Function Blocks.
If it is TRUE when the Function Block is triggered (rising ‘Execute’), it will - as long as it stays TRUE – make the Function
Block use the current values of the input variables and apply it to the ongoing movement. This does not influence the general
behavior of the Function Block nor does it impact the state diagram. In other words it only influences the ongoing movement and
its impact ends as soon as the Function Block is no longer ‘Busy’ or the input ‘ContinuousUpdate’ is set to FALSE. (Remark: it
can be that certain inputs like ‘BufferMode’ are not really intended to change every cycle. However, this has to be dealt with in
the application, and is not forbidden in the specification.)
If ‘ContinuousUpdate’ is FALSE with the rising edge of the ‘Execute’ input, a change in the input parameters is ignored during
the whole movement and the original behavior of previous versions is applicable.
The ‘ContinuousUpdate’ is not a retriggering of the ‘Execute’ input of the Function Block. A retriggering of a Function Block
which was previously aborted, stopped, or completed, would regain control on the axis and also modify its state diagram.
Opposite to this, the ‘ContinuousUpdate’ only effects an ongoing movement.
Also, a ‘ContinuousUpdate’ of relative inputs (e.g. ‘Distance’ in MC_MoveRelative) always refers to the initial condition (at
rising edge of ‘Execute’). Example:
• MC_MoveRelative is started at ‘Position’ 0 with ‘Distance’ 100, ‘Velocity’ 10 and ‘ContinuousUpdate’ set TRUE.

‘Execute’ is Set and so the movement is started to position 100
• While the movement is executed (let the drive be at position 50), the input ‘Distance’ is changed to 130, ‘Velocity’ 20.
• The axis will accelerate (to the new ‘Velocity’ 20) and stop at ‘Position’ 130 and set the output ‘Done’ and does not

accept any new values.

An alternative possibility for FBs that do not support the input ‘ContinuousUpdate’ is to create this input to match the ‘Execute’
behavior. Basically there are two ways of converting the continuous approach of the ‘Enable’ / ‘InCommand’ to the discrete
‘Execute’ / ‘Done’ approach:

1. 2Cycle approach: Set the ‘Execute’ in the first cycle, and ‘Reset’ in the next cycle automatically. This can be done with
a simple exclusive OR (XOR) function which also checks the errors. The drawback is that it needs two cycles to set new
values. However, the program to be used is very small.

Figure 42 - Program example for 2Cycle approach

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 82/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 83/ 94

2. 1Cycle approach: Call the same instance of the relevant Function Block twice in the same cycle; one with ‘Execute’

SET and the other with RESET. The advantage is that every cycle the values are updated. The drawback is however that
the program gets less self-explanatory, and the programmer has to program more in order to deal with the possible
errors.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

3.1. Wind / Unwind – General introduction
The OMAC Packaging Workgroup PackAL specification has defined two ‘Wind’ / ‘Unwind’ functionalities. However there are
more solutions. This section deals with understanding of the winding / unwinding function. Following chapters will go more in
detail of the mapping to the PackAL functions.

Winding with torque feedback can be done in several ways. A simple solution does not have any additional measuring inputs.
Without measuring, the motor torque is used. This limits the torque range and accuracy due to the diameter transformation and
variable losses

r
torquetension=

Figure 43 - Overview Winding / Unwinding

Another option could use the feedback from a load cell. A load cell is fast and accurate but expensive.

LOAD CELL

Yet another solution could be with a dancer control.

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 84/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

M

M
DANCER

The dancer control could be simpler than the one described in the previous example.

Figure 44 - Examples Dancer Control mechanics

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 85/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 86/ 94

3.2. OMAC PackAL Dancer Control
The OMAC Packaging Workgroup has defined a PackAL specification. In this specification a ‘Dancer Control’ functionality has
been defined. This section maps this functionality on the existing PLCopen and IEC 61131-3 FBs.

Description from the OMAC packaging Workgroup:
FB-Name PS_Dancer_Control
This Function Block commands a controlled motion of an axis as slave of a dancer-coupled master axis. The Master
axis is a physical or virtual axis. This FB provides the coupling between a slave axis (typically the infeed to the
dancer) and a master axis (the outfeed of the dancer) via a dancer-PID controlled variable gearing factor.
VAR_IN_OUT

B Master AXIS_REF
B Slave AXIS_REF

VAR_INPUT
B Enable BOOL Start at high level, stop at low level
B Tension_input REAL Input signal for tension of the Web, usually represented by the

relative actual dancer position sensor
B Dancer_CTL DANCER_REF Structure with Dancer Controller Parameters

VAR_OUTPUT
B Busy BOOL Executing status
B Error BOOL Signals that an error has occurred within Function Block
E ErrorID WORD Error identification

Notes:
• The FB’s purpose is to generate and re-adjust a constant surface velocity (peripheral speed), relative to the

master axis, for the rotary calibrated and controlled slave axis, depending on a dancer position. Via a position
signal (dancer position signal), the tension between master (web) and slave (e.g. spool) is represented. For
general use, the raw dancer position is often aligned to a “balance position” by an offset (and optional
multiplier) in a first dancer scaling algorithm. The PID calculates the control value depending on the difference
to a scaled command dancer position. This PID control value output then tunes the gear ratio between the master
(web) and the slave (e.g. spool). A multiplier limits the distortion of the gear, offset adjusts to gear setpoint.
Scaling algorithm, dancer balance position, PID factors, gear factor, delta and offset to the gear are application
specific.

• Other possible implementations for Dancer Control, especially those with simpler two-switch control compared
to PID control, may be represented by additional Function Blocks defined in the future.

• Tension_input is scanned in every cycle of the Function Block execution, other inputs in first cycle only.

 PS_Dancer_Control
AXIS_REF Master Master AXIS_REF
AXIS_REF Slave Slave AXIS_REF

BOOL Enable Busy BOOL
DINT Tension_input Error BOOL

DANCER_REF Dancer_CTL ErrorID WORD

Elements within the array structure of Structure Dancer_CTL: DANCER_REF:

B/E Parameter Type Description
B Tension_ctl DINT Target value for web tension, typically the target position for

the dancer in balanced condition
B GearRatio REAL Ratio of gear factor g(t) between master (web) and Slave

(spool) to balance the dancer. Default is 1.0.
B deltaGear REAL Delta scaling multiplier of PID output (-1.0 … +1.0) to

GearRatio – must be smaller than 1 but never 0. deltagear
would be e.g. 0.8 or 0.9 to limit the gear distortion

B Gearoffset REAL Scaling offset to fit GearRatio distortion by satisfying
equation g(t) = deltaGear* PIDout + Gearoffset

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

B fKp REAL PID Control Proportional gain (P)
B fTn REAL PID Control Integral gain Tn (I) [s]
B fTv REAL PID Control Derivative gain Tv (D-T1) [s]
B fTd REAL PID Control Derivative damping time Td (D-T1) [s]
B Accel_limit REAL Corresponds indirectly, i.e. relative to a maximum master

velocity, to a maximum permitted acceleration (pa = aSlaveMax /
v MasterMax).
The limit parameter pa corresponds to the reciprocal value of
the run-up time tH = 1 / pa

t

In
Velocity

Enable

Dancer
Control

0

0

1

1

t

t

t

Slave
Velocity
(ideal)

Master
Velocity

0

0

Busy

0

1

t

tDancer
Position 0

Figure 45 - PS_Dancer_Control timing diagram

PID
Control

-

Slave
Axis

+
Scaling

Algorithm

Actual
Dancer
Position

Scaled
Dancer
Position

Function Block
PS_Dancer_control Master

Axis

g (t)Δg Dancer

PIDout =
-1.0 .. +1.0

(Δg * PIDout)
+ Gearoffset

Target
Dancer
Position

Figure 46 - PS_Dancer_Control Structure

This description can be met in the following way (with a 1Cycle solution):

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 87/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Figure 47 - Programming example in FBD

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 88/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

TYPE
 DANCER_REF : STRUCT
 TensionCtl : DINT; (* Dancer target position *)
 GearRatio : REAL; (* manipulated gear ratio betwen master and slave *)
 DeltaGear : REAL; (* scaling multiplier of PID output *)
 GearOffset : REAL; (* scaling offset for GearRatio *)
 fKP : REAL; (* PID proportional constant *)
 fTn : REAL; (* PID integral constant *)
 fTv : REAL; (* PID derivative time constant *)
 fTd : REAL; (* PID derivative damping time *)
 fdT : TIME; (* PID cycle time *)
 AccelLimit : REAL; (* maximum slave acceleration relative to master velocity *)
 (* Configuration for Dancer Scaling Algorithm: *)
 DancerGain : REAL; (* scaling multiplier of dancer actual value *)
 DancerOffset : REAL; (* scaling offset of dancer actual value *)
 END_STRUCT
END_TYPE

(* enum *)
TYPE
 PS_Dancer_Control_State :
 (IDLE,
 GEAR,
 GEAROUT,
 FINISH);
END_TYPE

Alternatively, the Structured Text, ST, program could look like this (same data types and enums as above are used):

FUNCTION_BLOCK PS_Dancer_Control
 VAR_IN_OUT
 Master : AXIS_REF;
 Slave : AXIS_REF;
 END_VAR

 VAR_INPUT
 Enable : BOOL;
 Tension_input : REAL;
 Dancer_CTL : DANCER_REF;
 END_VAR

 VAR_OUTPUT
 Busy : BOOL;
 Error : BOOL;
 ErrorID : WORD;
 END_VAR

 VAR
 GearIn : MC_GearIn;
 GearOut : MC_GearOut;
 RealToFraction : REAL_TO_FRACTION;
 PidDancer : PID;
 PidOut : REAL;
 State : PS_Dancer_Control_State;
 END_VAR

 (* Begin PS_Dancer_Control *)
 (* Switch state machine: If Enable is TRUE, then start/continue gearing (state GEAR).
 If Enable is FALSE, then exit gearing (state GEAROUT), then wait until gear is off (state FINISH)
 and wait for Enable again (state IDLE). *)

 IF ENABLE THEN
 State := GEAR;
 ELSIF State = GEAR THEN
 State := GEAROUT;
 END_IF

 (* Execute state machine: *)
 CASE State OF
 (*--*)
 IDLE:
 GearIn(Execute := FALSE,
 Master := Master,
 Slave := Slave); (* prepare Execute for rising egde *)

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 89/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 90/ 94

 GearOut(Execute := FALSE,
 Slave := Slave); (* prepare Execute for rising egde *)

 (*--*)
 GEAR:
 (*Start and continue gearing, manipulate the gear ratio against dancer position.*)
 PidDancer(AUTO := TRUE,
 PV := Tension_input * Dancer_CTL.DancerGain + Dancer_CTL.DancerOffset,
 SP := Dancer_CTL.TensionCtl,
 (* XO := , not used *)
 KP := Dancer_CTL.fKP,
 TR := Dancer_CTL.fTn,
 TD := Dancer_CTL.fTd,
 CYCLE := Dancer_CTL.fdT);

 PidOut := PidDancer.XOUT;

 RealToFraction(rReal := Dancer_CTL.DeltaGear * PidOut + Dancer_CTL.GearOffset);

 GearIn(Execute := TRUE,
 RatioNumerator := RealToFraction.iNumerator,
 RatioDenominator := RealToFraction.uiDenominator,
 Master := Master,
 Slave := Slave);

 Busy := GearIn.Busy;
 Error := GearIn.Error;
 ErrorID := GearIn.ErrorID;

 (*--*)
 GEAROUT:
 (* Perform gear out (Enable became FALSE when Slave was in gear) *)
 GearOut(Execute := TRUE,
 Slave := Slave,

 Busy := GearOut.Busy;
 Error := GearOut.Error;
 ErrorID := GearOut.ErrorID;
 State := FINISH;

 (*--*)
 FINISH:
 (* Wait for GearOut.Busy = FALSE, then switch to IDLE state. *)
 GearOut(Execute := FALSE,
 Slave:= Slave,
 Busy := GearOut.Busy;
 Error := GearOut.Error;
 ErrorID := GearOut.ErrorID;

 IF GearOut.Busy = FALSE THEN
 State := IDLE;
 END_IF

 (*--*)
 END_CASE;

END_FUNCTION_BLOCK

Notes:
• A FB is needed for the conversion of Real to Fraction (Numerator/Denominator) as input for MC_GearIn.
• Two parameters are needed to configure the Dancer Scaling Algorithm (see last 2 parameters in DANCER_REF)

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013
Part 3 - User Guidelines – V 2.0 February 21, 2013 page 91/ 94

3.3. PackAL Wind / Unwind Axis (constant surface velocity, csv mode)
Definition in PackAL:

FB-Name PS_Wind_csv
This Function Block commands a controlled motion at a specified circumflex velocity for a wind / unwind axis. The
circumflex is calculated from the radius of a wind/unwind spool, measured with a sensor.
VAR_IN_OUT

B Axis AXIS_REF
VAR_INPUT

B Enable BOOL Start the motion at high level, stop at low level
B Velocity REAL Value of the maximum Surface velocity [u/s]
B SpoolRadius REAL Value of the radius of the spool [u]
B Min_S_Radius REAL Value of the Minimal Spool Radius, initial value [u]
B Max_S_Radius REAL Value of the Maximal Spool Radius, initial value [u]
E Direction PS_Direction Enum type (pos, neg)
E Acceleration REAL Value of the acceleration (increasing energy of the motor) [u/s2]
E Deceleration REAL Value of the deceleration (decreasing energy of the motor) [u/s2]
E Jerk REAL Value of the Jerk [u/s3]

VAR_OUTPUT
B Busy BOOL Executing status
B InVelocity BOOL command circumflex velocity phase active
B Error BOOL Signals that error has occurred within Function Block
B ErrorID WORD Error Number

Note: This FB contains the mathematical calculation for coupling between a rotary slave axis and a translatory
master axis. Its purpose is to generate and re-adjust a constant surface velocity (peripheral speed), relative to the
master axis, for the rotary calibrated and controlled slave axis, depending on its spool diameter. Via a signal
proportional to the spool radius, the spool radius of this slave axis is automatically evaluated and used for the
calculation. This radius must never have the value 0.0 mm, since otherwise a calculation is no longer possible.
• The FB decelerates the axis to stop while winding above the ‘Max_S_Radius’
• The FB decelerates the axis to stop while unwinding below the ‘Min_S_Radius’
• ‘SpoolRadius’ needs to satisfy ‘Min_S_Radius’ < ‘SpoolRadius’ < ‘Max_S_Radius’ to execute the action,

otherwise ‘Error’ = True, ‘ErrorID’ set
• Error ID is implementation specific

 PS_Wind_csv
AXIS_REF Axis Axis AXIS_REF

BOOL Enable Busy BOOL
REAL Velocity InVelocity BOOL
REAL SpoolRadius Error BOOL

PS_Direction Direction ErrorID WORD
REAL Min_S_Radius
REAL Max_S_Radius
REAL Acceleration
REAL Deceleration
REAL Jerk

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

t

In
Velocity

Enable

PS_Wind_csv

0

0

1

1
t

t

t
Spool

Radius

Surface
Velocity

0

0

t

Rotation
Velocity

0

Busy
0

1

t

Target
velocity

Figure 48 - Timing Diagram PS_wind_csv

End of definition PackAL

A simple implementation could be as follows for a 2Cycle approach (note: the conversion as shown in the previous chapter is not
shown here completely).

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 92/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Figure 49 - Programming example Winding part 1

NOTES:
- As the spool radius is changing the units of MC_MoveVelocity are defined in rev/sec.
- Other possibility is injecting the ‘SpoolRadius’ into the axis scaling parameters, but this is more vendor specific operation.

Explanation:
The ‘SpoolRadius’ times 2 pi defines the relationship towards the ‘Velocity’, the ‘Acceleration’, ‘Deceleration’, and ‘Jerk’ (all
surface related). These are issued as inputs for the MC_MoveVelocity Function Block.
There is a check included if the ‘SpoolRadius’ is between the ‘Max_S_Radius’ and ‘Min_S_Radius’. If outside this range, it
stops the winder while setting the ‘Error’ output. The combination of the two ‘ErrorIDs’ only works if there is only one ‘Error’ at
a time, i.c. one ‘ErrorID’ valid.

PackAL Wind / Unwind Axis (constant tension, ct mode)

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 93/ 94

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control Working Document © PLCopen –2002 - 2013

Tension (force N)

Direction

Min_S_Radius (u)

Max_S_Radius (u)

Acceleration
(surface u/s2)

Deceleration
(surface u/s2)

Jerk
(surface u/s3)

MUL
x

Move Winder

MC_TorqueControl

Axis Axis

Execute

Torque (Nm)

Acceleration (rev/s2)

Jerk (rev/s3)

Deceleration (rev/s2)

Velocity

InTorque

Error

Active
Command

Aborted

ErrorID

Busy

OR
>=1

Enable

Stop Winder

MC_Halt

Axis Axis

Execute

Deceleration

Jerk

BufferMode

Done

Error

Active
Command

Aborted

ErrorID

Busy

DIV
/

DIV
/

DIV
/

OR
>=1

GT
>

LT
<

AxisRef

OR
>=1

PS_Wind_ct

TorqueRamp (Nm)

MUL
x

DIV
/

SpoolRadius (u)

In Torque
(Tension also)
Busy

Error

Velocity
(surface u/s)

2

Direction
BufferMode

MUL
x1.05

Speed overhead

MAX
IN0

IN1

O

IN2

Spool_ErrID

SEL
G

IN0

O

IN1
0

ErrorID

Speed limit

ContinuousUpdateTRUE

NOT

Figure 50 - Programming example Winding part 2

NOTES :
- The example assumes Tension (force) reference for the Function Block
- As the spool radius is changing the units of MC_MoveVelocity are defined in rev/sec.
- Other possibility is injecting the ‘SpoolRadius’ into the axis scaling parameters, but this is more vendor specific.
- Overspeed factor is needed in Speed limit calculation from ‘SpoolRadius’

Part 3 - User Guidelines – V 2.0 February 21, 2013 page 94/ 94

	Front cover
	Change Status List
	Table of Content
	Table of Figures
	1. General
	1.1. Objectives
	1.2. User Derived Function Blocks
	1.3. Graphical versus textual representation
	1.4. History

	2. Application of MC FB
	2.1. Getting started
	2.2. Label machine
	2.2.1. Application description
	2.2.2. Programming example
	2.2.3. Possible Improvements

	2.3. Warehousing example
	2.3.1. Application description
	2.3.2. First programming example (using Part 1)
	2.3.3. Timing diagram
	2.3.4. Second programming example (using Part 4)
	2.3.5. Timing diagram

	2.4. Jogging
	2.4.1. Short Explanation

	2.5. Inching
	2.6. Jog to Position
	2.6.1. Application Example using Jog_To_Positon

	2.7. Axes Interlock
	2.7.1. Application Example using Axes Interlock.

	2.8. Master Engine
	2.8.1. Program example for the use of MC_MasterEngine
	2.8.2. The inside of the Function Block MC_MasterEngine

	2.9. Explanation of Camming in combination with MC_MasterEngine
	2.9.1. The Basic Use of MC_CamTableSelect
	2.9.2. The Extended Use of MC_CamTableSelect

	2.10. Using three segments CAM profile
	2.10.1. General User-Derived Function Block (UDFB) – Three-segment Cam profile

	2.11. Cut to length example
	2.11.1. Specialized User-Derived Function Block (UDFB) – Cutting axis Cam profile

	2.12. Registration function using MC_TouchProbe and MC_Phasing
	2.12.1. Introduction into web handling and registration
	2.12.2. Registration functionality
	2.12.3. Example of registration
	2.12.4. Example 2 of registration

	2.13. Capping application
	2.14. MC_FlyingShear
	2.15. Synchronized Motion with SFC
	2.16. Shift Register as User Derived Function Block
	2.17. ShiftRegister Logic
	2.18. FIFO Function Block

	3. PLCopen Solutions for OMAC PackAL
	3.1. Wind / Unwind – General introduction
	3.2. OMAC PackAL Dancer Control
	3.3. PackAL Wind / Unwind Axis (constant surface velocity, csv mode)

