
PLCopen
for efficiency in automation

 Total number of pages: 119

Technical Paper

PLCopen Technical Committee 2 – Task Force

Function Blocks for motion control:
Part 4 –Coordinated Motion

PLCopen Document
Version 1.0, Published

DISCLAIMER OF WARANTIES

THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS AND MAY BE SUBJECT TO FUTURE ADDITIONS,
MODIFICATIONS, OR CORRECTIONS. PLCOPEN HEREBY DISCLAIMS ALL WARRANTIES OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, FOR THIS DOCUMENT. IN NO EVENT WILL PLCOPEN BE RESPONSIBLE FOR
ANY LOSS OR DAMAGE ARISING OUT OR RESULTING FROM ANY DEFECT, ERROR OR OMISSION IN
THIS DOCUMENT OR FROM ANYONE’S USE OF OR RELIANCE ON THIS DOCUMENT.

Copyright © 2002 - 2008 by PLCopen. All rights reserved.

Date: December 3, 2008

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 2/ 119

Function blocks for motion control

The following paper is a document under construction within the PLCopen Task Force Motion Control. As such it is an
addition to the PLCopen Task Force Motion Control, Technical Document Version 1.0.
It summarizes the results of the PLCopen Task Force Motion Control, containing contributions of all its members.

The present specification was written thanks to the following members of the Task Force:

Hilmar Panzer 3S – Smart Software Solutions
Christian Müller ABB
Klaus Bernzen Beckhoff
Josef Papenfort Beckhoff
Wilfried Plaß Beckhoff
Wolfgang Czech Bosch Rexroth
Friedrich Forthuber B & R
Martin Schrott B & R
Ed Baker Control Techniques
Roland Schaumburg Danfoss
Ryszard Bochniak Eckelmann
Djafar Hadiouche GE Fanuc
Jürgen Hipp ISG
Joachim Mayer ISG
Harald Buchgeher Keba
Joachim Strobel Kuka Robotics
Candido Ferrio Omron
Josep Lario Omron
Yoshikazu Tachibana Omron
Christian Ruf Parker Hannifin
Klas Hellmann Phoenix Contact
Markus Müller SEW Eurodrive
Willi Gagsteiger Siemens Automation & Drives
Hans Peter Otto Siemens Automation & Drives
Jürgen Fieß Schneider Electric Motion Deutschland (formerly Berger Lahr)
Wolfgang Fien Schneider Electric Motion Deutschland (formerly Berger Lahr)
Istvan Ulvros TetraPak
Eelco van der Wal PLCopen

Change Status List:
Version
number

Date Change comment

V 0.1 April 27, 2005 Initial version as generated by EvdW
V 0.2 May 3, 2005 As result of meeting with Klas Hellmann, Joachim Mayer and EvdWal
V 0.3 May 20, 2005 As send to group. Includes feedback KH, JM and EvdWal
V 0.4 July 14, 2005 As result of kick off meeting at Siemens
V 0.5 Sept. 9, 2005 As result of the meeting near Amsterdam
V 0.6 Dec 14, 2005 As result of the meeting at Kuka. Not released.
V 0.6a Dec 21, 2005 New order in FBs. Pictures added in Ch. 2. Homework ISG on transformation

FBs added
V 0.7 March 13, 2006 As result of the Meeting at Salzburg, and items of workgroups 1 & 3
V 0.8 May 10 & 11, 2006 As result of the meeting in Sitges, Spain
V 0.9 July 5 & 6, 2006 As a result of the meeting at Control Techniques. All changes accepted from V

0.8
V 0.91 September 20, 2006 As result of the meeting in Hamburg

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 3/ 119

V 0.92 November 22, 2006 As result of the meeting at SEW Eurodrive, Bruchsal, Germany
V 0.93 March 07, 2007 As result of the meeting at 3S, Kempten, Germany and editing by EvdW
V 0.94 May 16, 2007 As result of the meeting at Eckelmann, Wiesbaden, Germany
V 0.95 July 10, 2007 As result of the meeting at Berger Lahr, Germany
V 0.96 Sept. 21, 2007 As result of the meeting at Keba, Linz, Austria
V 0.97 Nov. 23, 2007 As result of the meeting at Phoenix Contact, Germany
V 0.98 February 1, 2008 As result of the meeting at GE Fanuc, Luxembourg and homework done
V 0.99 April 17, 2008 As result of the meeting at Danfoss, Germany. Basis for ‘Release for comments’
V 0.99A November 6, 2008 Basis for version 1.0. Result of meeting Frankfurt a Main.
V 0.99B November 20, 2008 Version with editorial feedback from group on Version 0.99A
V 1.0 December 3, 2008 Official release

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 4/ 119

Table of Contents

1 GENERAL ..8
1.1 OBJECTIVES...8
1.2 INTRODUCTION..8
1.3 OVERVIEW OF THE DEFINED FUNCTION BLOCKS..9

1.3.1 Length of FB names and ways to shorten them ..9
1.4 GLOSSARY...11
2 PRINCIPLES OF COORDINATED MOTION ..13
2.1 COORDINATE SYSTEM AND KINEMATIC TRANSFORMATION ...13

2.1.1 Kinematic Transformation..14
2.2 HOW DO COMMANDS BEHAVE IN DYNAMIC COORDINATE SYSTEMS ...15
2.3 MOVEMENTS ...16
2.4 BLENDING AND BUFFERING OF MOVEMENTS...17

2.4.1 General Information ...17
2.4.2 Overview of Buffer Modes ..17
2.4.3 Overview of Transition Modes..18
2.4.4 Matrix of available transition modes..18

3 MODEL ...19
3.1 STATE DIAGRAM..19
3.2 RELATIONSHIP SINGLE AXIS AND GROUPED AXES STATE DIAGRAMS...20
3.3 INPUT EXECUTION MODE ..21
4 AXES GROUPING...22
4.1 CREATING AND USING AN AXESGROUP ...23
5 FUNCTION BLOCKS FOR COORDINATED MOTION...25
5.1 MC_ADDAXISTOGROUP ..25
5.2 MC_REMOVEAXISFROMGROUP ...26
5.3 MC_UNGROUPALLAXES ..27
5.4 MC_GROUPREADCONFIGURATION...28
5.5 MC_GROUPENABLE..30
5.6 MC_GROUPDISABLE...31
5.7 MC_GROUPHOME...32
5.8 TRANSFORMATION FBS ...33

5.8.1 MC_SetKinTransform (ACS to MCS) ...33
5.8.2 MC_SetCartesianTransform (MCS to PCS) ...35
5.8.3 MC_SetCoordinateTransform (MCS to PCS)...37
5.8.4 MC_ReadKinTransform (ACS to MCS)..38
5.8.5 MC_ReadCartesianTransform (MCS to PCS)..39
5.8.6 MC_ReadCoordinateTransform (MCS to PCS) ...40

5.9 MC_GROUPSETPOSITION..41
5.10 MC_GROUPREADACTUALPOSITION ...42
5.11 MC_GROUPREADACTUALVELOCITY..43
5.12 MC_GROUPREADACTUALACCELERATION ...44
5.13 MC_GROUPSTOP ..45
5.14 MC_GROUPHALT..49
5.15 MC_GROUPINTERRUPT...51
5.16 MC_GROUPCONTINUE..52
5.17 MC_GROUPREADSTATUS ...53
5.18 MC_GROUPREADERROR ..54
5.19 MC_GROUPRESET ..55
5.20 MC_MOVELINEARABSOLUTE...56
5.21 MC_MOVELINEARRELATIVE..59
5.22 MC_MOVECIRCULARABSOLUTE ..64

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 5/ 119

5.23 MC_MOVECIRCULARRELATIVE ...69
5.24 MC_MOVEDIRECTABSOLUTE...72
5.25 MC_MOVEDIRECTRELATIVE..73
5.26 MC_PATHSELECT ...75
5.27 MC_MOVEPATH ...76
5.28 MC_GROUPSETOVERRIDE..77
6 AXES GROUP SYNCHRONIZED MOTION...79
6.1 SYNCHRONIZATION ...80

6.1.1 Synchronization of single axis to an axes group...80
6.1.2 Synchronization of an axes group to a single axis..81

6.2 TRACKING ...83
6.3 MC_SYNCAXISTOGROUP ...85
6.4 MC_SYNCGROUPTOAXIS ...86
6.5 MC_SETDYNCOORDTRANSFORM...88
6.6 MC_TRACKCONVEYORBELT ..89
6.7 MC_TRACKROTARYTABLE ..92
7 DETAILS OF BLENDING AND BUFFERING OF MOVEMENTS..94
7.1 TERMINOLOGICAL DEFINITIONS...94
7.2 INPUT PARAMETER FOR BLENDING...95
7.3 BUFFER MODES ...96

7.3.1 BufferMode “Aborting”..96
7.3.2 BufferMode “Buffered” ..96
7.3.3 BufferMode “Blending” ...96

7.4 TRANSITIONMODE...98
7.4.1 TransitionMode “TMNone” (insert no transition curve) ...98
7.4.2 TransitionMode “TMStartVelocity” (Transition with given maximum velocity) ...98
7.4.3 TransitionMode “TMConstantVelocity”(Transition with given constant velocity)......................................99
7.4.4 TransitionMode “TMCornerDistance” (Transition with given corner distance)100
7.4.5 TransitionMode “TMMaxCornerDeviation” (Transition with given maximum corner deviation)............100

APPENDIX 1. COMPLIANCE PROCEDURE AND COMPLIANCE LIST...101
APPENDIX 1.1. STATEMENT OF SUPPLIER ..102
APPENDIX 1.2. SUPPORTED DATA TYPES ...103
APPENDIX 1.3. SUPPORTED BUFFER MODES..103
APPENDIX 1.4. SUPPORTED TRANSITION MODES...103
APPENDIX 1.5. SHORT OVERVIEW OF THE FUNCTION BLOCKS...104
APPENDIX 1.6. THE PLCOPEN MOTION CONTROL LOGO AND ITS USAGE ...119

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 6/ 119

Table of Figures

Figure 1. RELATIONSHIPS BETWEEN THE DIFFERENT PARTS OF THE PLCOPEN MOTION CONTROL.........................8
Figure 2. OVERVIEW OF THE COORDINATE SYSTEMS AND TRANSFORMATIONS ..13
Figure 3. EXAMPLE FOR SPECIFYING POINT P IN PCS, MCS OR ACS ...14
Figure 4. EXAMPLE FOR REACHING THE SAME POSITION IN SPACE ...14
Figure 5. DIFFERENT TYPES OF MOVEMENTS..16
Figure 6. TRAJECTORIES AND PROCESS OF VELOCITY IN PRINCIPLE OF TWO CONSECUTIVE MOTION COMMANDS IN

THREE MODES..17
Figure 7. THE STATE DIAGRAM ...19
Figure 8. RELATIONSHIP SINGLE AXIS AND GROUPED AXES STATE DIAGRAMS ..20
Figure 9. OVERVIEW AXESGROUP ...22
Figure 10. TYPICAL TIMING DIAGRAM FOR SETTING THE TRANSFORMATION..34
Figure 11. MC_GROUPSTOP TIMING DIAGRAM..46
Figure 12. BEHAVIOR OF MC_GROUPSTOP IN COMBINATION WITH MC_MOVELINEARRELATIVE........................46
Figure 13. EXAMPLE OF MC_GROUPSTOP IN COMBINATION WITH TWO MC_MOVELINEARABSOLUTE48
Figure 14. BEHAVIOR OF MC_GROUPHALT IN COMBINATION WITH MC_MOVECIRCULARABSOLUTE50
Figure 15. EXAMPLE MC_MOVELINEARABSOLUTE..57
Figure 16. EXAMPLE MC_MOVELINEARRELATIVE ...60
Figure 17. SECOND EXAMPLE WITH MC_MOVELINEARRELATIVE AND BLENDING ...62
Figure 18. EXAMPLE MC_MOVECIRCULARABSOLUTE ...67
Figure 19. EXAMPLE MC_MOVEDIRECTRELATIVE ...74
Figure 20. GRAPHICAL EXPLANATION OF MC_GROUPSETOVERRIDE..78
Figure 21. GRAPHICAL EXPLANATION OF COORDINATION..79
Figure 22. EXAMPLE MC_SYNCGROUPTOAXIS ..87
Figure 23. EXAMPLE MC_TRACKCONVEYORBELT ...91
Figure 24. THE PLCOPEN MOTION CONTROL LOGO ..119

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 7/ 119

Table of Tables

1. OVERVIEW OF THE DEFINED FUNCTION BLOCKS ...9
2. OVERVIEW OF BUFFER MODES..17
3. OVERVIEW OF TRANSITION MODES...18
4. MATRIX OF AVAILABLE TRANSITION MODES ...18
5. OVERVIEW OF THE INFLUENCE OF GROUP MOTION COMMANDS ON A SINGLE AXIS STATE....................................21
6. OVERVIEW OF BUFFER MODES...96
7. OVERVIEW OF AVAILABLE TRANSITION MODES ...98
8. SUPPORTED DATATYPES..103
9. SUPPORTED DERIVED DATATYPES ...103
10. OVERVIEW OF BUFFER MODES...103
11. OVERVIEW OF AVAILABLE TRANSITION MODES ...103
12. SHORT OVERVIEW OF THE FUNCTION BLOCKS ..104

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 8/ 119

1 General

1.1 Objectives
The objective of this document is to define a set of extensions to “Part 1 - PLCopen Function Blocks for Motion
Control”, as well as “Part 2 - Extensions” focused to the coordinated multi-axes motion in 3D space, to serve the
majority of user’s application needs in this area.
Part 1 and Part 2 deal with Master / slave motion control, a type of coordinated motion control where the master axis
position is used to generate one or more slave axis position commands.
For multi dimensional movements, one goes beyond this point via a grouping of a set of axes, without a master axis.
This is done via the definition of a set of Function Blocks with related coordinated motion functionality as well as a
higher level state diagram, linking the single axis state diagrams in the group. In this way a better trajectory planning is
possible. Also, the current Master/Slave axes can have the problem that if an error occurs, the other axes have no
knowledge about this, and continue their movement. By combining axes in a group one knows upfront which axes are
involved and has the basis for a better error behavior.

1.2 Introduction
The level of the PLCopen Motion Control Function Blocks are specified at such a level that the user quickly recognizes
the functionality of the function block and what happens if it is activated or connected to other blocks in a sequence of
motion commands. Path oriented movements are programmed either with specific robot oriented programming
languages, or “G-code” (for instance cf. DIN 66025) as used in the CNC world. Both consist of a relative small number
of users. But without a doubt, the movements which can be described in these languages are applicable to a broader
area of use. This PLCopen initiative transforms the functionalities as known in the CNC and Robotic world to the PLC
world. With this, an additional part is added to the range of PLCopen Motion Control specifications. The relationship
with the other PLCopen parts is shown below.

Axis group

SAI

SAI

SAI

y´

PCS

MCS

ACS

31 2
31 2

Functions of
PLCopen Part 1 and 2

SAI = Single Axis
Interpolator

Figure 1: Relationships between the different parts of the PLCopen Motion Control

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 9/ 119

1.3 Overview of the defined Function Blocks
The following table gives an overview of the defined Function Blocks, divided into administrative (not driving motion)
and motion related sets.

Administrative Motion
Coordinated Coordinated Synchronized
MC_AddAxisToGroup MC_GroupHome MC_SyncAxisToGroup
MC_RemoveAxisFromGroup MC_GroupStop MC_SyncGroupToAxis
MC_UngroupAllAxes MC_GroupHalt MC_TrackConveyorBelt
MC_GroupReadConfiguration MC_GroupInterrupt MC_TrackRotaryTable
MC_GroupEnable MC_GroupContinue
MC_GroupDisable MC_MoveLinearAbsolute
MC_SetKinTransform MC_MoveLinearRelative
MC_SetCartesianTransform MC_MoveCircularAbsolute
MC_SetCoordinateTransform MC_MoveCircularRelative
MC_ReadKinTransform MC_MoveDirectAbsolute
MC_ReadCartesianTransform MC_MoveDirectRelative
MC_ReadCoordinateTransform MC_MovePath
MC_GroupSetPosition
MC_GroupReadActualPosition
MC_GroupReadActualVelocity
MC_GroupReadActualAcceleration
MC_GroupReadStatus
MC_GroupReadError
MC_GroupReset
MC_PathSelect
MC_GroupSetOverride
MC_SetDynCoordTransform

Table 1: Overview of the defined Function Blocks

This specification currently does not support issues like:

• Spline interpolation functionality
• Digital CAM switch on axes group
• Work space monitoring, taking care that the mechanics are not moving outside a certain area (like a standing

pole)
These issues may be covered by future releases.

1.3.1 Length of FB names and ways to shorten them
There are systems that only support a limited number of significant characters in the name. For these rules for shorter
names are provided here. These names are still seen as compliant, although have to be mentioned in the certification
document.

List of rules to shorten names:

Group Grp
Remove Rem
Cartesian Cart
Coordinate Coord
Transformation Trans
Kinematic Kin
Dynamic Dyn
Synchronized Sync
Configuration Cfg
Position Pos
Velocity Vel
Acceleration Acc

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 10/ 119

Linear Lin
Circular Circ
Absolute Abs
Direct Dir
Relative Rel
Actual Act
Conveyor Conv

Resulting compliant names:
MC_AddAxisToGrp MC_GrpContinue
MC_RemAxisFromGrp MC_GrpReadStatus
MC_UngroupAllAxes MC_GrpReadError
MC_GrpReadCfg MC_GrpReset
MC_GrpEnable MC_MoveLinAbs
MC_GrpDisable MC_MoveLinRel
MC_GrpHome MC_MoveCircAbs
MC_SetKinTrans MC_MoveCircRel
MC_SetCartTrans MC_MoveDirAbs
MC_SetCoordTrans MC_MoveDirRel
MC_ReadKinTrans MC_PathSelect
MC_ReadCartTrans MC_MovePath
MC_ReadCoordTrans MC_GrpSetOverride
MC_GrpReadActPos MC_SyncAxisToGrp
MC_GrpReadActVel MC_SyncGrpToAxis
MC_GrpReadActAcc MC_SetDynCoordTrans
MC_GrpStop MC_TrackConvBelt
MC_GrpHalt MC_TrackRotaryTable
MC_GrpInterrupt

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 11/ 119

1.4 Glossary
Name/ Acronym Explanation
ACS Axes Coordinate System: The system of coordinates related to the physical motors and the

single movements caused by the single drives.
Blending A way that consecutive function blocks cooperate in the transition from the first to the next.
Contour curve Inserted curve that modifies the original path. It is the resulting curve after blending.
Coordinate system The reference system in which a coordinate or path is described.
Corner deviation The shortest distance between the programmed corner point and the contour curve.
Corner distance Distance of the start point of the contour curve to the programmed target point.
Direction The orientational components of a vector in space. (Note: this is different from the

MC_Direction input as used in part 1).
Drive A unit controlling a motor via the current and timing in its coils.
Group-FB The set of function blocks that can work on a group of axes.
MCS Machine Coordinate System - the system of coordinates that is related to the machine. A

Cartesian coordinate system with the origin in a fixed position relative to the machine (the
origin is defined during the machine setup).
Sometimes called “World Coordinate System” or “Base Coordinate System”.
(Note: with Cartesian build machines, MCS is a Cartesian Coordinate system and may be
identical to ACS, or mapped via a trivial transformation). The coordinate system from the
physical multiple axes ACS is linked to the MCS via a kinematic transformation (forward and
backward conversion). The MCS represents an imaginable space with up to 6 dimensions.

Motor An actuator focused to a movement, converting electrical energy in a force or torque.
Orientation The rotational components of a vector in space.
Path Set of continuous positions and orientation information in multi-dimensional space

Geometrical description of a space curve that the TCP of an axesgroup moves along.
PathData Description of a path which can include additional information like velocity and acceleration.
PCS The coordinate system of the product can be called PCS – Product Coordinate System (or

“Program Coordinate System” in CNC world, or Programmers Coordinate System).
The PCS is based on the MCS typically by shifting and maybe rotating the MCS. The Zero
point of the PCS is related to the product and can be changed during runtime by the program.
The real work piece can have a rotation or shift to the MCS coordinate system or even might
be moving relative to the MCS coordinate system. By specifying a trajectory in PCS one is
able to describe the trajectory independent from the machine situation. To map these two
worlds (MCS to PCS and vice versa), a cartesian or cylindrical transformation is normally
done.

Position Position means a point in space which is described by different coordinates. Depending on the
used system and transformation it can consist of up to 6 dimensions (coordinates) meaning 3
Cartesian coordinates in space and 3 coordinates for the orientation.
In ACS there can be even more than 6 coordinates.
If the same position is described in different coordinate systems the values of the coordinates
are different.

Pose (not used) Position and orientation (DIN EN ISO 8373). Position is used instead in this document.
Scara A special kinematic for robot or handling applications.
Speed Speed is the absolute value of the velocity without direction.
Synchronization Combines an axis or axes group (as slave) with an axis as master in order that the slave

executes its path with synchronization to the progress of the master, meaning linked to a one-
dimension source for synchronization.

TCP Tool Centre point, the point in the machine that is commanded to move, typically the center or
the head of the tool. It can be described in different coordinate systems.

Tracking Is characterized by an axis group that follows with its movement the movement of another
axis group.

Trajectory Time dependent description of the path the TCP of an axes group moves along.
Additionally to the geometrical description of the space curve, time dependent state variables
like velocity, acceleration, jerk, forces etc. are specified.

Velocity For a group of axes this means:
- in ACS the velocities of the different axes;

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 12/ 119

- in MCS and PCS it provides the velocity of the TCP.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 13/ 119

2 Principles of Coordinated Motion

2.1 Coordinate System and kinematic transformation
The essence of a trajectory is the coordinated motion of two or more axes from a starting point to a target point via a
defined path with a specified path velocity. As path one can think of a straight line, a circular movement, or via a spline
function. The definition of a path– or any position information - in space requires a coordinate system. Within this
specification three coordinate systems are defined:

ACS Axis related
MCS Machine related
PCS Product or Workpiece related

Axis group

y´

PCS

MCS

ACS

31 2

Kinematical
transformations

Cartesian and/or
cylindrical

transformations

Product or Programmer´s
Coordinate System

Machine
Coordinate System

Axes Coordinate
System

X Y

Z
X'

Z'Y'

Figure 2: Overview of the coordinate systems and transformations

ACS: Axes Coordinate System – actual position of the physical axis (after homing).

MCS: Machine Coordinate System – Cartesian coordinate system with the origin is a fixed position relative to the
machine. (Sometimes called “World Coordinate System” or “Base Coordinate System”). (Note: with Cartesian build
machines, MCS may be identical to ACS, or mapped via a trivial transformation). The coordinate system from the
physical multiple axes ACS is linked to the MCS via a kinematic transformation (forward and backward conversion).

PCS: The real work piece can have a rotation or shift to the MCS coordinate system or even might be moving relative
to the MCS coordinate system, and often one wants to describe the trajectory independent from the machine situation.
To map these two worlds (MCS to PCS and vice versa), a cartesian or cylindrical transformation is normally done. The
coordinate system of the product can be called PCS – Product Coordinate System (or “Program Coordinate System” in
CNC world). There can be more than one PCS transformation applicable at the same time. In this case the ENUM to
specify the coordinate system (CS) has to be extended. A PCS can be a static or a dynamic transformation.

In order to specify a point or orientation in space a position always has to be related to a coordinate system. By means
of transformations this position can be transformed to other coordinate systems. Within this specification, function
blocks are defined for these transformations, hiding the complexity of these transformations to the programmer in its
day to day use. All multi axes motion commands are related to only one of the coordinate systems at the same time.

The example below demonstrates how a point P, which is situated on a 2D workpiece (red trapezoid), can be described

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 14/ 119

equivalent in PCS (blue), MCS (black) and ACS (green). Point P could be specified by referring to PCS resulting in the
position PPCS = (xPCS, yPCS). Given the shift and orientation of PCS relative to MCS, point P equivalently could be
specified by PMCS = (xMCS, yMCS). Assuming a SCARA robot with two rotary axes point P also could be described by
the angles of the axes PACS = (φ1, φ2).

yMCS

xMCS

yPCS
xPCS

f1

f2

P

f1
f2

xMCS
yMCS

(forward) kinematic
transformation

backward / inverse
kinematic transformation

cartesian / cylindrical
transformation xPCS

yPCS

Figure 3: Example for specifying point P in PCS, MCS or ACS

assuming a SCARA robot with two rotary axes

2.1.1 Kinematic Transformation
Axes are connected via mechanical links providing movements of the ‘Tool Center Point’, TCP in space. TCP is a
distinguished point of the machine, sometimes also called ‘Point of Interest’, POI, or ‘effector’. The physical assembly
of the axes and therefore the position of the TCP in MCS is described by a so called kinematic transformation. The
kinematic transformation connects ACS to MCS (forward conversion). By applying the kinematic transformation on a
position related to ACS, this position can be transformed into a position in MCS. The other way round, applying the
inverse kinematic transformation, a position related to MCS can be transformed into a position in ACS (backward
conversion).

With simple cartesian machine constructions, in which axes are directly oriented in X-, Y-, and Z-directions of MCS,
the kinematic transformation can easily be specified. One just has to define which axis is in the X-direction, which in
Y, and which in the Z-direction. In the simplest case ACS is identically to MCS and one needn’t distinguish between
both. But in praxis there are many non-cartesian structures, like SCARA robots or Tripods, where the kinematic
transformation is more complex.

x

y

x

TCP
TCP

ellbow down

ellbow up

Figure 4: Example for reaching the same position in space

with a) a cartesian handling (2 linear axes) and b) a SCARA (2 rotary axes) with two possible
configurations (elbow down and elbow up). (Note: the orientation is fixed in both examples)

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 15/ 119

Above example demonstrates how a position in space could be reached by a cartesian handling or a SCARA. Whereas
the positions of the linear axes are more or less identical to the coordinates of the position in MCS, the positions of the
axes of the SCARA are not that easy to calculate. Additionally there are two possible solutions of the backward
kinematic transformation, different configurations of the machine: elbow down and elbow up.

2.2 How do commands behave in dynamic coordinate systems
If the TCP should follow a moving target, this can be achieved by a dynamic coordinate transformation, leading to a
PCS which is moving in relation to the MCS.
The activation of a dynamic transformation is done by activating MC_SetDynCoordTransform.
If there is a dynamic transformation active, the axis may follow the dynamic transformation or stay in the static ACS or
MCS. The following example is showing the behavior. The example describes a robot fetching a screw from a fixed
position and mounting it on a product that is moving on a belt.

Ste
p

Move command Axes (group) behavior Application example

1 Activating Transfor-
mation ACS to MCS

Group is staying still (not moving) Initialization
MCS is static

2 MC_MoveAbsolute in
MCS

Group moves to the commanded
position in MCS and stays in static
MCS (not moving)

Moving to standby position and waiting
for products

3 Motion command in
static MCS

Group moves to the commanded
position in MCS and stays in static
MCS (not moving)

Moving to a fixed box of screws

4 Motion command in
static MCS

Picking command Picking up a screw

5 Activating a dynamic
PCS

PCS is active and moves synchronized
with the belt

PCS is ready for use

6 Motion command in
dynamic PCS

Group moves to commanded position in
PCS and is moving together with the
dynamic PCS

Placing the screw and following the
product on the belt

7 Screwing command Group is still following the product on
the belt

Screw is being screwed into the product

8 Motion command in
static MCS

Group moves to commanded position in
MCS at the fixed screw box

Moving to the fixed box of screws and
waiting for the next product on the belt

9 Motion command in
dynamic PCS

Group moves to commanded position in
PCS and is moving together with the
dynamic PCS

Placing the screw to the new product
and following the product on the belt

Rule: An axis group stays in the coordinate system which is specified with the last motion command. If this is a PCS
with dynamic transformation, it will follow the PCS (keeping the same position in this PCS).

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 16/ 119

2.3 Movements
Applying a movement on a machine via a function block causes the TCP to move towards the new commanded
position. The kind of function block applied specifies the path via which the new target position is reached. (Note: the
coordinate system in which the new commanded position is specified does not have an influence on the path.)

Basically there are two types of movements which have to be distinguished:

Point - to - Point movements, PTP (also referred to as Joint Interpolated Movements):
With this type the essence is to reach the commanded position as fast as possible. This can be achieved by moving each
axis on the shortest way from its starting position to its target position. Usually this kind of movement is the fastest way
to reach a new commanded position, because at any time at least one axis moving at it’s dynamic limit. The path and
the path velocity of the TCP are not important. They are determined by the process of the positions of the axes and the
kinematic transformation of the machine. Therefore this kind of movement is applicable for handlings and whenever
the path of the TCP is not crucial. It is recommended that all axes will arrive at the commanded position at the same
point in time (synchronized).
The applicable Function Blocks as specified herein are:

• MC_MoveDirectAbsolute
• MC_MoveDirectRelative

Cartesian Path movements, CP (also referred to as Continuous Path movements):
CP movements cause the TCP to move along a defined path in Cartesian space. A path can be (a set of) a straight line,
a circular movement, or a spline function. The path via which the new commanded position is reached is important. For
example, this is essential if a workpiece is being processed. Further, the path velocity of the TCP can be controlled
directly. Contrary to joint interpolated movements the process of the position of each axis is determined by the desired
path and the inverse kinematic transformation.
The applicable Function Blocks as specified herein are:

• MC_MoveLinearAbsolute
• MC_MoveLinearRelative
• MC_MoveCircularAbsolute
• MC_MoveCircularRelative
• MC_MovePath

The figure below illustrates the differences between different types of movement by means of a theoretical machine.

y

x

E

S

t

axis
position

Figure 5: Different types of movements

MC_MoveDirect (black), MC_MoveLinear (green) and MC_MoveCircular (blue)
and typical positions of one of the axis of the machine participating in the movement

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 17/ 119

2.4 Blending and Buffering of Movements

2.4.1 General Information
A fundamental part of interpolated motion control is blending of (buffered) consecutive motion commands on an axes
group. Without blending the TCP of an axes group moves towards the commanded position, decelerates and comes to
standstill exactly at the commanded position. The following buffered motion command doesn’t become active until
now. Obviously the axes group has to accelerate again. In many applications a different behaviour of the TCP is
desired and one wants to concatenate movements without stopping.
Reasons for this are:
• Reduction of the process cycle time (e.g. pick and place)
• Generate a smoother movement in order to reduce the mechanical stress
• Some applications demand a constant Velocity of the TCP (e.g. applying glue, painting, welding, etc.)

All this can be achieved by different types of blending. Common to all types of blending is a modification of the
original path, resulting in a smooth trajectory without corners.
Blending of motion commands in interpolated motion control differs from blending of motion commands on single
axes. With single axes the commanded position is always reached. Just the velocity at the time when the commanded
position is reached (or passed) can be changed according to the input parameter BufferMode.
With interpolated motion control several types of blending can be thought of, depending on the application and
process. Therefore new types of blending have to be introduced for interpolated motion control.
The input parameter for blending might vary due to the kind of interpolation method applied. So this input is supplier
specific.
The type of inserted curve that modifies the original path (the ‘contour curve’) is not part of this specification and can
be defined by the supplier specific input parameter for blending.

p3p2

p1

p3p2

p1

p3p2

p1

t

Speed
of TCP

Trajectory
of TCP

t t

Aborting
Buffered

without Blending Blending
p4

Figure 6: Trajectories and process of Velocity in principle of two

consecutive motion commands in three modes

2.4.2 Overview of Buffer Modes

For axes group motions the same buffer modes are used as for single axis motions (ENUM of type
MC_BUFFER_MODE).

No. MC_BUFFER_MODE Description
0 Aborting Start FB immediately (default mode)
1 Buffered Start FB after current motion has finished
2 BlendingLow The velocity is blended with the lowest velocity of both FBs
3 BlendingPrevious The velocity is blended with the velocity of the first FB
4 BlendingNext The velocity is blended with velocity of the second FB
5 BlendingHigh The velocity is blended with highest velocity of both FBs

Table 2: Overview of Buffer Modes
For details refer to Chapter 77 - Details of Blending and Buffering of Movements.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 18/ 119

2.4.3 Overview of Transition Modes
Depending on the transition mode different supplier specific transition parameters can be given, which characterize the
contour curve.
The basic transition modes are defined. Other modes as well as supplier specific modes can be added.

No. MC_TRANSITION_MODE Description
0 TMNone Insert no transition curve (default mode)
1 TMStartVelocity Transition with given start velocity
2 TMConstantVelocity Transition with given constant velocity
3 TMCornerDistance Transition with given corner distance
4 TMMaxCornerDeviation Transition with given maximum corner deviation
5 - 9 Reserved by PLCopen
10 -… Supplier specific modes

Table 3: Overview of Transition Modes
For details refer to Chapter 7 Details of Blending and Buffering of Movements.

2.4.4 Matrix of available transition modes
This matrix shows the available transition modes for the different buffer modes.
This matrix can be used by the supplier to document its supported transition modes.

BufferMode

TransitionMode

Aborting Buffered Blending
Low

Blending
Previous

Blending
Next

Blending
High

TMNone A A N N N N
TMMaxVelocity D D D D D D
TMDefinedVelocity A N A A A A
TMCornerDistance N N A A A A
TMMaxCornerDeviation N N A A A A

Table 4: Matrix of available transition modes

Legend: A = Available

N = Not possible
D = BlendingMode is dispensable

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 19/ 119

3 Model

3.1 State diagram
The state-diagram of the group describes the commanded state of the group of axes. It is on top of the state diagram per
axis (like defined in Parts 1 and 2). While axes are in a group state, the single axis state diagram is also active per axis.
Therefore interdependencies between the 2 types of state-diagrams exist.

GroupDisabled is the initial state at power up where a group can be created. Issuing MC_GroupEnable leaves this state.
The next state is GroupStandby. In this state the group is enabled and no function block has control on one of the axes
in the group. In this state the group can additionally be altered and homed if needed (State GroupHoming).
In the state GroupHoming a homing sequence can be defined for a group of axis. This can be applicable due to the
mechanical constraints of multiple motors (for example in an mechanical construct looking like the letter “I“ with 2
motor mechanically coupled via one band or belt moving over the form of the letter I, need to be homed differently.).
If a function block has control on (one of the axis of) the group, the state changes to GroupMoving.
GroupStopping is a special state that deals with the MC_GroupStop command, which automatically tranfers to the state
GroupStandby as soon as “Done” is SET and “Execute” is FALSE in MC_GroupStop.
In case an error arises (in one of the axis) the state changes to GroupErrorStop, which can only be left via issuing
MC_ResetGroup.

Explanations:

 Group motion commands will always lead to a SynchronizedMotion state in the single axis state diagram. In
case of a GroupStandby all axes of the group are also in single axis state StandStill.

 A GroupErrorStop will not lead to ErrorStops of the grouped axes as the error may only affect the group. In
case of a single axis ErrorStop the Group will also change to GroupErrorStop as the single error effects the
group.

The state diagram reflects the state of the group and the issued FBs..

GroupErrorStop

GroupStopping

GroupMoving

GroupStandby

 Note2

Note2

Error

MC_GroupReset

MC_AddAxisToGroup
MC_RemoveAxisFromGroup (Note 5)

Error

MC_GroupStop

Done Error

GroupDisabled
MC_GroupEnable

MC_GroupDisable
MC_UngroupAllAxes

GroupHoming

Error

Note1

Done

Note 1 and
MC_GroupHalt

MC_GroupHome

MC_AddAxisToGroup
MC_RemoveAxisFromGroup
MC_UngroupAllAxes

Note 3

MC_GroupStop

MC_RemoveAxisFromGroup
 (Note 4)

MC_GroupStop

Figure 7: The State Diagram

Note to transitions: Continuous lines are commanded transitions; dotted lines are automatic transitions.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 20/ 119

Note 1: Applicable for all non-administrative (moving) function blocks.
Note 2: In the states GroupErrorStop or GroupStopping, all Function Blocks can be called, although they will not be
executed, except MC_GroupReset for GroupErrorStop and any occurring Error– they will generate the transition to
GroupStandby or GroupErrorStop respectively
Note 3: MC_GroupStop.DONE AND NOT MC_GroupStop.EXECUTE
Note 4: Transition is applicable if last axis is removed from the group
Note 5: Transition is applicable while group is not empty.
Note 6: MC_GroupDisable and MC_UngroupAllAxes can be issued in all states and will change the state to
GroupDisabled.

3.2 Relationship Single Axis and Grouped Axes State Diagrams
Example of the relationship between 3 single axes combined in an axes group.

Figure 8: Relationship Single Axis and Grouped Axes State Diagrams

When a number of axes are grouped, and a single axis command, like MC_MoveAbsolute, is issued to an axis in this
group, there are basically 3 options:

1. Not allowed. Issuing a single axis command is not accepted and not performed: it signals this by setting the
error output of the applicable (issued) single axis function block. There is no change to the group, and as such
continues their movements.

2. Aborting the current group command(s), as well as following group commands, and continue with the single
axis command only. The remaining axes of the group move to the state StandStill (via an implicit MC_Halt
per axis). The original trajectory will not be finalized.

3. Superimpose the single axis commands to the group commands.

This specification does not restrict to any of these options. This means that different implementations of this behavior
will exists, and the supplier of the system has to specify what their system does support.

General rules for the interaction between a single axis towards its groups (for all 3 options above):
• If at least one axis in the group is moved by a command then the group is in the state GroupMoving.
• If all axes are in StandStill, the group can be in the state GroupStandby, GroupDisabled or GroupErrorStop.
• If one axis in a group is in ErrorStop, the whole group is in GroupErrorStop.

Single axis state diagrams

Group state diagram

 S S

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 21/ 119

• If a single axis MC_Home is issued the group is in state GroupMoving.
• If a single axis MC_Stop is issued the group is in state GroupMoving.
• If supported by the system, it is allowed to disable a single axis of the axis group without influencing the axes

group state. This can be useful to save energy or to apply a mechanical brake for a single axis not involved in the
on-going motion.

General rules for the interaction between a group and the single axis in it (for all 3 options above):
• If the group is commanded by a group moving command, all the single axes in the group are in the state

SynchronizedMotion
• If the group is in the state GroupStandby, the states of the single axes do not have to be all in StandStill
• If the group is in the state GroupErrorStop the state of the single axis is not affected

Overview of the influence of group motion commands on a single axis state:

Command Group State Axis state

MC_MoveLinearXxx
MC_MoveCircularXxx
MC_MoveDirectXxx
MC_MovePath
MC_GroupHalt
MC_TrackConveyorBelt
MC_TrackRotaryTable

GroupMoving SynchronizedMotion

MC_GroupStop GroupStopping / GroupStandby SynchronizedMotion / StandStill
MC_GroupReset GroupErrorStop / GroupStandby Not relevant for Axis
MC_GroupHome GroupHoming SynchronizedMotion

Table 5: Overview of the influence of group motion commands on a single axis state

Explanation: A stopping group leaves the single axis in synchronized motion as none of the single axis performs a
single axis stop.

3.3 Input Execution Mode
The input MC_EXECUTION_MODE is an ENUM providing information on the behavior of administrative function
blocks.
The modes are:
• Immediately - the functionality is immediately valid and may influence the on-going motion but not the state
• Delayed - The functionality is valid when the ongoing motion command sets one of the following output

parameters: Done, Aborted or Error. This also implies that the output parameter Busy is set to FALSE.
• Queued - The new functionality becomes valid when all previous motion commands sets one of the following

output parameters: Done, Aborted or Error. This also implies that the output parameter Busy is set to FALSE.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 22/ 119

4 Axes Grouping
Within this specification for interpolation, the related axes are grouped in an “AxesGroup”, and can be accessed via the
type AXES_GROUP_REF. The relationship between the different axis levels and groups is shown hereunder.

M1 M5M4M3M2

A1 A5A4A3A2

X

Machine

Transform

Transform

Y Z

Y' Z'X'

AxesGroup

AxesGroup

Physical
Motors

PCS

MCS

ACS

Figure 9: Overview AxesGroup

The AxesGroup shown in red above provides the interface to the user of the group of axes. To access the relevant
coordinate system, the relevant function blocks have an input CoordSystem which supports the three levels ACS, MCS
and PCS.
Parameters in the AxesGroupRef can include remaining time and remaining distance before target position (or velocity
or equal) is reached.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 23/ 119

4.1 Creating and using an AxesGroup
In order to create a group, one can go through the following steps:

1. If necessary, move the first axis (or all axes) to the relevant position(s) via single axis commands
2. Give the group a name (create a variable of type AXES_GROUP_REF). Group now in state GroupDisabled.
3. Add the first axis to this group via MC_AddAxisToGroup
4. Repeat this till all axes are defined in the group in the right order
5. Link the kinematic model to the group via MC_SetKinTransform even if it is per default a Cartesian system
6. Link the next level(s) of transformation(s) to the group via MC_SetCartesianTransform and /or

MC_SetCoordinateTransform
7. Enable the group (via MC_GroupEnable) in order to use it.

Example
If not done per axis yet, one switches on the power, and does a homing sequence per relevant axis with the single axis
function blocks. These relevant axes are now in the single axis state StandStill. (Note: It can be that the homing must
(additionally) be done in the group itself, due to special constructional constraints).
One creates a group by adding the first axis to it, and giving it a name. For instance:

AxesGroup
Axis

AxesGroup
Axis

MC_AddAxisToGroup

MC_AddAxisToGroup

Execute
Active
Busy

IdentInGroup
Error

ErrorID

Cartesian1
AxisX AxisX

Cartesian1

1

MC_AddAxisToGroup with a group name Cartesian1 for AxesGroupRef. The used Axis is referenced via AxisRef,
like AxisX. The input IdentInGroup gives the reference in the group, like 1.
Now a group has been created, called Cartesian1, with one Axis, AxisX, coupled in position 1. The state is still
GroupDisabled.
Now we add a second axis, called AxisY, in position 2, and a third axis, AxisZ, in position 3.

AxesGroup
Axis

AxesGroup
Axis

MC_AddAxisToGroup

MC_AddAxisToGroup

Execute
Active
Busy

IdentInGroup
Error

ErrorID

AxisY

2

AxesGroup
Axis

AxesGroup
Axis

MC_AddAxisToGroup

MC_AddAxisToGroup

Execute
Active
Busy

IdentInGroup
Error

ErrorID

Cartesian1
AxisX

1

AxesGroup
Axis

AxesGroup
Axis

MC_AddAxisToGroup

MC_AddAxisToGroup

Execute
Active
Busy

IdentInGroup
Error

ErrorID

3

AxisZ

The group now consists of 3 axes, with all axes in the state GroupDisabled.
The next step is linking the transformations to this group. For instance, for the kinematic transformation we use
MC_SetKinTransform.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 24/ 119

AxesGroup

Execute

AxesGroup

Done

MC_SetKinTransform

MC_SetKinTransform

KinTransform

Active

CommandAborted

Busy

Buffermode

Error

ErrorID

Cartesian1

KinematicTransform
Buffered

The other relevant function blocks for the transformations are MC_SetCartesianTransform and MC_SetCoordinate-
Transform.

With issuing MC_GroupEnable we transfer the state of the group to GroupStandby, enabling it to accept movements.
A movement changes the state to GroupMoving. To tell the relevant movement command in which coordinate system
the coordinates are applicable, the input CoordSystem is used, supporting the three levels ACS, MCS and PCS.

AxesGroup

Execute

AxesGroup

Done

MC_MoveDirectAbsolute

MC_MoveDirectAbsolute

Position
Active

CommandAborted

Busy

Buffermode
CoordSystem

Error
ErrorID

Cartesian1

PCS
100,20,30

Buffered

After “Done” is set, the state changes back to GroupStandby.
With MC_UngroupAllAxes we ungroup all axes at once, getting them all to the state StandStill for each axis.
An existing AxesGroup can be changed. This can be applicable with a tool change which includes an additional motor.
This changes both the number of axes as well as the kinematic model. The change can be done in the states
GroupDisabled and GroupStandby, and adds the axis to the group and changes the link to the applicable kinematic
model. The same procedure is valid for changing the tool back, although the MC_RemoveAxisFromGroup is used.
Having an axis in the group that is not linked to the kinematics model (yet) is allowed - however the use case is not
defined.

Of course it is possible to use a graphical software tool to generate the steps above, even in a different sense like
starting from the kinematics model and generate the software steps to create the axes group with the connections to the
transformations like described above.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 25/ 119

5 Function Blocks for Coordinated Motion

5.1 MC_AddAxisToGroup

FB-Name MC_AddAxisToGroup
This Function Block adds one axis to a group in a structure AxesGroup. This is an administrative FB, since no
movement is generated. The command cannot be buffered.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
B Axis AXIS_REF Reference to the axis to be added

VAR_INPUT
B Execute BOOL Start the grouping process at the rising edge
E IdentInGroup IDENT_IN_GROUP_REF Identifies the order in the group of the added axis. Done

via a REF in order to give the different axes a name in the
order, which can be coupled to the names in the kinematic
model (like “foot”, “shoulder”)

VAR_OUTPUT
B Done BOOL AXES_GROUP_REF is valid and the axis added
E Busy BOOL The FB is not finished
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Note: Each IdentInGroup can be used only once, otherwise it leads to an error

 MC_AddAxisToGroup
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

AXIS_REF Axis Axis AXIS _REF
BOOL Execute Done BOOL

IDENT_IN_GROUP_REF IdentInGroup Busy BOOL
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 26/ 119

5.2 MC_RemoveAxisFromGroup

FB-Name MC_RemoveAxisFromGroup
This Function Block removes one axis from the group AxesGroup. This is an administrative FB, since no
movement is generated. The command cannot be buffered. If there is no axis left in the group, the state changes to
GroupDisabled.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Execute BOOL Start the axis removal process at the rising edge
E IdentInGroup IDENT_IN_GROUP_REF Identifies the axis in the group

VAR_OUTPUT
B Done BOOL AXES_GROUP_REF is valid and the axis removed
E Busy BOOL The FB is not finished
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes: If issued on a group that is not in GroupDisabled, GroupStandby or GroupErrorStop, it generates an error
and the FB is not executed.

 MC_RemoveAxisFromGroup
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
IDENT_IN_GROUP_REF IdentInGroup Busy BOOL

 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 27/ 119

5.3 MC_UngroupAllAxes

FB-Name MC_UngroupAllAxes
This Function Block removes all axes from the group AxesGroup. This is an administrative FB, since no
movement is generated. The command cannot be buffered. After finalization the state is changed to
GroupDisabled
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Execute BOOL Start the process at the rising edge
VAR_OUTPUT

B Done BOOL All axes are removed
E Busy BOOL The FB is not finished
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes: If issued on a group that is not in GroupDisabled, GroupStandby or GroupErrorStop, it generates an error
and the FB is not executed.

 MC_UngroupAllAxes
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
 Busy BOOL
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 28/ 119

5.4 MC_GroupReadConfiguration

FB-Name MC_GroupReadConfiguration
This Function Block gets the axis reference according to the given group identifier in order to read the current
configuration of an axes group. For CoordSystem-Input “ACS” you get a conventional axis reference, but for
CoordSystem-Input “MCS” or “PCS” you get the axis reference of a virtual axis according to the transformation that is
active. This is an administrative FB, since no movement is generated.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to the group of axes
VAR_INPUT

B Enable BOOL Gets the axis reference according to the given group identifier
while enabled

B IdentInGroup IDENT_IN_GROUP_REF Identifies the axis in the group
E CoordSystem ENUM Reference to the applicable coordinate system: ACS, MCS,

PCS
VAR_OUTPUT

B Axis AXIS_REF Reference to the selected axis
B Valid BOOL True if valid outputs are available
E Busy BOOL The FB is not finished
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes: -

 MC_GroupReadConfiguration
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Enable Axis AXIS_REF
IDENT_IN_GROUP_REF IdentInGroup Valid BOOL

ENUM CoordSystem Busy BOOL
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 29/ 119

Examples on how to use this function block:
1. Conventional single axis motion a single axis is moved

ACS

1
AxisIndex 0

Axis

Execute

Axis

InVelocity

MC_MoveVelocity

MC_MoveVelocity

Velocity
Active

CommandAborted

Jerk
Direction

Busy

Buffermode

Acceleration
Deceleration

Error
ErrorID

Axis

Execute

Axis

InVelocity

MC_MoveVelocity

MC_MoveVelocity

Velocity
Active

CommandAborted

Jerk
Direction

Busy

Buffermode

Acceleration
Deceleration

Error
ErrorID

AxesGroup

Enable

AxesGroup
Axis

MC_GroupReadConfiguration

MC_GroupReadConfiguration

Valid
Busy
Error

IdentInGroup

ErrorID
CoordinateSystem

Conventional programming

Axis

PLCO_Axis

AxesGroup

PLCO_AxesGroup

Alternative programming

2. Virtual single axis motion a path axis is moved

MCS
AxisIndex 0

Axis

Execute

Axis

InVelocity

MC_MoveVelocity

MC_MoveVelocity

Velocity
Active

CommandAborted

Jerk
Direction

Busy

Buffermode

Acceleration
Deceleration

Error
ErrorID

AxesGroup

PLCO_AxesGroup

1

AxesGroup

Enable

AxesGroup
Axis

MC_GroupReadConfiguration

MC_GroupReadConfiguration

Valid
Busy
Error

IdentInGroup

ErrorID
CoordinateSystem

1

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 30/ 119

5.5 MC_GroupEnable

FB-Name MC_GroupEnable
This Function Block changes the state for a group from GroupDisabled to GroupStandby. This is an
administrative FB, since no movement is generated.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Execute BOOL Start the change of state at the rising edge
VAR_OUTPUT

B Done BOOL AxesGroup in state GroupStandby
E Busy BOOL The FB is not finished
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Note: The command does not influence the power state of any of the single axes in the group

 MC_GroupEnable
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
 Busy BOOL
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 31/ 119

5.6 MC_GroupDisable

FB-Name MC_GroupDisable
This Function Block changes the state for a group to GroupDisabled, although it is an administrative FB, since no
movement is generated. If the axes are not standing still while issuing this command, it is up to the application to
take the necessary precautions.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Execute BOOL Start the change of state at the rising edge
VAR_OUTPUT

B Done BOOL AxesGroup in state GroupDisabled
E Busy BOOL The FB is not finished
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Note: The command does not influence the power state of any of the single axes in the group

 MC_GroupDisable
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
 Busy BOOL
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 32/ 119

5.7 MC_GroupHome

FB-Name MC_GroupHome
This Function Block commands the AxesGroup to perform the «search home» sequence. The details of this sequence
are manufacturer dependent and can be set by the axis’ parameters. The “Position” input is used to set the absolute
position when reference signal is detected. This Function Bock completes at “GroupStandby”.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Execute BOOL Start the homing sequence at the rising edge
B Position ARRAY [1..N] OF REAL Array of coordinates incl. Positions and orientations
E CoordSystem ENUM Reference to the applicable coordinate system: ACS, MCS, PCS
E BufferMode MC_BUFFER_MODE Buffer mode. Modes “Aborting” and “Buffered” are useful. All

other modes should act like “Buffered”.
VAR_OUTPUT

B Done BOOL Homing sequence ended successfully
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB is processed
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Note: If you issue this FB with BufferMode “Aborting” outside the state GroupStandby, an error is generated.

 MC_GroupHome
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
ARRAY [1..N] OF REAL Position Busy BOOL

ENUM CoordSystem Active BOOL
MC_BUFFER_MODE BufferMode CommandAborte

d
 BOOL

 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 33/ 119

5.8 Transformation FBs
This chapter provides an overview of the transformation function blocks. Although they are administrative FBs, the
transformation FBs can be buffered.

5.8.1 MC_SetKinTransform (ACS to MCS)

FB-Name MC_SetKinTransform
This Function Block sets a kinematic transformation between the ACS and MCS based on the predefined kinematic
model.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Execute BOOL Sets the kinematic model transformation on rising edge
E KinTransform MC_KIN_REF Reference to a Kinematic Model. Vendor specific datatype.
E ExecutionMode MC_EXECUTION_MO

DE
Describes when the command is executed and the new
transformation becomes valid. (See 3.3 Input Execution
Mode)

VAR_OUTPUT
B Done BOOL Transformation is set successfully
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB is processed
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes:
• A kinematic transformation is a representation of the machine construction. For kinematically simple machine

constructions, like a three axes Cartesian robot, a kinematic transformation may not be necessary.
• The input KinTransform refers to a kinematic model including the parameters. The details of the kinematic model

and of the parameters are outside the scope of PLCopen.
• The system may support a neutral KinTransform. With activating the neutral transformation the axes are

referenced in the ACS system again.
• The FB always acts on a pre-defined AxesGroup. Since a kinematic transformation always has to fit to an

appropriate AxesGroup, a call to this FB will lead to an error unless an appropriate AxesGroup is defined.

 MC_SetKinTransform
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
MC_KIN_REF KinTransform Busy BOOL

MC_EXECUTION_MODE ExecutionMode Active BOOL
 CommandAborted BOOL
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 34/ 119

Timing Diagram:

Figure 10: Typical timing diagram for setting the transformation

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 35/ 119

5.8.2 MC_SetCartesianTransform (MCS to PCS)

FB-Name MC_SetCartesianTransform
This Function Block sets a Cartesian transformation between the MCS and PCS.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Execute BOOL Sets the cartesian transformation on rising edge
B TransX REAL X-component of Translation Vector
B TransY REAL Y-component of Translation Vector
B TransZ REAL Z-component of Translation Vector
B RotAngle1 REAL Rotation angle component
B RotAngle2 REAL Rotation angle component
B RotAngle3 REAL Rotation angle component
E ExecutionMode MC_EXECUTION_MODE Describes when the command is executed and the new

transformation becomes valid. (See 3.3 Input Execution
Mode).

VAR_OUTPUT
B Done BOOL Transformation is set successfully
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB is processed
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes:
• The interpretation and order of the vector components (specifically the rotation components) are vendor specific
• De-selection of PCS can be done by a execution of this FB with

{TransX, TransY, TransZ, RotAngle1, RotAngle2, RotAngle3 }={0, 0, 0, 0, 0, 0}
as translation and rotation input values.

• The system may support a neutral transformation. With activating the neutral transformation the axes are
referenced in the MCS system again.

• More then one cartesian transformation can be applicable at the same time on the same group of axes.

 MC_SetCartesianTransforms
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
REAL TransX Busy BOOL
REAL TransY Active BOOL
REAL TransZ CommandAborted BOOL
REAL RotAngle1 Error BOOL
REAL RotAngle2 ErrorID WORD
REAL RotAngle3

MC_EXECUTION_MODE ExecutionMode

The timing diagram is equal to that of MC_SetKinTransform

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 36/ 119

Explanation:
Definition of the translation:

x MCS

yMCS

z
MCS

x´

y´
z´

Cartesian Machine Coordinate System
MCS

PCS

TransX

Tr
an

sZ

Tran
sY

Example of the definition of the rotation:
The rotation is defined by a subsequent rotation around every coordinate direction beginning with the Z-direction.

Trans

x

y´´´

z
z´´´

x´´´

Definition of the rotation:

x´´´= x´´

z´´

y´´
y´´´

z´´´

z´ = z

y

x

y´

x´

RotZ

z

y´´= y´

x´ x´´

z´´ ´

RotXRotY

Example: Use of the FB for a rotation in the plane (2-dimensions):
Execution of MC_SetCartesianTransform with: {50,50,0,0,0,30}

RotZ

TransX

Tr
an

sY

X

Y

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 37/ 119

5.8.3 MC_SetCoordinateTransform (MCS to PCS)

FB-Name MC_SetCoordinateTransform
This Function Block sets a coordinate transformation between the MCS and PCS.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Execute BOOL Sets the coordinate transformation on rising edge
E CoordTransform MC_COORD_REF Reference to a Coordinate Transformation. Vendor specific

datatype.
E ExecutionMode MC_EXECUTION_MODE Describes when the command is executed and the new

transformation becomes valid. (See 3.3 Input Execution
Mode).

VAR_OUTPUT
B Done BOOL Transformation is set successfully
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB is processed
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes:
• CoordTransform refers to a coordinate transformation including the parameters. The details of the transformation

and of the parameters are outside the scope of PLCopen.
• The system may support a neutral transformation. With activating the neutral transformation the axes are

referenced in the MCS system again..
• When PCS is dynamic (in the sense that the PCS is moving relative to MCS), one should use

MC_SetDynCoordTransform.
• This FB does not start a movement (administrative FB). The movement is initiated by a command in PCS.

 MC_SetCoordinateTransform
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
MC_COORD_REF CoordTransform Busy BOOL

MC_EXECUTION_MODE ExecutionMode Active BOOL
 CommandAborted BOOL
 Error BOOL
 ErrorID WORD

Example of MC_COORD_REF
As an example of MC_COORD_REF, one can use a structure of the 6 inputs X, Y, Z, and rotations as defined in
MC_SetCartesianTransforms.

The timing diagram is equal to that of MC_SetKinTransform

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 38/ 119

5.8.4 MC_ReadKinTransform (ACS to MCS)

FB-Name MC_ReadKinTransform
This Function Block reads the kinematic transformation that is active between the ACS and MCS.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Enable BOOL Get the actual kinematic transformation reference of the
axes group continuously while enabled

VAR_OUTPUT
B Valid BOOL True if valid outputs are available
E Busy BOOL The FB is not finished
B KinTransform MC_KIN_REF Reference to a Kinematic Model. Vendor specific datatype.
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes:

 MC_ReadKinTransform
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Enable Valid BOOL
 Busy BOOL
 KinTransform MC_KIN_REF
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 39/ 119

5.8.5 MC_ReadCartesianTransform (MCS to PCS)

FB-Name MC_ReadCartesianTransform
This Function Block reads the parameter of the cartesian transformation that is active between the MCS and PCS. If
more than one transformation is active, the resulting cartesian transformation is given.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Enable BOOL Get the cartesian transformation parameter of the axes group
continuously while enabled

VAR_OUTPUT
B Valid BOOL True if valid outputs are available
E Busy BOOL The FB is not finished
B TransX REAL X-component of Translation Vector
B TransY REAL Y-component of Translation Vector
B TransZ REAL Z-component of Translation Vector
B RotAngle1 REAL Rotation angle 1
B RotAngle2 REAL Rotation angle 2
B RotAngle3 REAL Rotation angle 3
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes: -

 MC_ReadCartesianTransform
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Enable Valid BOOL
 Busy BOOL
 TransX REAL
 TransY REAL
 TransZ REAL
 RotAngle1 REAL
 RotAngle2 REAL
 RotAngle3 REAL
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 40/ 119

5.8.6 MC_ReadCoordinateTransform (MCS to PCS)

FB-Name MC_ReadCoordinateTransform
This Function Block reads the coordinate transformation that is active between the MCS and PCS.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Enable BOOL Get the actual coordinate transformation reference of the axes
group continuously while enabled

VAR_OUTPUT
B Valid BOOL True if valid outputs are available
E Busy BOOL The FB is not finished
B CoordTransform MC_COORD_REF Reference to a Coordinate Transformation. Vendor specific

datatype.
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes: -

 MC_ReadCoordinateTransform
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Enable Valid BOOL
 Busy BOOL
 CoordTransform MC_COORD_REF
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 41/ 119

5.9 MC_GroupSetPosition
FB-Name MC_GroupSetPosition

This function block sets the Position of all axes in a group without moving the axes. The new coordinates are
described in an array. With the coordinate system input the according coordinate system is selected. It can be seen
as a way of referencing or a transformation. MC_GroupSetPosition shifts the position of the addressed coordinate
system and affects the higher level coordinate systems (so if ACS is selected, MCS and PCS are affected).

VAR_IN_OUT
B AxesGroup AXES_GROUP_REF Reference to a group of axis

VAR_INPUT
B Execute BOOL Start the action at rising edge
B Position ARRAY [1..N] OF

REAL
Array of coordinates, incl. positions and orientations (Means
‘Distance’ if Mode = RELATIVE)

E Relative BOOL Mode of position inputs - RELATIVE =True, ABSOLUTE =
False (Default)

E CoordSystem ENUM Reference to the coordinate system used: ACS, MCS, or PCS
E BufferMode MC_BUFFER_MODE Refer to Chapter 7.3 Buffer Modes

VAR_OUTPUT
B Done BOOL Commanded end positions reached for all axes
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axes group
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification
Note: This FB is similar to MC_SetPosition.

 MC_GroupSetPosition
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
ARRAY [1..N] OF REAL Position Busy BOOL

BOOL Relative Active BOOL
ENUM CoordSystem CommandAborted BOOL

MC_BUFFER_MODE BufferMode Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 42/ 119

5.10 MC_GroupReadActualPosition

FB-Name MC_GroupReadActualPosition
This Function Block returns the actual position in the selected coordinate system of an axes group. This is an
administrative FB, since no movement is generated.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Enable BOOL Get the actual position in the selected coordinate system of the
axes group continuously while enabled

E CoordSystem ENUM Reference to the coordinate system (ACS, MCS, PCS)
VAR_OUTPUT

B Valid BOOL True if valid outputs are available
E Busy BOOL The FB is not finished
B Error BOOL Signals that an error has occurred within the Function Block
E ErrorID WORD Error identification
B Position ARRAY [1..N] OF REAL Current position of the group. See 1.4 Glossary

Notes: -

 MC_GroupReadActualPosition
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Enable Valid BOOL
ENUM CoordSystem Busy BOOL

 Error BOOL
 ErrorID WORD
 Position ARRAY [1..N] OF REAL

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 43/ 119

5.11 MC_GroupReadActualVelocity

FB-Name MC_GroupReadActualVelocity
This Function Block returns the actual velocity in the selected coordinate system of an axes group. This is an
administrative FB, since no movement is generated.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Enable BOOL Get the actual velocity in the selected coordinate system of the
axes group continuously while enabled

E CoordSystem ENUM Reference to the coordinate system (ACS, MCS, PCS)
VAR_OUTPUT

B Valid BOOL True if valid outputs are available
E Busy BOOL The FB is not finished
B Error BOOL Signals that an error has occurred within the Function Block
E ErrorID WORD Error identification
B Velocity ARRAY [1..N] OF REAL Current velocity of the group:

- in ACS the velocities of the different axes
- in MCS and PCS it provides the velocity of the TCP

E PathVelocity REAL Current path velocity (speed, combined result) of the TCP.
Notes: -

 MC_GroupReadActualVelocity
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Enable Valid BOOL
ENUM CoordSystem Busy BOOL

 Error BOOL
 ErrorID WORD
 Velocity ARRAY [1..N] OF REAL
 PathVelocity REAL

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 44/ 119

5.12 MC_GroupReadActualAcceleration

FB-Name MC_GroupReadActualAcceleration
This Function Block returns the actual acceleration in the selected coordinate system of an axes group. This is an
administrative FB, since no movement is generated.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Enable BOOL Get the actual acceleration in the selected coordinate system
of the axes group continuously while enabled

E CoordSystem ENUM Reference to the coordinate system (ACS, MCS, PCS)
VAR_OUTPUT

B Valid BOOL True if valid outputs are available
E Busy BOOL The FB is not finished
B Error BOOL Signals that an error has occurred within the Function Block
E ErrorID WORD Error identification
B Acceleration ARRAY [1..N] OF REAL Current acceleration of the group:

- in ACS the acceleration of the different axes
- in MCS and PCS it provides the acceleration of the TCP

E Path Acceleration REAL Current combined path acceleration of the TCP.
Notes: -

 MC_GroupReadActualAcceleration
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Enable Valid BOOL
ENUM CoordSystem Busy BOOL

 Error BOOL
 ErrorID WORD
 Acceleration ARRAY [1..N] OF REAL
 PathAcceleration REAL

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 45/ 119

5.13 MC_GroupStop
FB-Name MC_GroupStop
This Function Block commands a controlled motion stop and transfers the axes group to the state “GroupStopping”.
It aborts any ongoing Function Block execution. While the axes group is in state GroupStopping, no other FB can
perform any motion on the same axes group. After the axes group has reached velocity zero, the Done output is set to
TRUE immediately. The axes group remains in the state ”GroupStopping” as long as Execute is still TRUE or
velocity zero is not yet reached. As soon as “Done” is SET and “Execute” is FALSE the axes group goes to state
“GroupStandBy”. The command can only be aborted by MC_GroupDisable.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axis
VAR_INPUT

B Execute BOOL Start the action at rising edge
E Deceleration REAL Value of the deceleration [u/s2]
E Jerk REAL Value of the Jerk [u/s3]
E BufferMode MC_BUFFER_MODE Refer to Chapter 7.3 Buffer Modes

VAR_OUTPUT
B Done BOOL Stop for all axes done.
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axes group
E CommandAborted BOOL Command is aborted by disabling MC-Power of one or more

of the axes in the group. The state changes to GroupDisabled.
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes:
• The relevant axes stay on the path.
• If Deceleration is set to zero the resulting action is vendor specific.
• If issued during a MoveDirectXxx command, the velocity/acc-/deceleration/jerk values as properties of the

AxisRef of each axis are used, and not specified within this function block, and not to be exceeded during
the movement.

• Any synchronization of the group to a master is cancelled by issuing MC_GroupStop

 MC_GroupStop
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
REAL Deceleration Busy BOOL
REAL Jerk Active BOOL

MC_BUFFER_MODE BufferMode CommandAborted BOOL
 Error BOOL
 ErrorID WORD

A typical timing diagram for MC_GroupStop is shown below, including the relevant states and state-transitions.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 46/ 119

Execute

Done

Velocity

GroupStopping

GroupStandStill

Figure 11: MC_GroupStop timing diagram

The example below shows the behavior in combination with a MC_MoveLinearRelative.
a) An axes group in linear movement is ramped down with FB MC_GroupStop. The group stops on the original
path.
b) The axes group rejects motion commands as long as MC_GroupStop parameter “Execute” = TRUE. FB
MC_MoveLinearRelative reports an error indicating the busy MC_GroupStop command. This error is an FB error, so
the group is not moving to the state GroupErrorStop.
At the 3rd “Exe1” rising edge, the group starts the next movement.

Velocity
AxesGroup1

MC_GroupStop
AxesGroupAxesGroup1

Deceleration20
Jerk0

Error
ErrorID

ExecuteExe_2

50

Done_1

Exe_1

1
0
1
0

1
0

Exe_2

Done_2 1
0

t

Done_2Done

MC_MoveLinearRelative
AxesGroupAxesGroup1

Velocity50
Acceleration10
Deceleration10
Jerk0
Direction1

ErrorID

ExecuteExe_1

CommandAborted Abort_1

FB1

Done_1Done

FB2

FB1

FB2

t

t

t

t

t
Abort_1

0
1

1
0

Error_1Error

t
Error_1

BusyBusy

a b

PositionDistances_1 Active

Figure12: Behavior of MC_GroupStop in combination with MC_MoveLinearRelative

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 47/ 119

The following example demonstrates the behaviour of MC_GroupStop in combination with two MC_MoveLinear-
Absolute which are blended with defined constant path velocity:
t0) Two FBs MC_MoveLinearAbsolute are commanded on axes group MyAxesGroup. The first FB becomes
active immediately and MyAxesGroup starts to move from its actual position (20.0; 20.0) towards the first target
position.
t1) Shortly after the TCP has started to move on the blending contour blending Lin1 into Lin2, a FB
MC_GroupStop is issued in buffermode Aborting. The state of the axes group changes from GroupMoving to
GroupStopping. MyAxesGroup decelerates, following the path which would have been executed without having issued
MC_GroupStop.
Note: Though the path velocity of MyAxesGroup decreases strictly monotonic while stopping, single axes of the group
might accelerate in between due to the given path and kinematic transformation of MyAxesGroup.
t2) MyAxesGroup comes to standstill. The Done output of the FB MC_GroupStop is set. Since the input Execute
of the FB Stop is still set the group stays in state GroupStopping.
t3) The input Execute of the FB Stop is reset. All outputs of the FB Stop are reset. The group state changes to
GroupStandby.

MC_MoveLinearAbsolute
AxesGroup AxesGroup
Execute Done

Velocity
Acceleration
Deceleration
Jerk

Error
ErrorID

MyAxesGroup
Go

(100.0; 100.0)
10.0
100.0
100.0

10.0
100.0
100.0

Finish

Lin1 Lin2

CommandAborted

Busy
Active

CoordSystem
BufferMode

(20.0; 180.0)Position

TransitionMode
TransitionParameter

MCS

MC_MoveLinearAbsolute
AxesGroup AxesGroup
Execute Done

Velocity
Acceleration
Deceleration
Jerk

Error
ErrorID

CommandAborted

Busy
Active

CoordSystem
BufferMode

Position

TransitionMode
TransitionParameter

BlendingLow
TMDefinedVelocity

100.0

MCS

MC_GroupStop

CommandAborted

AxesGroup

Deceleration

BufferMode

Done

Active

Busy
Execute

ErrorID
Error

Jerk

AxesGroupMyAxesGroup

200.0

Aborting

Stop

x

y

t0
20

Path of MyAxesGroup

100

180

20

100

t2t1

executed path

stopping
on path planned but not

executed path

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 48/ 119

tLin2.Execute 1

0

tLin2.Busy 1

0

t
MyAxisGroup.Velocity

0

100

tLin2.Active
0

1

tStop.Execute 1
0

tStop.Active 1

0

tStop.Done
0

1

t
1

0

tLin1.Active 1

0

tLin1.Aborted
0

1

Lin1.Execute

t
velocity of 1st axis

of MyAxisGroup

t
t0

velocity of 2nd axis
of MyAxisGroup

t1 t2

single axis might accelerate
though axes group is stopping !

t3

Figure 13: Example of MC_GroupStop in combination with two MC_MoveLinearAbsolute

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 49/ 119

5.14 MC_GroupHalt

FB-Name MC_GroupHalt
This function block commands a controlled motion stop. It aborts any ongoing function block execution.
AxesGroup is moved to the state “GroupMoving“, until the velocity is zero. With the DONE output set, the state is
transferred to GroupStandby.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Execute BOOL Start the action at rising edge
E Deceleration REAL Value of the deceleration [u/s2]
E Jerk REAL Value of the jerk [u/s3]
E BufferMode MC_BUFFER_MODE Refer to Chapter 7.3 Buffer Modes

VAR_OUTPUT
B Done BOOL Zero velocity reached
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axes group
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes:
• MC_GroupHalt is used to stop the axes group under normal operation conditions. In non-buffered mode:

during deceleration of the axes group it is possible to set another motion command, which will abort the
MC_GroupHalt and will be executed immediately.

• If this command is active the next command can be issued. E.g. a driverless vehicle detects an obstacle
and needs to stop. MC_GroupHalt is issued. Before the standstill is reached the obstacle is removed and
the motion can be continued by setting another motion command, so the vehicle does not stop.

• The relevant axes stay on the same path which would have been executed without having issued
MC_GroupHalt.

 MC_GroupHalt
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
REAL Deceleration Busy BOOL
REAL Jerk Active BOOL

MC_BUFFER_MODE BufferMode CommandAborted BOOL
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 50/ 119

The following example shows the behaviour of MC_GroupHalt in combination with a MC_MoveCircularAbsolute:
S) MyAxesGroup starts at Position (10.0; 10.0; 0.0). A FB MC_MoveCircularAbsolute is commanded with

auxiliary position (30.0; 30.0; 0.0) and end position (50.0; 10.0; 0.0). This results in a 180° circular motion
within the xy-plane of any coordinate system.

H) The circular motion is aborted by FB MC_GroupHalt. MyAxesGroup stays on the path during halt.
R) MC_MoveCircularAbsolute is executed again and aborts MC_GroupHalt. MC_GroupHalt allows this, in

contrast to MC_GroupStop. AxesGroup can accelerate again without reaching standstill.
(MC_MoveCircularAbsolute can be retriggered in order to continue the original circular motion as long as
MyAxesGroup didn’t pass the auxiliary position.)

E) MyAxesGroup reaches end position (50.0; 10.0; 0.0)

Figure14: Behavior of MC_GroupHalt in combination with MC_MoveCircularAbsolute

(30.0; 30.0;
(50.0; 10.0;

MoveCircularAbsolut

CommandAborte

AxesGroup

CoordinateSyste

En

Don

Activ

Bus
Execut

Velocit
Acceleratio ErrorI

Erro

Au

Deceleratio
Jer
BufferModMC_Abortin

MC

2
1

2

8

MyAxesGroup
GroupHal

CommandAborte

AxesGroup
Don

Activ

Bus
Execut

ErrorI
Erro

Deceleratio
Jer
BufferModMC_Abortin

2

8

50
x

y

t Circ.Execut 1
0

t Circ.Don 1
0

t
MyAxesGroup.Velocit

0

10

t S t E

t S tE
10

10

Circular
MyAxesGroup

t Circ.Aborte
0
1

t GroupHalt.Execut 1
0

t GroupHalt.Don 1
0

t GroupHalt.Aborte
0
1

30

t H
t R

tH tR

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 51/ 119

5.15 MC_GroupInterrupt

FB-Name MC_GroupInterrupt
This function block interrupts the on-going motion and stops the group from moving, however does not abort the
interrupted motion (meaning that at the interrupted FB the output CommandAborted will not be Set, Busy is still
high and Active is reset). It stores all relevant track or path information internally at the moment it becomes active.
The AxesGroup stays in the original state even if the velocity zero is reached and the DONE output set.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Execute BOOL Start the action at rising edge
E Deceleration REAL Value of the deceleration [u/s2]
E Jerk REAL Value of the jerk [u/s3]

VAR_OUTPUT
B Done BOOL Zero velocity reached
E Busy BOOL The FB is not finished
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes:
• This FB is coupled to MC_GroupContinue. Issuing MC_GroupContinue transfers the program back to

the situation at issuing MC_GroupInterrupt.
• Further motion commands may be accepted by the group.

 MC_GroupInterrupt
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
REAL Deceleration Busy BOOL
REAL Jerk CommandAborted BOOL

 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 52/ 119

5.16 MC_GroupContinue

FB-Name MC_GroupContinue
This function block transfers the program back to the situation at issuing MC_GroupInterrupt. It uses internally the
data set as stored at issuing MC_GroupInterrupt, and at the end (output DONE set) transfer the control on the
group back to the original FB doing the movement on the axes group, meaning also that at the originally
interrupted FB the output Busy is still high and Active is set again.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Execute BOOL Start the action at rising edge
VAR_OUTPUT

B Done BOOL Control transferred back to original FB
E Busy BOOL The FB is not finished
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes:
• The dynamics of the FB that is continued can be used for the velocity, acceleration, deceleration and jerk.
• This FB can also be used to continue after an error in case the necessary set of data is stored at the occurrence

of the error.

 MC_GroupContinue
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
 Busy BOOL
 CommandAborted BOOL
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 53/ 119

5.17 MC_GroupReadStatus

FB-Name MC_GroupReadStatus
This Function Block returns the status of an axes group according to the active Group-FB. This is an administrative FB,
since no movement is generated.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
VAR_INPUT

B Enable BOOL Get the status of the axes group continuously while enabled
VAR_OUTPUT

B Valid BOOL True if valid outputs are available
E Busy BOOL The FB is not finished
B GroupMoving BOOL See group state diagram
B GroupHoming BOOL See group state diagram
B GroupErrorStop BOOL See group state diagram
B GroupStandby BOOL See group state diagram
B GroupStopping BOOL See group state diagram
B GroupDisabled BOOL See group state diagram
E ConstantVelocity BOOL Moving with constant velocity on commanded path
E Accelerating BOOL Increasing Velocity on commanded path
E Decelerating BOOL Decreasing Velocity on commanded path
E InPosition BOOL Movement has reached target position
B Error BOOL Signals that an error has occurred within the Function Block
E ErrorID WORD Error identification

Notes: The outputs reflect the commanded state of the group

 MC_GroupReadStatus
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Enable Valid BOOL
 Busy BOOL
 GroupMoving BOOL
 GroupHoming BOOL
 GroupErrorStop BOOL
 GroupStandby BOOL
 GroupStopping BOOL
 GroupDisabled BOOL
 ConstantVelocity BOOL
 Accelerating BOOL
 Decelarating BOOL
 InPosition BOOL
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 54/ 119

5.18 MC_GroupReadError

FB-Name MC_GroupReadError
This Function Block describes general axes group errors not relating to the Function Blocks. This is an
administrative FB, since no movement is generated.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axis
VAR_INPUT

B Enable BOOL Get the value of the GroupErrorID continuously while
enabled

VAR_OUTPUT
B Valid BOOL True if valid outputs are available
E Busy BOOL The FB is not finished
B Error BOOL Signals that an error has occurred within the Function Block
B ErrorID WORD Error identification on an FB error
E GroupErrorID WORD The value of the axes group error. These values are vendor

specific.
Notes: Examples are (software) limit switch exceeded or single axis error in GroupStandby state.

 MC_GroupReadError
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Enable Valid BOOL
 Busy BOOL
 Error BOOL
 ErrorID WORD
 GroupErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 55/ 119

5.19 MC_GroupReset
FB-Name MC_GroupReset
This function block makes the transition from the state GroupErrorStop to GroupStandby by resetting all internal
group-related errors – it does not affect the output of the FB instances. This function block also resets all axes in this
group like MC_Reset.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axis
VAR_INPUT

B Execute BOOL Start the action at rising edge
VAR_OUTPUT

B Done BOOL Reset for axes group and all axes in this group done.
E Busy BOOL The FB is not finished
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes: -

 MC_GroupReset
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
 Busy BOOL
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 56/ 119

5.20 MC_MoveLinearAbsolute

FB-Name MC_MoveLinearAbsolute

This function block commands an interpolated linear movement on an axes group from the actual position of the TCP
to an absolute position in the specified coordinate system

VAR_IN_OUT
B AxesGroup AXES_GROUP_REF Reference to a group of axes

VAR_INPUT
B Execute BOOL Start the motion at rising edge
B Position ARRAY [1..N] OF

REAL
Array [1..N] of absolute end positions for each dimension in the
specified coordinate system. The value of n is supplier specific. See
1.4 Glossary

E Velocity REAL Maximum Velocity [u/s] for the path for the coordinate system in
which the path is defined. Always positive. Not necessarily reached

E Acceleration REAL Maximum acceleration. Always positive. Not necessarily reached
E Deceleration REAL Maximum deceleration. Always positive. Not necessarily reached
E Jerk REAL Maximum jerk. Always positive. Not necessarily reached
E CoordSystem ENUM Reference to the applicable coordinate system: ACS, MCS, PCS
E BufferMode MC_Group

BufferMode
Defines the chronological sequence of the FB relative to the previous
block. Refer to Chapter 7.3 Buffer Modes

E TransitionMode MC_TRANSITION
_MODE

See 2.4.3 Overview of Transition Mode

E TransitionParameter ARRAY [1..N] OF
REAL

Additional parameter for the transition mode (N = supplier specific)

VAR_OUTPUT
B Done BOOL Commanded end positions reached for all axes
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axis
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Note: -

 MC_MoveLinearAbsolute
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
ARRAY [1..N] OF REAL Position Busy BOOL

REAL Velocity Active BOOL
REAL Acceleration CommandAborted BOOL
REAL Deceleration Error BOOL
REAL Jerk ErrorID WORD

ENUM CoordSystem
MC_BUFFER_MODE BufferMode

MC_TRANSITION_MODE TransitionMode
ARRAY [1..N] OF REAL TransitionParameter

First example (continued..)

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 57/ 119

MoveLinearAbsolute - Example

MC_MoveLinearAbsolute
AxesGroup AxesGroup
Execute Done

Velocity
Acceleration
Deceleration
Jerk

Error
ErrorID

AxesGroup
Go

Pos Array_1
3000

10
10
0

2000
100
100

0

Test

Finish
OR

First Second

CommandAborted

Busy
Active

CoordSystem
BufferMode

Pos Array_2Position

t

t

t

t

GO

Done

First

0

0

0

1

1

1

Sequence of two complete motions Second motion interrupts First motion

CommandAborted

Finish

Test

Second

0

0

1

1

1

t

t

t

The same Position is reached at the end

AxesGroup.Velocity

Motion

0

PosArray _1

PosArray _2

2000

3000

TransitionMode
TransitionParameter

MCS

MC_MoveLinearAbsolute
AxesGroup AxesGroup
Execute Done

Velocity
Acceleration
Deceleration
Jerk

Error
ErrorID

CommandAborted

Busy
Active

CoordSystem
BufferMode

Position

TransitionMode
TransitionParameter

Aborting
TMDefinedVelocity

100%

MCS

Interrupt Point

Progress of the movement

First
point

Second
point

Starting point

Second
point

Starting
point Interrupt point

First point not crossed

Starting Point

0

Figure15: Example MC_MoveLinearAbsolute

Timing diagram (continued..)

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 58/ 119

Timing diagram for example above (the dots on the red line are based on the same timing difference and representing
the velocity)

Velo
cit

y
30

00

MC_MoveLinearAbsolute - Example

Sequence of two complete motions (Done>Execute)

Velocity

2000

Po
sA

rra
y_

1

Starting
point

Second
point

First
point

PosArray_1

X

Y

PosArray_2

Po
sA

rra
y_

2

Second motion interrupts first motion

X

Y

Interrupt
point
(Test)

Velo
cit

y
30

00

Velocity
2000

P
os

Ar
ra

y_
1

Starting
point

Second
point

First
point

PosArray_1

PosArray_2

Po
sA

rra
y_

2

Shape depends on blending settings
Here :
BufferMode = Aborting
TransitionMode = TMDefinedVelocity

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 59/ 119

5.21 MC_MoveLinearRelative

FB-Name MC_MoveLinearRelative

This function block commands an interpolated linear movement on an axes group from the actual position of the
TCP to a relative position in the specified coordinate system.

VAR_IN_OUT
B AxesGroup AXES_GROUP_REF Reference to a group of axes

VAR_INPUT
B Execute BOOL Start the motion at rising edge
B Distance ARRAY [1..N] OF

REAL
Array [1..N] of relative distances for each dimension in the
specified coordinate system. The value of n is supplier specific.
See 1.4 Glossary

E Velocity REAL Maximum Velocity [u/s] for the path for the coordinate system in
which the path is defined. Always positive. Not necessarily
reached

E Acceleration REAL Maximum acceleration. Always positive. Not necessarily reached
E Deceleration REAL Maximum deceleration. Always positive. Not necessarily reached
E Jerk REAL Maximum jerk. Always positive. Not necessarily reached
E CoordSystem ENUM Reference to the applicable coordinate system: ACS, MCS, PCS
E BufferMode MC_BUFFER_MO

DE
Defines the chronological sequence of the FB relative to the
previous block. Refer to Chapter 7.3 Buffer Modes

E TransitionMode MC_TRANSITION
_MODE

See 2.4.3 Overview of Transition Mode.

E TransitionParameter ARRAY [1..N] OF
REAL

Additional parameter for the transition mode (n = supplier specific

VAR_OUTPUT
B Done BOOL Commanded end positions reached for all axes
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axis
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Note: -

 MC_MoveLinearRelative
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
ARRAY [1..N] OF REAL Distance Busy BOOL

REAL Velocity Active BOOL
REAL Acceleration CommandAborte

d
 BOOL

REAL Deceleration Error BOOL
REAL Jerk ErrorID WORD

ENUM CoordSystem
MC_BUFFER_MODE BufferMode

MC_TRANSITION_MODE TransitionMode
ARRAY [1..N] OF REAL TransitionParameter

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 60/ 119

Example of MC_MoveLinearRelative

Second

Motion

Go

Done

Test

Finish

AxesGroup.Velocity

Command
Aborted

First

t

t

t

t

t

AxesGroup
Go

DistArray_1
3000

10
10
0

2000
100
100

0

Test

Finish
OR

First Second

MC_MoveLinearRelative - Example

1

0

1

1

0

0

Sequence of two complete motions Second motion interrupts first motion

0

1

1

0

0

DistArray_1 + DistArray_2

DistArray_1

2000

3000

DistArray_act + DistArray_2

Interrupt point

t

DistArray_2

Different Position is reached at the end

MC_MoveLinearRelative
AxesGroup AxesGroup
Execute Done

Velocity
Acceleration
Deceleration
Jerk

Error
ErrorID

CommandAborted

Busy
Active

CoordSystem
BufferMode

Distance

TransitionMode
TransitionParameter

MC_MoveLinearRelative
AxesGroup AxesGroup
Execute Done

Velocity
Acceleration
Deceleration
Jerk

Error
ErrorID

CommandAborted

Busy
Active

CoordSystem
BufferMode

Distance

TransitionMode
TransitionParameter

Aborting
TMDefinedVelocity

100%

MCSMCS

Progress of the movement

First
point

Second
point

Starting
point

First point not crossed
Interrupt point

Starting Point

Figure16: Example MC_MoveLinearRelative

(continued..)

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 61/ 119

Timing diagram for example above (the dots on the red line are based on the same timing difference and representing
the velocity)

Velo
cit

y
30

00

Sequence of two complete motions

Veloc ity

2000

D
ist

Ar
ra

y_
1

Starting
point

Second
point

First
point

DistArray_1

X

Y

DistArray_2

D
ist

Ar
ra

y_
2

Velo
cit

y
30

00

Second motion interrupts first motion

D
ist

Ar
ra

y_
1

Starting
point

Second
point

First
point

DistArray_1

X

Y

DistArray_2

D
is

tA
rra

y_
2

Veloci ty

2000

Shape depends on blending settings
Here :
BufferMode = Aborting
TransitionMode = TMDefined Velocity

Interrupt
point
(Test)

Second point
(Relative to
First point)

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 62/ 119

Example 2 (continued…)

Second

Motion

Go

Go2

AxesGroup.Velocity

First

t

t

t

t

AxesGroup
Go1

DistArray_1
3000

10
10
0

2000
100
100

0

Finish

First Second

MC_MoveLinearRelative – Blending Example

0

1

Sequence of two complete motions

0

1

0

2000

3000

DistArray_2

First point not crossed

MC_MoveLinearRelative
AxesGroup AxesGroup
Execute Done

Velocity
Acceleration
Deceleration
Jerk

Error
ErrorID

CommandAborted

Busy
Active

CoordSystem
BufferMode

Distance

TransitionMode
TransitionParameter

MC_MoveLinearRelative
AxesGroup AxesGroup
Execute Done

Velocity
Acceleration
Deceleration
Jerk

Error
ErrorID

CommandAborted

Busy
Active

CoordSystem
BufferMode

Distance

TransitionMode
TransitionParameter

Blending
TMCornerDistance

CornerDist

MCSMCS

0

Done

t
0

1
Finish

Go2

Buffered

1

0

Active

t

1

0

Active

Blending

Starting
point

Second
point

Progress of the move

DistArray_1 + DistArray_2

Starting Point

Bl1

Bl2

Figure17: Second example with MC_MoveLinearRelative and Blending

(Continued..)

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 63/ 119

Timing diagram for example above (the dots on the red line are based on the same timing difference and representing
the velocity)

Velo
cit

y
30

00

MC_MoveLinearRelative – Blending Example
When not Aborting, always reference points are

used
Velocity

2000

D
is

tA
rr

ay
_1

Starting
point

Second
point

DistArray_1

X

Y

DistArray_2

D
is

tA
rra

y_
2

Corn
erD

ist CornerDist

First point

Shape depends on blending settings.
In this example :
BufferMode = Blending
TransitionMode = TMCornerDistance

Blending

Bl1 point Bl2 point

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 64/ 119

5.22 MC_MoveCircularAbsolute

FB-Name MC_MoveCircularAbsolute

This function block commands an interpolated circular movement on an axes group from the actual position of the
TCP. The end point as well as the auxiliary point (meaning depending on applied mode, see below) are defined
absolutely in the specified coordinate system.

VAR_IN_OUT
B AxesGroup AXES_GROUP_REF Reference to a group of axes

VAR_INPUT
B Execute BOOL Start the motion at rising edge
B CircMode ENUM Specifies the meaning of the input signals 'AuxPoint' and 'CircDirection':

BORDER → 'AuxPoint' defines a point on the circle which is crossed on the
path from the starting to the end point.
CENTER → 'AuxPoint' defines the center point of the circle.
RADIUS → 'AuxPoint' defines the spearhead point of the perpendicular of the
circle plane according to the rule of right thumb. The radius of the circle is the
length of the vector.
In the FB MC_MoveCircularAbsolute, the points are specified absolutely, i.e.
the perpendicular vector begins in the origine and ends in the spearhead point
specified at the input signal 'AuxPoint'.

B AuxPoint ARRAY [1..N] OF REAL Array [1..N] of absolute positions for each dimension in the
coordinate system specified by the input signal
'CoordSystem', n vendor specific. See 1.4 Glossary

B EndPoint ARRAY [1..N] OF REAL Array [1..N] of absolute positions for each dimension in the
coordinate system specified by the input signal
'CoordSystem', n vendor specific. See 1.4 Glossary

E PathChoice MC_CIRC_PATHCHOICE Choice of path: CLOCKWISE or
COUNTERCLOCKWISE (ENUM)

E Velocity REAL Maximum Velocity [u/s] for the path for the coordinate
system in which the path is defined. Always positive. Not
necessarily reached

E Acceleration REAL Maximum acceleration [u/s2]. Always positive. Not
necessarily reached

E Deceleration REAL Maximum deceleration [u/s2]. Always positive. Not
necessarily reached

E Jerk REAL Maximum Jerk [u/s3]. Always positive. Not necessarily
reached

E CoordSystem ENUM Reference to the applicable coordinate system:
ACS, MCS, PCS

E BufferMode MC_GROUP_BUFFER_MODE Defines the chronological sequence of the FB relative to the
previous block. Refer to Chapter 7.3 Buffer Modes

E TransitionMode MC_TRANSITION_MODE See 2.4.3 Overview of Transition Mode.
E TransitionParameter ARRAY [1..N] OF REAL See 2.4.3 Overview of Transition Mode.

VAR_OUTPUT
B Done BOOL Commanded end positions reached for all axes
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axes group
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Note: see below

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 65/ 119

 MC_MoveCircularAbsolute
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
ENUM CircMode Busy BOOL

ARRAY[1..N] OF REAL AuxPoint Active BOOL
ARRAY[1..N] OF REAL EndPoint CommandAborte

d
 BOOL

MC_CIRC_PATHCHOICE PathChoice Error BOOL
REAL Velocity ErrorID WORD
REAL Acceleration
REAL Deceleration
REAL Jerk

ENUM CoordSystem
MC_BUFFER_MODE BufferMode

MC_TRANSITION_MODE TransitionMode
ARRAY[1..N] OF REAL TransitionParameter

End
point

X

Y

Border
point

Starting
point

CircMode = BORDER

The user defines the end point and a border point (=
input 'AuxPoint') on the sector of the circle, which
shall be cruised by the machine.

Advantages of this mode:
+ The border point usually can be reached by
the machine, i.e. it can be teached.

Inconvenience of this mode:
− Restriction to angles < 2π in one single
command

X

Y

Center
point

Starting
point

End
point

CircMode = CENTER

The user defines the end point and the center point (=
input 'AuxPoint') of the circle.

When using this mode, the input 'PathChoice'
defines, if the short or the long sector has to be
cruised by the machine.

Inconveniencies of this mode:
− Restriction to angles < 2π and ≠ π in one
single command
− Overdetermination of circle equation
− The center point usually cannot be teached
in due to collisions with obstacles.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 66/ 119

Starting
point

X

Y

(length = Radius of the circle)

End
point

Spearhead
point

CircMode = RADIUS

The user defines the end point and the perpendicular
vector of the circle plane according to the rule of
right thumb (see figure below). The length of the
vector corresponds to the radius of the circle. The
spearhead point of the vector is the input signal
'AuxPoint' in absolute coordinates, i.e. referring to
the origine of the coordinate system specified in
'CoordSystem'.

If the diameter is larger than the distance between
starting and end point, two different circles have to
be considered. When using this mode, the input
'PathChoice' defines, if the circle with the short sector
or the circle with the long sector to reach the end
point has to be cruised by the machine.
With positive radius value the shortest possible circle
is determined, and with negative radius value the
largest possible circle.

Inconvenience of this mode:
− Restriction to angles < 2π in one single
command
− The perpendicular vector has to be
computed.
− Overdetermination of circle equation

Example:
AuxPoint = (50,0,0) → Circle in plane parallel to y-
z plane with radius 50 and rotation around axis
parallel to x-axis according to the rule of right thumb
(CoordSystem = MCS)

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 67/ 119

Sequenced example of 2 MC_MoveCircularAbsolute FBs

Second

Motion

Go
(Execute)

Execute

AxesGroup.Velocity

First

t

t

t

t

MC_MoveCircularAbsolute – Sequenced Example

0

1

Sequence of two complete motions

0

1

0

0

2000

5000

0

Done

t
0

1
Finish

1

0

Active

t

1

0

Active

Starting
point

Endpoint1+EndPoint2

MC_MoveCircularAbsolute
AxesGroup AxesGroup
Execute Done

AuxPoint
EndPoint
PathChoice
Velocity

Error
ErrorID

AxesGroup
Go

Border

5000
100

Finish

First Second

CommandAborted

Busy
Active

Acceleration
Deceleration

CircMode

Jerk
CoordSystem

AxesGroup AxesGroup
Execute Done

AuxPoint
EndPoint
PathChoice
Velocity

Error
ErrorID

CommandAborted

Busy
Active

Acceleration
Deceleration

CircMode

Jerk
CoordSystem

Clockwise

100

Border

2000
100
100

AuxPointArray_1
EndPointArray_1

AuxPointArray_2
EndPointArray_2

Counterclockwise

10 10
MCS MCS

MC_MoveCircularAbsolute

BufferMode
TransitionMode
TransitionParameter

BufferMode
TransitionMode
TransitionParameter

First arc

Second arc

EndPoint1=StartPoint2

Progress of the movement

AuxPoint1
EndPoint1+AuxPoint2

EndPointArray_1 + EndPointArray_2

EndPointArray_1

Figure18: Example MC_MoveCircularAbsolute

 (continued..)

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 68/ 119

Timing diagram of example above. (the dots on the red line are based on the same timing difference and representing
thevelocity)

MC_MoveCircularAbsolute – Example

X

Y
Starting point

EndPoint1=StartingPoint 2

AuxPoint1

EndPoint2

AuxPoint2

Velocity
5000

Velocity
2000

EndPointArray_1

Au
xP

oi
nt

Ar
ra

y_
1

AuxPointArray_1

E
nd

P
oi

nt
Ar

ra
y_

1

En
dP

oi
nt

Ar
ra

y_
2

EndPointArray_2

Au
xP

oi
nt

Ar
ra

y_
2

AuxPointArray_2

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 69/ 119

5.23 MC_MoveCircularRelative
FB-Name MC_MoveCircularRelative

This function block commands an interpolated circular movement on an axes group from the actual position of the
TCP. The end point as well as the auxiliary point (meaning depending on applied mode, see below) are defined in the
specified coordinate system relatively to the starting point.

VAR_IN_OUT
B AxesGroup AXES_GROUP_REF Reference to a group of axes

VAR_INPUT
B Execute BOOL Start the motion at rising edge
B CircMode ENUM Specifies the meaning of the input signals 'AuxPoint' and 'CircDirection':

BORDER → 'AuxPoint' defines a point on the circle which is crossed on
the path from the starting to the end point. It is specified relatively to the
starting point.
CENTER → 'AuxPoint' defines the center point of the circle. It is
specified relatively to the starting point.
RADIUS → 'AuxPoint' defines the spearhead point of the perpendicular
of the circle plane according to the rule of right thumb. The radius of the
circle is the length of the vector.
In the FB MC_MoveCircularRelative, the points are specified relatively,
i.e. the perpendicular vector begins in the starting point and ends in the
spearhead point specified at the input signal 'AuxPoint'.

B AuxPoint ARRAY [1..N] OF REAL Array [1..N] of positions for each dimension in the coordinate
system specified by the input signal 'CoordSystem', N vendor
specific. These positions are defined relatively to the according
positions of the starting point. See 1.4 Glossary

B EndPoint ARRAY [1..N] OF REAL Array [1..N] of absolute positions for each dimension in the
coordinate system specified by the input signal 'CoordSystem',
n vendor specific. These positions are defined relatively to the
according positions of the starting point. See 1.4 Glossary

E PathChoice MC_CIRC_PATHCHOICE Choice of path: CLOCKWISE or COUNTERCLOCKWISE
(ENUM)

E Velocity REAL Maximum Velocity [u/s] for the path for the coordinate system
in which the path is defined. Always positive. Not necessarily
reached

E Acceleration REAL Maximum acceleration [u/s2]. Always positive. Not necessarily
reached

E Deceleration REAL Maximum deceleration [u/s2]. Always positive. Not necessarily
reached

E Jerk REAL Maximum Jerk [u/s3]. Always positive. Not necessarily reached
E CoordSystem ENUM Reference to the applicable coordinate system:

ACS, MCS, PCS
E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB relative to the

previous block. Refer to Chapter 7.3 Buffer Modes
E TransitionMode MC_TRANSITION_MODE See 2.4.3 Overview of Transition Mode.
E TransitionParam

eter
ARRAY[1..N] OF REAL See 2.4.3 Overview of Transition Mode.

VAR_OUTPUT
B Done BOOL Commanded end positions reached for all axes
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axes group
E CommandAbor

ted
BOOL Command is aborted by another command

B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Note: see below

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 70/ 119

 MC_MoveCircularRelative

AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF
BOOL Execute Done BOOL
ENUM CircMode Busy BOOL

ARRAY[1..N] OF REAL AuxPoint Active BOOL
ARRAY[1..N] OF REAL EndPoint CommandAborte

d
 BOOL

MC_CIRC_PATHCHOICE PathChoice Error BOOL
REAL Velocity ErrorID WORD
REAL Acceleration
REAL Deceleration
REAL Jerk

ENUM CoordSystem
MC_BUFFER_MODE BufferMode

MC_TRANSITION_MODE TransitionMode
ARRAY[1..N] OF REAL TransitionParameter

End
point

X

Y

Border
point

Starting
point

CircMode = BORDER
The user defines the end point and a border point
(= input 'AuxPoint') on the sector of the circle,
which shall be cruised by the machine. Both
points are defined relatively to the starting point.

Advantages of this mode:
+ The border point usually can be reached
by the machine, i.e. it can be teached.

Inconvenience of this mode:
− Restriction to angles < 2π in one single
command

C

S E

X

Y
1

2

Rx

Ry

CircMode = CENTER
The user defines the end point and the center
point (= input 'AuxPoint') of the circle. Both
points are defined relatively to the starting point

When using this mode, the input 'PathChoice'
defines, if the short or the long sector has to be
cruised by the machine.

Inconveniencies of this mode:
− Restriction to angles < 2π and ≠ π in one
single command
− Overdetermination of circle equation
− The center point usually cannot be teached-in
due to collisions with obstacles.

CircMode = RADIUS
The user defines the end point and the
perpendicular vector of the circle plane according

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 71/ 119

C

S E

X

Y
1

2

Rx

Ry

to the rule of right thumb (see figure below). The
length of the vector corresponds to the radius of
the circle. The spearhead point of the vector is
defined relatively to the starting point at the input
signal 'AuxPoint'.

If the diameter is larger than the distance between
starting and end point, two different circles have
to be considered. When using this mode, the input
'PathChoice' defines, if the circle with the short
sector or the circle with the long sector to reach
the end point has to be cruised by the machine.
With positive radius value the shortest possible
circle is determined, and with negative radius
value the largest possible circle.

Inconvenience of this mode:
− Restriction to angles < 2π in one single
command
− The perpendicular vector has to be
computed.
− Overdetermination of circle equation

Example:
AuxPoint = (starting_point[0], starting_point[1] -
30, starting_point[2]) → Circle in plane parallel
to x-z plane with radius 30 and rotation around
axis parallel to y-axis contrariwise the rule of
right thumb (CoordSystem = MCS)

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 72/ 119

5.24 MC_MoveDirectAbsolute

FB-Name MC_MoveDirectAbsolute

This function block commands a movement of an axes group to the specified absolute position in the specified
coordinate system without taking care of how (on which path) the target position is reached.

VAR_IN_OUT
B AxesGroup AXES_GROUP_REF Reference to a group of axes

VAR_INPUT
B Execute BOOL Start the motion at rising edge
B Position ARRAY [1..N] OF

REAL
Array [1..N] of end position for each dimension in the specified
coordinate system. The value of n is supplier specific. See 1.4
Glossary.

E CoordSystem ENUM Reference to the applicable coordinate system: ACS, MCS, PCS
E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB relative to the

previous block. Refer to Chapter 7.3 Buffer Modes
E TransitionMode MC_TRANSITION

_MODE
See 2.4.3 Overview of Transition Mode.

E TransitionParameter ARRAY[1..N] OF
REAL

See 2.4.3 Overview of Transition Mode.

VAR_OUTPUT
B Done BOOL Commanded end positions reached for all axes
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axis
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Note: The velocity/acc-/deceleration/jerk of every axis are properties of each axis and not specified within this
function block, but not to be exceeded during the move.

 MC_MoveDirectAbsolute
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
ARRAY [1..N] OF REAL Position Busy BOOL

ENUM CoordSystem Active BOOL
MC_BUFFER_MODE BufferMode CommandAborte

d
 BOOL

MC_TRANSITION_MODE TransitionMode Error BOOL
ARRAY[1..N] OF REAL TransitionParameter ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 73/ 119

5.25 MC_MoveDirectRelative

FB-Name MC_MoveDirectRelative

This function block commands a movement of an axes group to a relative position without taking care of how (on
which path) the target position is reached. Start position is the actual position of the TCP.

VAR_IN_OUT
B AxesGroup AXES_GROUP_REF Reference to a group of axes

VAR_INPUT
B Execute BOOL Start the motion at rising edge
B Distance ARRAY [1..N] OF

REAL
Array [1..N] of distances for each dimension in the specified
coordinate system. The value of n is supplier specific.

E CoordSystem ENUM Reference to the applicable coordinate system: ACS, MCS, PCS
E BufferMode MC_BUFFER_MODE Refer to Chapter 7.3 Buffer Modes
E TransitionMode MC_TRANSITION_MODE See 2.4.3 Overview of Transition Mode.
E TransitionParameter ARRAY[1..N] OF REAL See 2.4.3 Overview of Transition Mode.

VAR_OUTPUT
B Done BOOL Commanded end positions reached for all axes
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axis
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Note: The velocity/acc-/deceleration/jerk of every axis are properties of each axis and not specified within this function
block, but not to be exceeded during the move.

 MC_MoveDirectRelative
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Execute Done BOOL
ARRAY [1..N] OF REAL Distance Busy BOOL

ENUM CoordSystem Active BOOL
MC_BUFFER_MODE BufferMode CommandAborted BOOL

MC_TRANSITION_MODE TransitionMode Error BOOL
ARRAY [1..N] of REAL TransitionParameter ErrorID WORD

Following example shows the behaviour of MC_MovePositionDirectRelative. All positions are related to MCS:

• Starting at position p0 (10; 10) a MC_MoveLinearAbsolute to position p1 (80; 35) is commanded.
• While the TCP is moving towards p1, the MC_MoveLinearAbsolute command is aborted by a

MC_MovePositionDirectRelative command. The actual position of the TCP, when
MC_MovePositionDirectRelative becomes active, is (44.5; 21.63).

• The TCP leaves the line p0p1 and moves to the new target position p2 (54.5; 41.63). The resulting trajectory
depends on the kinematic transformation of the axes group.

1

2

MoveLinearAbsolute

CommandAborted

AxisGroup

Positio

Acceleration

Don

Activ

Bus
Execute

Deceleration
Jerk ErrorID

Erro

Velocity

CoordSystem
BufferMode

[80.0; 35.0]

10
2

MC_MCS
MC_Aborting

MyAxisGroup AxisGroup

MC_MCS

MC_Aborting

MoveDirectRelative

CommandAborted

AxisGroup

Distanc

TransitionMode

Don

Activ

Bus
Execute

ErrorID

Erro

CoordSystem
(10.0; 20.0)

AxisGroup

TransitionParameter

BufferMode

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 74/ 119

tMoveLinearAbsolute.Execute 1

0

tMoveLinearAbsolute.Done 1
0

t

MyAxisGroup.Velocity
(path velocity)

0

10

p0

10

10

Movement of
MyAxisGroup

tMoveLinearAbsolute.Active
0

1

tMovePositionDirectRelative.Execute 1
0

tMovePositionDirectRelative.Done 1
0

tMovePositionDirectRelative.Active
0

1

21.63

p2

44.5

p1

yMCS

xMCS

41.63

54.5

Figure19: Example MC_MoveDirectRelative

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 75/ 119

5.26 MC_PathSelect

FB-Name MC_PathSelect

This function block prepares the relevant path data and makes these available to the system as an output (PathData).
Administrative function block.

VAR_IN_OUT
B AxesGroup AXES_GROUP_REF Reference to the group of axes
B PathData MC_PATH_DATA_REF Reference to the resulting path data to be used in FBs requiring a

path description.
B PathDescription MC_PATH_REF Reference to the path description

VAR_INPUT
B Execute BOOL Start the preparation at the rising edge
E CoordSystem ENUM Reference to the applicable coordinate system: ACS, MCS, PCS

VAR_OUTPUT
B Done BOOL The PathData is valid
E Busy BOOL The FB is not finished
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification
Note:
• MC_PATH_DATA_REF is a supplier specific data type
• MC_PATH_REF is a supplier specific data type
• PathSelect makes data available. This can include:

1. Starting point of a download of a path profile, as represented in PathData and referenced by
PathDescription

2. Start to generate a path profile

 MC_PathSelect
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

MC_PATH_DATA_REF PathData PathData MC_PATH_DATA_REF
MC_PATH_REF PathDescription PathDescription MC_PATH_REF

BOOL Execute Done BOOL
ENUM CoordSystem Busy BOOL

 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 76/ 119

5.27 MC_MovePath

FB-Name MC_MovePath

This function block commands an AxesGroup to move according to the path specified in the PathData.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to the AxesGroup
B PathData MC_PATH_DATA_REF Reference to the path data, which can be prepared by

MC_PathSelect
VAR_INPUT

B Execute BOOL Start the motion at rising edge
E CoordSystem ENUM Reference to the applicable coordinate system: ACS, MCS,

PCS
E BufferMode MC_BUFFER_MODE Defines the chronological sequence of the FB relative to the

previous block. Refer to Chapter 7.3 Buffer Modes
E TransitionMode MC_TRANSITION_MODE See 2.4.3 Overview of Transition Mode.
E TransitionParameter ARRAY [1..N] OF REAL See 2.4.3 Overview of Transition Mode.

VAR_OUTPUT
B Done BOOL Commanded end positions reached for all axes
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axes group
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification
Note: -

 MC_MovePath
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

MC_PATH_DATA_REF PathData PathData MC_PATH_DATA_REF
BOOL Execute Done BOOL
ENUM CoordSystem Busy BOOL

MC_BUFFER_MODE BufferMode Active BOOL
MC_TRANSITION_MODE TransitionMode CommandAborte

d
 BOOL

ARRAY [1..N] OF REAL TransitionParameter Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 77/ 119

5.28 MC_GroupSetOverride

FB-Name MC_GroupSetOverride
This function block sets the values of override for the coordinated motion of several axes, and all functions that are
working on that axes group. The override parameters act as a factor that is multiplied to the commanded vector
velocity, acceleration, deceleration and jerk of all axes group function blocks.
Not applicable to master-slave group synchronized motion commands.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to the group of axes
VAR_INPUT

B Enable BOOL If SET, it writes the value of the override factor continuously. If RESET
it should keep the last value.

B VelFactor REAL New override factor for the vector velocity
E AccFactor REAL New override factor for the vector acceleration/deceleration
E JerkFactor REAL New override factor for the vector jerk

VAR_OUTPUT
B Enabled BOOL Signals that the override factor(s) is (are) set successfully
E Busy BOOL Is SET when the FB is active (not in idle mode).
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes:
1. The Input AccFactor acts on positive and negative acceleration (deceleration).
2. This FB sets the factor. The override factor is valid until a new override is set.
3. The default values of the override factors are 1.0.
4. The value of the overrides can be between 0.0 and 1.0. The behavior of values > 1.0 is supplier specific. Values

< 0.0 are not allowed. The value 0.0 is not allowed for AccFactor and JerkFactor. and generates an error
5. The value 0.0 set to the VelFactor stops the axis without bringing it to the state GroupStandby.
6. Override does not act on slave axes groups. (Axes groups in the state Group Synchronized motion).
7. The FB does not influence the state diagram of the axes group.
8. VelFactor can be changed at any time and acts directly on the ongoing motion.
9. Reducing the AccFactor and/or JerkFactor can lead to a position overshoot – a possible cause of damage.

 MC_GroupSetOverride
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

BOOL Enable Enabled BOOL
REAL VelFactor Busy BOOL
REAL AccFactor Error BOOL
REAL JerkFactor ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 78/ 119

Graphical Explanation

Enable

Enabled

Error

t

Axes Group
Vector Velocity

AccFactor

1.0

0.5

VelFactor

1.0

0.5

1 2 3

1

2

3

Axes Group Vector Velocity changes to 50% with 100% of deceleration

Axes Group Vector Velocity back to 100% with 50% acceleration

Axes Group Vector Velocity moves to 0% with 100% deceleration

1.0

0.5

0.0

0.0

4

4 No Change, because AccFactor 0.0 is not allowed; Error is set

Figure 20: Graphical explanation of MC_GroupSetOverride

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 79/ 119

6 Axes Group Synchronized Motion
The function blocks as defined in this chapter deal with a master/ slave relationship between a single or group of axes
and a single or group of axes for coordination purposes.

Figure 21: Graphical explanation of coordination

There are two kinds of coordinated motion that have to be distinguished from a programming point of view and in the
realization of the motion control itself. These two modes are identified here through their names:

• Synchronization
• Tracking

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 80/ 119

6.1 Synchronization
The relationship between single axis commands and synchronized motion is shown here.
There are 6 possibilities of associations:

1. Single-axis synchronized to an Axes-Group, Linear Synchronization
2. Single-axis synchronized to an Axes-Group, Non-Linear Synchronization (using MC_CamIn)
3. Axes-Group axis synchronized to a Single-axis, Linear Synchronization
4. Axes-Group axis synchronized to a Single-axis, Non-Linear Synchronization (using MC_CamIn)
5. Axes-Group axis synchronized to an Axes-Group, Linear Synchronization
6. Axes-Group axis synchronized to an Axes-Group, Non-Linear Synchronization (using MC_CamIn)

6.1.1 Synchronization of single axis to an axes group
This is an example of a single axis (as slave) synchronized to an axes group (master). The master follows its path and
the slave is linked to the position, velocity, acceleration, or any other magnitude of the master. An example is glue
dispensing, where the amount of glue to be dispensed is coupled to the velocity of the TCP of the robot. The single axis
slave motor movement of the glue dispenser is coupled to the trajectory of the TCP of the group over the surface of the
object via MC_AxisFollowGroup. Alternatively, if the position information is not critical, one can use

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 81/ 119

MC_GroupReadActualVelocity, perhaps combined with a gearing factor, and thus providing the input to the motor of
the glue dispenser,

6.1.2 Synchronization of an axes group to a single axis
This mode combines an axes group (as slave) with an axis as master in order that the slave executes its path with
synchronization to the progress of the master, meaning linked to a 1-dimensional source for synchronization. Examples
here include press synchronization. (Note: in case the slave is an axes group, a transformation to a virtual axis can be
applicable to generate the 1-dimensional synchronization data. In case both the master and the slave are axes groups, a
virtual master axis on the slave side is applicable (linked via cam profiles to the different axes) to use the 1-dimensional
synchronization data of the master side).
As an example of synchronization between a master single axis and a group can be the robot which places material in a
press machine: the robot has to synchronize to the opening phase of the press. A second robot also synchronizes to take
the material out.
The master is the (single or virtual) axis controlling the press. The axes group for both robot 1 and robot 2 has to
follow the press in a certain area of the master movement: opening for robot 2 to take the product out and closing for
robot 1 to add the new product.
For this synchronization the FB MC_SyncGroupToAxis is defined.

Robot1 Robot2

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 82/ 119

pr1 s1

s2

s3

s4

stroke

pr2 pr3 pr4

pr1 s1

s2

s3

s4

stroke

pr2 pr3 pr4

pr1 s1

s2

s3

s4

stroke

pr2 pr3 pr4

pr1 s1

s2

s3

s4

stroke

pr2 pr3 pr4

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 83/ 119

6.2 Tracking
Tracking is characterized by an axis group (A) that follows with its movement the movement of a single axis or another
axis group (B). During the coordinated following A is performing a movement/task relative to the movement of B. The
tracking data is a multidimensional source incl. position and orientation. Solutions can include a moving coordinate
system or a multi-dimensional gear functionality.
Tracking can be seen as a superposition of two movements, although these movements are independent. One, which is
the movement of the product (moving PCS) and the second one, which describes the path of the TCP that would be
executed if the product is standing still (Positions have to be defined in PCS). The Position of the PCS and therefore
also the movement of the PCS relative to MCS is described by the coordinate transformation MCS to PCS. For tracking
the following function blocks are defined here: MC_SetDynCoordTransform as a general one, and
MC_TrackConveyorBelt plus MC_TrackRotaryTable for specific applications. (Note: The considerations on the
limitations of the dynamics or mechanics are implementation specific.)
The basic example for the tracking of an axis group and a single axis is conveyor tracking, where the robot picks or
places parts on the moving conveyor or is putting some crème on a cake moving on the belt. An example for the
tracking of another axes group is having two robots, where robot B is holding a work piece, and robot A is performing
some welding on the part at the same time B is moving the work piece (see picture).

Generally there is no difference if A is tracking a single axis or an axis group, when thinking of a single axis as an axis
group having only one axis but also a kinematic (even if it is very simple). Then concepts of the motion planning as
well as of programming are the same.

A second tracking example deals with synchronization of a group and a transportation belt. The group synchronizes to
the belt, which is the master.
We have a (simple) Cartesian robot, consisting of 3 motors moving 3 axes. Application examples are to pick something
from the belt (with a correction in the Z-position), or to put some cream on a cookie that is lying on the belt.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 84/ 119

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 85/ 119

6.3 MC_SyncAxisToGroup

FB-Name MC_SyncAxisToGroup

This FB maps a single axis to a group. The single axis output represents the path length progression of the axes
group. There is the ability to set a ratio between group and single axis.

VAR_IN_OUT
B AxesGroup AXES_GROUP_REF Reference to the group of axes
B SlaveAxis AXIS_REF Reference to the axis (real or virtual)

VAR_INPUT
B Execute BOOL Starts the synchronization process on the rising edge
E RatioNumerator INT Gear Ratio Numerator.
E RatioDenominator UINT Gear Ratio Denominator
E Acceleration REAL Value of maximum acceleration
E Deceleration REAL Value of maximum deceleration
E Jerk REAL Value of maximum jerk
E CoordSystem ENUM Reference to the applicable coordinate system: ACS, MCS,

PCS
E BufferMode MC_BUFFER_MODE Defines the behavior of the axis: modes are Aborting,

Buffered, Blending. Refer to Chapter 7.3 Buffer Modes
VAR_OUTPUT

B InSync BOOL The (virtual) slave generates valid values
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axis
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification
Notes:
• This FB equals the mileage counter (odometer) in a car of the group and shows this via the Slave axis.
• The slave ramps up to the ratio of the path speed and locks in position when this is reached.
• The gearing ratio can be changed while FB is running, using a consecutive call of the FB
• InSync is set the first time the ratio is reached.
• After being InSync, a position locking or just a speed locking is system specific.
The FB is stopped by issuing a single axis FB.

 MC_SyncAxisToGroup
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

AXIS_REF Slave Slave AXIS_REF
BOOL Execute InSync BOOL

INT RatioNumerator Busy BOOL
UINT RatioDenominator Active BOOL
REAL Acceleration CommandAborted BOOL
REAL Deceleration Error BOOL
REAL Jerk ErrorID WORD

ENUM CoordSystem
MC_BUFFER_MODE BufferMode

Example: glue dispenser motor coupled to the movement of the TCP of the robot.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 86/ 119

6.4 MC_SyncGroupToAxis

FB-Name MC_SyncGroupToAxis

This function block commands an interpolated path movement on an axes group in the applicable coordinate
system. The multi axes motion is synchronized with the Master motion like in a cam function.

VAR_IN_OUT
B Master AXIS_REF Reference to the master axis
B AxesGroup AXES_GROUP_REF Reference to the group of axes
B PathData MC_Path_Data_REF Reference to the path data, which can be prepared by the function

block MC_PathSelect
VAR_INPUT

B Execute BOOL Start the motion at rising edge
E Mode MC_PathMode ENUM. Selects the mode of the FB like non_periodic, periodic.
E TuCNumerator ARRAY [1..N] OF INT Numerator of the conversion factors of the technical units of

each axis in the axes group to generate the applicable technical
unit for the slave.

E TuCDenominator ARRAY [1..N] OF INT Denominator of TuConversion
E Acceleration REAL Maximum acceleration. Always positive. Not necessarily

reached
E Deceleration REAL Maximum deceleration. Always positive. Not necessarily

reached
E Jerk REAL Maximum jerk for the axes group during coupling. Not

necessarily reached
E CoordSystem ENUM Reference to the coordinate system used: ACS, MCS, or PCS
E BufferMode MC_BUFFER_MODE Refer to Chapter 7.3 Buffer Modes

VAR_OUTPUT
B InSync BOOL The axes group follows the master axis
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axis
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification
Note: This synchronization of the axes group can be stopped via MC_GroupStop or any other motion command.

 MC_SyncGroupToAxis
AXIS_REF Master Master AXIS_REF

AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF
MC_Path_Data_REF PathData PathData MC_Path_Data_REF

BOOL Execute InSync BOOL
MC_PathMode Mode Busy BOOL

ARRAY [1..N] OF INT TuCNumerator Active BOOL
ARRAY [1..N] OF INT TuCDenominator CommandAborted BOOL

REAL Acceleration Error BOOL
REAL Deceleration ErrorID WORD
REAL Jerk

ENUM CoordSystem
MC_BUFFER_MODE BufferMode

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 87/ 119

Master

AxisGroup

Master

AxisGroup

MC_SyncGroupToAxes

MC_SyncGroupToAxis

Mode

TuCNumerator Active

CommandAborted

Jerk

CoordSystem

InSync

Acceleration

TuCDenominator

Deceleration

Error

Busy

Execute

Buffermode

ErrorID

PathData PathData

AxisGroup
PathDescript ion

AxisGroup

Done

MC_PathSelect

MC_PathSelect

PathData

PathDescription

PathData

BusyCoordSystem

Execute

Error

ErrorID

Axis

Execute

Axis

Done

MC_MoveAbsolute

MC_MoveAbsolute

Posit ion

Velocity Active

CommandAborted

Jerk

Direction

Busy

Buffermode

Acceleration

Deceleration Error

ErrorID

PressAxis
ExecuteMoveAbs
PositionMoveAbs

LREAL#100.0
LREAL#1000.0
LREAL#1000.0

LREAL#10000.0

RobotAxesGroup
RobotPathDescr
RobotPathData

ExecutePathSelect
MCS

Positive
Aborting

RobotPathDescr

BusyPathSelect
ErrorPathSelect
ErrorIDPathSelect

DoneMoveAbs
BusyMoveABs
ActiveMoveABs
AbortedMoveAbs
ErrorMoveAbs
ErrorIDMoveAbs

Periodic
1;1;1;1;1;1
1;1;1;1;1;1

MCS
Aborting

LREAL#1000.0
LREAL#1000.0

LREAL#10000.0

PressAxis
RobotAxesGroup
RobotPathData
InSyncMovePathS
BusyMovePathS
ActiveMovePathS
AbortedMovePathS
ErrorMovePathS
ErrorIDMovePathS

Axis

Enable

Axis

Valid

MC_ReadActualPosition

MC_ReadActualPosition

Busy

Error

ErrorID

Position

TRUE
PressAxis
ValidActualPosition
BusyActualPosition
ErroActualPosition
ErrorIDActualPos
PositionPressAxis

RobotPathDescr
N10 G01 X100
N20 G01 Y200 D5

ExecuteMoveAbs

ExecutePathSelect

DonePathSelect

PositionPressAxis

XPositionRobot

PositionMoveAbs

InSyncMovePathS

XPositionRobot

300.0

100.0

200.0

0.0

Figure 22: Example MC_SyncGroupToAxis

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 88/ 119

6.5 MC_SetDynCoordTransform

FB-Name MC_SetDynCoordTransform

This FB couples two Axes Groups via a dynamic coordinate transformation. The input for the coordinate transformation
is the MasterAxesGroup. The result of the transformation is mapped to the AxesGroup, meaning that the coordinate
system of AxisGroup will follow the MasterAxesGroup with the transformation as link

VAR_IN_OUT
B AxesGroup AXES_GROUP_REF Reference to the group of axes
B MasterAxesGroup AXES_GROUP_REF Reference to the master axes group
B CoordTransform MC_COORD_REF See 5.8.3 MC_SetCoordinateTransform (MCS to PCS)

VAR_INPUT
B Execute BOOL Start the motion at rising edge
E Mode MC_PathMode ENUM. Selects the mode of the FB like non_periodic, periodic.
E CoordSystem ENUM Reference to the coordinate system used: ACS, MCS, or PCS
E BufferMode MC_BUFFER_MODE Refer to Chapter 7.3 Buffer Modes

VAR_OUTPUT
B Done BOOL The dynamic transformation is set successfully
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axis
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification
Note: The PCS specified by the ENUM belongs to AxesGroup. It follows the movement of the MasterAxesGroup. The
relation between both AxisGroups is specified in CoordTransform.
The AxesGroup contains the Coordinate System specified by the ENUM CoordSystem

 MC_SetDynCoordTransform

AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF
AXES_GROUP_REF MasterAxesGroup MasterAxesGroup AXES_GROUP_REF

MC_COORD_REF CoordTransform Done BOOL
BOOL Execute Busy BOOL
ENUM CoordSystem Active BOOL

MC_GROUP_BUFFER_MODE BufferMode CommandAborted BOOL
 Error BOOL
 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 89/ 119

6.6 MC_TrackConveyorBelt

FB-Name MC_TrackConveyorBelt
This function block offers an abstraction layer for a conveyor belt, assisting the user with tracking objects moving on a
straight line in space.
The function block activates a dynamic calculation of the coordinate system transformation from MCS to the selected
coordinate system of the axes group.
The pose of the conveyor belt relative to MCS is given by a dedicated input of the FB. A further input specifies the
initial pose of an object lying on the conveyor belt. The actual position, velocity, etc. of the conveyor belt is given by a
single axis.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
E ConveyorBelt AXIS_REF Supplies the actual position, velocity, and etc. of the

conveyor belt and thus the actual position of the object
moved by the conveyor belt. The actual position is evaluated
relative to the position of the conveyor belt when the FB had
been started.

VAR_INPUT
B Execute BOOL Start the action at rising edge
B ConveyorBeltOrigin ARRAY [1..N] OF

REAL
Specifies the pose of the conveyor belt relative to MCS. The
conveyor belt might be shifted and/or rotated relative to
MCS.
This introduces a coordinate system of the conveyor belt in
which the position of an object lying on the conveyor belt
can be specified.
The x-axis of the coordinate system of the conveyor belt has
to point into the direction of movement of the conveyor belt.

E InitialObjectPosition ARRAY [1..N] OF
REAL

Specifies the pose of an object lying on the conveyor belt
relative to the conveyor belt. The object might be shifted
and/or rotated relative to the coordinate system of the
conveyor belt.

E CoordSystem ENUM Selects the coordinate system which should be used for the
implicit automatic calculation.
This input is only necessary if the axes group supports more
coordinate systems beside MCS than PCS. By default it
could be PCS.

E BufferMode MC_GROUP_BUFFER
_MODE

Defines the chronological sequence of the FB relative to the
previous block. Refer to Chapter 7.3 Buffer Modes

VAR_OUTPUT
B Done BOOL The transformation is set successfully
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the implicit calculation of the transformation is

going on.
E CommandAborted BOOL Command is aborted by another command which changes the

transformation for the selected coordinate system. This might
be another ConveyorBelt, a RotaryTable or
MC_SetCartesianTransform or MC_Set-
CoordinateTransform.

B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Note: This FB does not start any motion on itself. Motion is started by a motion command in PCS, and then the TCP is
tracking the moving PCS, i.c. conveyor belt. This provides a coordinate system for the slave, following the master

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 90/ 119

 MC_TrackConveyorBelt
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

AXIS_REF ConveyorBelt ConveyorBelt AXIS_REF
BOOL Execute Done BOOL

ARRAY [1..N] OF REAL ConveyorBeltOrigin Busy BOOL
ARRAY [1..N] OF REAL InitialObjectPosition Active BOOL

ENUM CoordSystem CommandAborted BOOL
MC_GROUP_BUFFER_MODE BufferMode Error BOOL

 ErrorID WORD

Following example should demonstrate the usage of the FB MC_TrackConveyorBelt.
The task is to manipulate a workpiece, starting from a certain position PPCS (xPCS; yPCS; 0) on the workpiece.

PCS.x

PCS.y

P

The workpiece is lying on a conveyor belt (CB) which is moving with speed vCB.
The workpiece is detected by a digital camera, which also provides the position (and orientation) of the workpiece
relative to the conveyor belt when the workpiece is detected.
At point in time t0, when the workpiece is detected by the camera, the FB MyConveyorBelt is executed. This activates
the automatic calculation of the coordinate transformation MCS ↔ PCS. Activating MyConveyorBelt simultaneously
executes the FB GotoP. The axes group starts to move from its waiting position WMCS towards PPCS.
At point in time t1 the axes group has reached PPCS. In meantime the conveyor belt has moved the distance dx0_1. After
having reached PPCS the process can be started. All positions within the process have to be related to PCS. At point in
time t2 the process is finished and the axes group moves back to its waiting position WMCS. A possible resulting
trajectory of the TCP is drawn in the picture below.

MCS.y

MCS.x

CB.x

CB.y PCS.x0PCS.y0

dx0_1

Trans
M

CS_CB
TransCB_PCS

RotMCS_CB

RotCB_PCS

PCS.x1PCS.y1

PPCS

dx1_2

PPCS

WMCS

PPCS

t0 t1 t2

possible
trajectoy
of TCP

vCB

The following examples demonstrate the usage:

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 91/ 119

(1.0, 1.0, 0.0;
0.0, 0.0, 90.0)

AxesGroup

Execute

AxesGroup

Done

MC_MoveDirectAbsolute

GotoP

Position

Active

CommandAborted

Busy

BufferMode

CoordSystem

Error

ErrorID

MyConveyorBelt

MyAxesGroup

PCS

AxesGroup

CoordSystem

AxesGroup

ConveyorBelt

ConveyorBelt

MyConveyorBelt

Execute

Active

CommandAborted

Busy

InitialObjectPosition

ConveyorBeltOrigin

Error

ErrorID

ConveyorBelt

BufferMode

NewWorkpiece

WorkpiecePosition

Camera

TransitionParameter

TransitionMode

AxesGroup

Execute

AxesGroup

Done

AnyProcess

. . .

. . .

Active

. . .

. . .

. . .

.

. . .

AxesGroup

Execute

AxesGroup

Done

MC_MoveDirectAbsolute

GotoW

Position

Active

CommandAborted

Busy

BufferMode

CoordSystem

Error

ErrorIDTransitionParameter

TransitionMode

MCS

(0.0, 2.0, 0.0)CoordSystem

(x,y)

tMyConveyorBelt.Execute 1

0

t
MyConveyorBelt.Active

1

0

t0 tEt1

Camera.NewWorkpiece
1

0

t
GotoP.Execute 1

0

tGotoP.Done 1

0

t
AnyProcess.Execute 1

0

t
AnyProcess.Done 1

0

t2

t
GotoW.Execute 1

0

t
GotoW.Done 1

0

t
MyAxisGroup.IsMoving 1

0

tMyAxisGroup.IsTracking 1

0

Figure 23: Example MC_TrackConveyorBelt

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 92/ 119

6.7 MC_TrackRotaryTable

FB-Name MC_TrackRotaryTable
This function block offers an abstraction layer for a rotary table, assisting the user with tracking objects moving on a
circle in space.
The pose of the rotary table relative to MCS is given by a dedicated input of the FB. A further input specifies the initial
pose of an object lying on the rotary table. The actual position, velocity, etc. of the rotary table is given by the position
of a single axis.
The function block activates a dynamic calculation of the coordinate system transformation from MCS to the selected
coordinate system of the axes group.
VAR_IN_OUT

B AxesGroup AXES_GROUP_REF Reference to a group of axes
E RotaryTable AXIS_REF Supplies the actual position, velocity, etc. of the rotary table

and thus the actual position of the object moved by the rotary
table. The actual position is evaluated relative to the position
of the rotary table when the FB had been started.

VAR_INPUT
B Execute BOOL Start the action at rising edge
B RotaryTableOrigin ARRAY [1..N] OF

REAL
Specifies the pose of the rotary table relative to MCS. The
rotary table might be shifted and/or rotated relative to MCS.
This results in a coordinate system of the rotary table in
which the position of the object can be specified.
The z-axis of the coordinate system of the rotary table has to
be perpendicular to the rotary table.

E InitialObjectPosition ARRAY [1..N] OF
REAL

Specifies the pose of an object lying on the rotary table
relative to the rotary table. The object might be shifted and/or
rotated relative to the coordinate system of the rotary table.

E CoordSystem ENUM Selects the coordinate system that should be used for the
implicit automatic calculation.
This input is only necessary if the axes group supports more
coordinate systems beside MCS than PCS. By default it
could be PCS.

E BufferMode MC_GROUP_BUFFER
_MODE

Defines the chronological sequence of the FB relative to the
previous block. Refer to Chapter 7.3 Buffer Modes

VAR_OUTPUT
E Done BOOL The transformation is set successfully
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the implicit calculation of the transformation is going on.
E CommandAborted BOOL Command is aborted by another command which changes the

transformation for the selected coordinate system. This might be another
RotaryTable, a ConveyorBelt or MC_SetCartesianTransform or MC_Set-
CoordinateTransform.

B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Notes: -

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 93/ 119

 MC_TrackRotaryTable
AXES_GROUP_REF AxesGroup AxesGroup AXES_GROUP_REF

AXIS_REF RotaryTable RotaryTable AXIS_REF
BOOL Execute Done BOOL

ARRAY [1..N] OF REAL RotaryTableOrigin Busy BOOL
ARRAY [1..N] OF REAL InitialObjectPosition Active BOOL

ENUM CoordSystem CommandAborted BOOL
MC_GROUP_BUFFER_MODE BufferMode Error BOOL

 ErrorID WORD

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 94/ 119

7 Details of Blending and Buffering of Movements

7.1 Terminological definitions

S1

E2

E1'
S2'

E1/S2

Contour curve: Inserted curve, which modifies the original path (E1’ - S2’).
Pre-block: Motion block before the contour curve (S1 – E1)
Post-block: Motion block after the contour curve (S2 – E2)
Corner distance: Distance (d) of the start point of the contour curve (E1’) to the programmed target point (E1), see
following figure.

S1

E2

d

E1'
S2'

E1/S2

Corner deviation: The shortest distance between the programmed corner point (E1/S2) and the contour curve (see
following figure).

S1

E2

e

E1/S2
E1'

S2'

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 95/ 119

7.2 Input parameter for blending
The input parameter “TransitionMode”, combined with the input “TransitionParameter”, define the shape and
dynamics of the inserted contour to connect the current motion block with the following motion block. For this
purpose, the programmed motion blocks are modified. This parameter does not define the chronological execution
time; this is given by the group specific input “BufferMode”.
For each BufferMode a specific TransitionMode must be entered. The supported transition modes are supplier specific
(see matrix of available transition modes).

Example: Input parameter BufferMode and TransitionMode in FB MC_MoveLinearAbsolute.

FB-Name MC_MoveLinearAbsolute

This function block commands an interpolated linear movement on an axes group from the actual position of the
TCP to an absolute position in the specified coordinate system

VAR_IN_OUT
B AxesGroup AXES_GROUP_REF Reference to a group of axes

VAR_INPUT
B Execute BOOL Start the motion at rising edge
B Position ARRAY [1..N] OF

REAL
Array [1..N] of absolute end positions for each dimension in the
specified coordinate system. The value of n is supplier specific. See
1.4 Glossary

E Velocity REAL Maximum Velocity [u/s] for the path for the coordinate system in
which the path is defined. Always positive. Not necessarily reached

E Acceleration REAL Maximum acceleration. Always positive. Not necessarily reached
E Deceleration REAL Maximum deceleration. Always positive. Not necessarily reached
E Jerk REAL Maximum jerk. Always positive. Not necessarily reached
E CoordSystem ENUM Reference to the applicable coordinate system: ACS, MCS, PCS
E BufferMode MC_Group

BufferMode
Defines the chronological sequence of the FB relative to the
previous block. Refer to Chapter 7.3 Buffer Modes

E TransitionMode MC_TRANSITION
_MODE

See 2.4.3 Overview of Transition Mode.

E Transition
Parameter

ARRAY [1..N] OF
REAL

Additional parameter for the transition mode (n = supplier specific)

VAR_OUTPUT
B Done BOOL Commanded end positions reached for all axes
E Busy BOOL The FB is not finished
E Active BOOL Indicates that the FB has control on the axis
E CommandAborted BOOL Command is aborted by another command
B Error BOOL Signals that an error has occurred within the function block
E ErrorID WORD Error identification

Note: -

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 96/ 119

7.3 Buffer Modes
For axes group motions the same buffer modes are used as for single axis motions (ENUM of type
MC_BUFFER_MODE).

No. MC_BUFFER_MODE Description
0 Aborting Start FB immediately (default mode)
1 Buffered Start FB after current motion has finished
2 BlendingLow The velocity is blended with the lowest velocity of both FBs
3 BlendingPrevious The velocity is blended with the velocity of the first FB
4 BlendingNext The velocity is blended with velocity of the second FB
5 BlendingHigh The velocity is blended with highest velocity of both FBs

Table 6: Overview of buffer modes

7.3.1 BufferMode “Aborting”
A FB with buffer mode “Aborting” aborts an ongoing motion and starts the new motion immediately.
The following figure shows just an example for buffer mode “Aborting”. In this example the first motion is stopped
and then the next motion is started.
The available transition modes are described later.

S1

E2

Execution of 2.FB

E1

E1'/S2

v

t

2. FB

7.3.2 BufferMode “Buffered”
The next FB affects the axes group as soon as the previous motion is ”Done”. There is no blending, so the input
TransitionMode is not evaluated.

S1

E2

Execution of 2.FB

E1/S2

v

t

2. FB

7.3.3 BufferMode “Blending”
The current and the next motion FBs are blended, so the axes group will not stop between the motions. The velocity is
blended according to the specified blending modes (BlendingLow, BendingPrevious, BlendingNext, BlendingHigh).
The transition contour is defined by the input parameter TransitionMode.
The following figure shows just an example for buffer mode „BlendingNext”. The available transition modes are
described later.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 97/ 119

S1

E2

E1'
S2'

E1/S2

v

t

2. FB

E1'
S2'

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 98/ 119

7.4 TransitionMode
Depending on the transition mode different supplier specific transition parameters can be given, which characterize the
contour curve.
The basic transition modes are defined. Other modes as well as supplier specific modes can be added.

No. MC_TRANSITION_MODE Description
0 TMNone Insert no transition curve (default mode)
1 TMStartVelocity Transition with given start velocity
2 TMConstantVelocity Transition with given constant velocity
3 TMCornerDistance Transition with given corner distance
4 TMMaxCornerDeviation Transition with given maximum corner deviation
5 - 9 Reserved by PLCopen
10 -… Supplier specific modes

Table 7: Overview of available transition modes

7.4.1 TransitionMode “TMNone” (insert no transition curve)
The motion blocks are not modified and no transition curve is inserted. This is the only possible transition mode for
buffer mode „Buffered”.
Any „Blending” buffer mode with this transition mode results to the same block transition like buffer mode „Buffered”
(see following figure).

S1

E2

E1/S2

v

t

2. FB

E1/S2

The following figure shows the contour for BufferMode “Aborting”.

S1

E2

Execution of 2.FB

E1E1'

S2

v

t

2. FB

E1' / S2

7.4.2 TransitionMode “TMStartVelocity” (Transition with given maximum velocity)
In this type of contouring, the corner distance of the contour curve is defined by a specified maximum percentage value
“TPStartVelocity” of the programmed velocity of the pre-block in order to start the curve.
The blending modes in the BufferMode are not evaluated for this TransitionMode.
The velocity on the contour curve does not have to be constant.
If e.g., TPStartVelocity = 50%, the contour curve is started after the velocity has reached 50% of the velocity
programmed in the pre-block during deceleration.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 99/ 119

S1

E2

v = TPStartVelocity
E1/S2

E1'

S2'
v

t

2. FB

E1'

S2'

100%

50%

TransitionParameter Description
TPStartVelocity <expr> Maximum velocity in percent of pre-block

7.4.3 TransitionMode “TMConstantVelocity”(Transition with given constant velocity)
In this type of contouring, the contour curve is dimensioned in a manner, that the curve can be traversed with a
constant specified percentage value “TPVelocity” of the transition velocity that results out of MC_BUFFER_MODE of
the next motion block. If e.g. TPVelocity = 50%, the contour curve is traversed with half the velocity that results out of
the buffer mode of the next motion block.
Because of the curvature of the contour and the given maximum acceleration of the axis nevertheless it is possible, that
the desired velocity is not reached.
The following figure shows the contour for a „blending” BufferMode.

S1

E2

v = TPVelocity * f(BufferMode)

E1/S2
E1'

S2'

v

t

2. FB

E1'
S2'

100%

50%

TransitionParameter Description
TPVelocity <expr> Velocity value in percent

For BufferMode “Aborting” the following contour curve is generated. The motion of the first FB is aborted and it is
tried in a user specific way to get back to the commanded path.

S1

E2

Execution of 2.FB

E1
S2
E1'

v

t

2. FB

E1'
S2'

100%

50%

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 100/ 119

7.4.4 TransitionMode “TMCornerDistance” (Transition with given corner distance)
If the position, where the original contour can be left is known, the user can specify the corner distance of the pre- and
post-block, by which the bordering motion blocks are to be shortened, explicitly.
The transition velocity is defined by the BufferMode. Because of the curvature of the contour and the given maximum
acceleration of the axis nevertheless it is possible, that the desired velocity is not reached.

S1

E2

d

d

E1/S2

E1'

S2'

v

t

2. FB

E1'
S2'

TransitionParameter Description
TPCornerDistance <expr> Distance (d) to the corner of the deviation and the return point from the

original contour.

7.4.5 TransitionMode “TMMaxCornerDeviation” (Transition with given maximum
corner deviation)

The corner distances, by which the bordering motion blocks are shortened, are automatically determined upon
geometrical considerations in such a manner that the given corner deviation is not exceeded.
The transition velocity is defined by the BufferMode. Because of the curvature of the contour and the given maximum
acceleration of the axis nevertheless it is possible, that the desired velocity is not reached.

S1

E2

e

E1/S2

E1'

S2'

v

t

2. FB

E1'
S2'

TransitionParameter Description
TPCornerDeviation <expr> Corner deviation (e), the shortest distance between the programmed corner

point and the contour curve.

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 101/ 119

Appendix 1. Compliance Procedure and Compliance List
Listed in this Appendix are the requirements for the compliance statement from the supplier of the Motion Control
Function Blocks. The compliance statement consists of two main groups: supported data types (see Appendix 1.2
Supported Data types) and supported Function Blocks, in combination with the applicable inputs and outputs (see
Appendix 1.2 Supported Data types and its paragraphs). The supplier is required fill out the tables for the used data
types and Function Blocks, according to their product, committing their support to the specification.

By submitting these tables to PLCopen, and after approval by PLCopen, the list will be published on the PLCopen
website, www.plcopen.org , as well as a shortform overview, as specified in Appendix 1.5 Short overview of the
Function Blocks.

In addition to this approval, the supplier is granted access and usage rights of the PLCopen Motion Control logo, as
described in chapter Appendix 1.6 The PLCopen Motion Control Logo and Its Usage.

Data types
The data type REAL listed in the Function Blocks and parameters (e.g. for velocity, acceleration, distance, etc.) may be
exchanged to SINT, INT, DINT or LREAL without to be seen as incompliant to this standard, as long as they are
consistent for the whole set of Function Blocks and parameters.
Implementation allows the extension of data types as long as the basic data type is kept. For example: WORD may be
changed to DWORD, but not to REAL.

Function Blocks and Inputs and Outputs
An implementation which claims compliance with this PLCopen specification shall offer a set of Function Blocks for
motion control, meaning one or more Function Blocks, with at least the basic input and output variables, marked as
“B” in the tables. These inputs and outputs have to be supported to be compliant.
For higher-level systems and future extensions any subset of the extended input and output variables, marked as “E” in
the tables can be implemented.
Vendor specific additions are marked with “V”, and can be listed as such in the supplier documentation.

- Basic input/output variables are mandatory Marked in the tables with the letter “B”
- Extended input /output variables are optional Marked in the tables with the letter “E”
- Vendor Specific additions Marked in the vendor’s compliance documentation with “V”

All the vendor specific items will not be listed in the comparison table on the PLCopen website, but in the detailed
vendor specific list, which also is published.
All vendor specific in- and outputs of all FBs must be listed in the certification list of the supplier. With this, the
certification listing from a supplier describes all the I/Os of the relevant FBs, including vendor-specific extensions, and
thus showing the complete FBs as used by the supplier.

http://www.plcopen.org/

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 102/ 119

Appendix 1.1. Statement of Supplier

Supplier name
Supplier address
City
Country
Telephone
Fax
Email address
Product Name
Product version
Release date

I hereby state that the following tables as filled out and submitted do match our product as well as the accompanying
user manual, as stated above.

Name of representation (person):

Date of signature (dd/mm/yyyy):

Signature:

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 103/ 119

Appendix 1.2. Supported Data types

Defined datatypes with MC library: Supported If not supported, which datatype used
BOOL
INT
WORD
REAL
ENUM

Table 8: Supported datatypes

Within the specification the following derived datatypes are defined. Which structure is used in this system:

Derived datatypes: Where used Supported Which structure
AXES_GROUP_REF Nearly all FBs
IDENT_IN_GROUP_REF MC_AddAxisToGroup

MC_RemoveAxisFromGroup

MC_BUFFER_MODE In all buffered FBs
MC_KIN_REF MC_SetKinTransform

MC_ReadKinTransform

MC_EXECUTION_MODE MC_SetKinTransform
MC_COORD_REF MC_SetCoordinateTransformation
MC_GROUP_BUFFER_MOD
E

MC_MoveLinearAbsolute
MC_MoveCircularAbsolute

MC_TRANSITION_MODE MC_MoveLinearAbsolute
MC_MoveLinearRelative
MC_MoveCircularAbsolute
MC_MoveCircularRelative

MC_CIRC_PATHCHOICE MC_MoveCircularAbsolute
MC_MoveCircularRelative

MC_PATH_DATA_REF
MC_PATH_REF

MC_PathSelect
MC_MovePath

Table 9: Supported derived datatypes

Appendix 1.3. Supported Buffer Modes
No. MC_BUFFER_MODE Supported
0 Aborting
1 Buffered
2 BlendingLow
3 BlendingPrevious
4 BlendingNext
5 BlendingHigh

Table 10: Overview of buffer modes

Appendix 1.4. Supported Transition Modes
No. MC_TRANSITION_MODE Supported
0 TMNone
1 TMMaxVelocity
2 TMDefinedVelocity
3 TMCornerDistance
4 TMMaxCornerDeviation
5 - 9 Reserved by PLCopen
10 -… Supplier specific modes

Table 11: Overview of available transition modes

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 104/ 119

Appendix 1.5. Short overview of the Function Blocks
Coordinated Function Blocks Supported Yes / No Comments (<= 48 char.)
MC_AddAxisToGroup
MC_RemoveAxisFromGroup
MC_UngroupAllAxes
MC_GroupReadConfiguration
MC_GroupEnable
MC_GroupDisable
MC_GroupHome
MC_SetKinTransform
MC_SetCartesianTransform
MC_SetCoordinateTransform
MC_ReadKinTransform
MC_ReadCartesianTransform
MC_ReadCoordinateTransform
MC_GroupSetPosition
MC_GroupReadActualPosition
MC_GroupReadActualVelocity
MC_GroupReadActualAcceleration
MC_GroupStop
MC_GroupHalt
MC_GroupInterrupt
MC_GroupContinue
MC_GroupReadStatus
MC_GroupReadError
MC_GroupReset
MC_MoveLinearAbsolute
MC_MoveLinearRelative
MC_MoveCircularAbsolute
MC_MoveCircularRelative
MC_MoveDirectAbsolute
MC_MoveDirectRelative
MC_PathSelect
MC_MovePath
MC_GroupSetOverride

Coordinated Supported Yes / No Comments (<= 48 char.)
MC_SyncAxisToGroup
MC_SyncGroupToAxis
MC_SetDynCoordTransform
MC_TrackConveyorbelt
MC_TrackRotaryTable

Table 12: Short overview of the Function Blocks

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 105/ 119

Appendix A 5.1. MC_AddAxisToGroup
If Supported MC_AddAxisToGroup Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
B Axis
VAR_INPUT
B Execute
E IdentInGroup
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID

Appendix A 5.2. MC_RemoveAxixFromGroup

If Supported MC_RemoveAxisFromGroup Sup.Y/N Comments
VAR_IN_OUT
 B AxesGroup
VAR_INPUT
B Execute
E IdentInGroup
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID

Appendix A 5.3. MC_UngroupAllAxes

If Supported MC_UngroupAllAxes Sup.Y/N Comments
VAR_IN_OUT
 B AxesGroup
VAR_INPUT
B Execute
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID

Appendix A 5.4. MC_GroupReadConfiguration

If Supported MC_GroupReadConfiguration Sup.Y/N Comments
VAR_IN_OUT
 B AxesGroup
VAR_INPUT
B Enable
B IdentInGroup
E CoordSystem
VAR_OUTPUT
B Axis
B Valid
E Busy
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 106/ 119

Appendix A 5.5. MC_GroupEnable
If Supported MC_GroupEnable Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID

Appendix A 5.6. MC_GroupDisable

If Supported MC_GroupDisable Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID

Appendix A 5.7. MC_GroupHome

If Supported MC_GroupHome Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup

VAR_INPUT
B Execute
B Position
E CoordSystem
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 107/ 119

Appendix A 5.8. MC_SetKinTransform
If Supported MC_SetKinTransform Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
E KinTransform
E ExecutionMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix A 5.9. MC_SetCartesianTransform

If Supported MC_ SetCartesianTransform Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
B TransX
B TransY
B TransZ
B RotAngle1
B RotAngle2
B RotAngle3
E ExecutionMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix A 5.10. MC_SetCoordinateTransform

If Supported MC_ SetCoordinateTransform Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
E CoordTransform
E ExecutionMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 108/ 119

Appendix A 5.11. MC_ReadKinTransform
If Supported MC_ ReadKinTransform Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Enable
VAR_OUTPUT
B Valid
E Busy
B KinTransform
B Error
E ErrorID

Appendix A 5.12. MC_ReadCartesianTransform

If Supported MC_ ReadCartesianTransform Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Enable
VAR_OUTPUT
B Valid
E Busy
B TransX
B TransY
B TransZ
B RotAngle1
B RotAngle2
B RotAngle3
B Error
E ErrorID

Appendix A 5.13. MC_ReadCoordinateTransform

If Supported MC_ ReadCoordinateTransform Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Enable
VAR_OUTPUT
B Valid
E Busy
B CoordTransform
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 109/ 119

Appendix A 5.14. MC_GroupSetPosition
If Supported MC_ GroupSetPosition Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
B Position
E Relative
E CoordSystem
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix A 5.15. MC_GroupReadActualPosition

If Supported MC_ GroupReadActualPosition Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Enable
E CoordSystem
VAR_OUTPUT
B Valid
E Busy
B Error
E ErrorID
B Position

Appendix A 5.16. MC_GroupReadActualVelocity

If Supported MC_ GroupReadActualVelocity Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Enable
E CoordSystem
VAR_OUTPUT
B Valid
E Busy
B Error
E ErrorID
B Velocity
E PathVelocity

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 110/ 119

Appendix A 5.17. MC_GroupReadActualAcceleration
If Supported MC_ GroupReadActualAcceleration Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Enable
E CoordSystem
VAR_OUTPUT
B Valid
E Busy
B Error
E ErrorID
B Acceleration
E Path Acceleration

Appendix A 5.18. MC_GroupStop

If Supported MC_ GroupStop Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
E Deceleration
E Jerk
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix A 5.19. MC_GroupHalt

If Supported MC_ GroupHalt Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
E Deceleration
E Jerk
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 111/ 119

Appendix A 5.20. MC_GroupInterrupt
If Supported MC_ GroupInterrupt Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
E Deceleration
E Jerk
VAR_OUTPUT
B Done
E Busy
E Comman Aborted
B Error
E ErrorID

Appendix A 5.21. MC_GroupContinue

If Supported MC_ GroupContinue Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
VAR_OUTPUT
B Done
E Busy
E Comman Aborted
B Error
E ErrorID

Appendix A 5.22. MC_GroupReadStatus

If Supported MC_ GroupReadStatus Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Enable
VAR_OUTPUT
B Valid
E Busy
B GroupMoving
B GroupHoming
B GroupErrorStop
B GroupStandby
B GroupStopping
B GroupDisabled
E ConstantVelocity
E Accelerating
E Decelerating
E InPosition
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 112/ 119

Appendix A 5.23. MC_GroupReadError

If Supported MC_ GroupReadError Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Enable
VAR_OUTPUT
B Valid
E Busy
B Error
E ErrorID
B GroupErrorID

Appendix A 5.24. MC_GroupReset

If Supported MC_ GroupReset Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID

Appendix A 5.25. MC_MoveLinearAbsolute

If Supported MC_ MoveLinearAbsolute Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
B Position
E Velocity
E Acceleration
E Deceleration
E Jerk
E CoordSystem
E BufferMode
E TransitionMode
E TransitionParameter
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 113/ 119

Appendix A 5.26. MC_MoveLinearRelative

Appendix A 5.27. MC_MoveCircularAbsolute

If Supported MC_ MoveCircularAbsolute Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
B CircMode
B AuxPoint
B EndPoint
E PathChoice
E Velocity
E Acceleration
E Deceleration
E Jerk
E CoordSystem
E BufferMode
E TransitionMode
E TransitionParameter
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

If Supported MC_ MoveLinearRelative Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
B Distance
E Velocity
E Acceleration
E Deceleration
E Jerk
E CoordSystem
E BufferMode
E TransitionMode
E TransitionParameter
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 114/ 119

Appendix A 5.28. MC_MoveCircularRelative

Appendix A 5.29. MC_MoveDirectAbsolute

If Supported MC_ MoveDirectAbsolute Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
B Position
E CoordSystem
E BufferMode
E TransitionMode
E TransitionParameter
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

If Supported MC_ MoveCircularRelative Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
B CircMode
B AuxPoint
B EndPoint
E PathChoice
E Velocity
E Acceleration
E Deceleration
E Jerk
E CoordSystem
E BufferMode
E TransitionMode
E TransitionParameter
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 115/ 119

Appendix A 5.30. MC_MoveDirectRelative
If Supported MC_ MoveDirectRelative Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Execute
B Distance
E CoordSystem
E BufferMode
E TransitionMode
E TransitionParameter
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix A 5.31. MC_PathSelect

If Supported MC_ PathSelect Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
B PathData
B PathDescription
VAR_INPUT
B Execute
E CoordSystem
VAR_OUTPUT
B Done
E Busy
B Error
E ErrorID

Appendix A 5.32. MC_MovePath

If Supported MC_ MovePath Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
B PathData
VAR_INPUT
B Execute
E CoordSystem
E BufferMode
E TransitionMode
E TransitionParameter
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 116/ 119

Appendix A 5.33. MC_GroupSetOverride
If Supported MC_ GroupSetOverride Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
VAR_INPUT
B Enable
B VelFactor
E AccFactor
E JerkFactor
VAR_OUTPUT
B Enabled BOOL
E Busy
B Error
E ErrorID

Appendix A 5.34. MC_SyncAxisToGroup

If Supported MC_ SyncAxisToGroup Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
B SlaveAxis
VAR_INPUT
B Execute
E RatioNumerator
E RatioDenominator
E Acceleration
E Deceleration
E Jerk
E CoordSystem
E BufferMode
VAR_OUTPUT
B InSync
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 117/ 119

Appendix A 5.35 MC_SyncGroupToAxis
If Supported MC_ SyncGroupToAxis Sup.Y/N Comments
VAR_IN_OUT
B Master
B AxesGroup
B PathData
VAR_INPUT
B Execute
E Mode
E TuCNumerator
E TuCDenominator
E Acceleration
E Deceleration
E Jerk
E CoordSystem
E BufferMode
VAR_OUTPUT
B InSync
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix A 5.36. MC_SetDynCoordTransform

If Supported MC_ SetDynCoordTransform Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
B MasterAxesGroup
B CoordTransform
VAR_INPUT
B Execute
E Mode
E CoordSystem
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 118/ 119

Appendix A 5.37. MC_TrackConveyorBelt
If Supported MC_ TrackConveyorBelt Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
E ConveyorBelt
VAR_INPUT
B Execute
B ConveyorBeltOrigin
E InitialObjectPosition
E CoordSystem
E BufferMode
VAR_OUTPUT
B Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

Appendix A 5.38. MC_TrackRotaryTable

If Supported MC_ TrackRotaryTable Sup.Y/N Comments
VAR_IN_OUT
B AxesGroup
E RotaryTable
VAR_INPUT
B Execute
B RotaryTableOrigin
E InitialObjectPosition
E CoordSystem
E BufferMode
VAR_OUTPUT
E Done
E Busy
E Active
E CommandAborted
B Error
E ErrorID

PLCopen
for efficiency in automation

TC2 - Task Force Motion Control December 3, 2008 © PLCopen – 2007 - 2008
Part 4 – Coordinated Motion V 1.0 page 119/ 119

Appendix 1.6. The PLCopen Motion Control Logo and Its Usage
For quick identification of compliant products, PLCopen has developed a logo for the motion control Function Blocks:

Figure 24: The PLCopen Motion Control Logo

This motion control logo is owned and trademarked by PLCopen.

In order to use this logo free-of-charge, the relevant company has to fulfill all the following requirements:

1. the company has to be a voting member of PLCopen;
2. the company has to comply with the existing specification, as specified by the PLCopen Task Force Motion

Control, and as published by PLCopen, and of which this statement is a part;
3. this compliance application is provided in written form by the company to PLCopen, clearly stating the

applicable software package and the supporting elements of all the specified tables, as specified in the
document itself;

4. in case of non-fulfillment, which has to be decided by PLCopen, the company will receive a written statement
concerning this from PLCopen. The company will have a one month period to either adopt their software
package in such a way that it complies, represented by the issuing of a new compliance statement, or remove
all reference to the specification, including the use of the logo, from all their specification, be it technical or
promotional material;

5. the logo has to be used as is - meaning the full logo. It may be altered in size providing the original scale and
color setting is kept.

6. the logo has to be used in the context of Motion Control.

	Start of Document
	Contributors
	Versions
	Table of Contents
	1 General
	1.1 Objectives
	1.2 Introduction
	1.3 Overview of the defined Function Blocks
	1.3.1 Length of FB names and ways to shorten them

	1.4 Glossary

	2 Principles of Coordinated Motion
	2.1 Coordinate System and kinematic transformation
	2.1.1 Kinematic Transformation

	2.2 How do commands behave in dynamic coordinate systems
	2.3 Movements
	2.4 Blending and Buffering of Movements
	2.4.1 General Information
	2.4.2 Overview of Buffer Modes
	2.4.3 Overview of Transition Modes
	2.4.4 Matrix of available transition modes

	3 Model
	3.1 State diagram
	3.2 Relationship Single Axis and Grouped Axes State Diagrams
	3.3 Input Execution Mode

	4 Axes Grouping
	4.1 Creating and using an AxesGroup

	5 Function Blocks for Coordinated Motion
	5.1 MC_AddAxisToGroup
	5.2 MC_RemoveAxisFromGroup
	5.3 MC_UngroupAllAxes
	5.4 MC_GroupReadConfiguration
	5.5 MC_GroupEnable
	5.6 MC_GroupDisable
	5.7 MC_GroupHome
	5.8 Transformation FBs
	5.8.1 MC_SetKinTransform (ACS to MCS)
	5.8.2 MC_SetCartesianTransform (MCS to PCS)
	5.8.3 MC_SetCoordinateTransform (MCS to PCS)
	5.8.4 MC_ReadKinTransform (ACS to MCS)
	5.8.5 MC_ReadCartesianTransform (MCS to PCS)
	5.8.6 MC_ReadCoordinateTransform (MCS to PCS)

	5.9 MC_GroupSetPosition
	5.10 MC_GroupReadActualPosition
	5.11 MC_GroupReadActualVelocity
	5.12 MC_GroupReadActualAcceleration
	5.13 MC_GroupStop
	5.14 MC_GroupHalt
	5.15 MC_GroupInterrupt
	5.16 MC_GroupContinue
	5.17 MC_GroupReadStatus
	5.18 MC_GroupReadError
	5.19 MC_GroupReset
	5.20 MC_MoveLinearAbsolute
	5.21 MC_MoveLinearRelative
	5.22 MC_MoveCircularAbsolute
	5.23 MC_MoveCircularRelative
	5.24 MC_MoveDirectAbsolute
	5.25 MC_MoveDirectRelative
	5.26 MC_PathSelect
	5.27 MC_MovePath
	5.28 MC_GroupSetOverride

	6 Axes Group Synchronized Motion
	6.1 Synchronization
	6.1.1 Synchronization of single axis to an axes group
	6.1.2 Synchronization of an axes group to a single axis

	6.2 Tracking
	6.3 MC_SyncAxisToGroup
	6.4 MC_SyncGroupToAxis
	6.5 MC_SetDynCoordTransform
	6.6 MC_TrackConveyorBelt
	6.7 MC_TrackRotaryTable

	7 Details of Blending and Buffering of Movements
	7.1 Terminological definitions
	7.2 Input parameter for blending
	7.3 Buffer Modes
	7.3.1 BufferMode “Aborting”
	7.3.2 BufferMode “Buffered”
	7.3.3 BufferMode “Blending”

	7.4 TransitionMode
	7.4.1 TransitionMode “TMNone” (insert no transition curve)
	7.4.2 TransitionMode “TMStartVelocity” (Transition with given maximum velocity)
	7.4.3 TransitionMode “TMConstantVelocity”(Transition with given constant velocity)
	7.4.4 TransitionMode “TMCornerDistance” (Transition with given corner distance)
	7.4.5 TransitionMode “TMMaxCornerDeviation” (Transition with given maximum corner deviation)

	Appendix 1. Compliance Procedure and Compliance List
	Appendix 1.1. Statement of Supplier
	Appendix 1.2. Supported Data types
	Appendix 1.3. Supported Buffer Modes
	Appendix 1.4. Supported Transition Modes
	Appendix 1.5. Short overview of the Function Blocks
	Appendix 1.6. The PLCopen Motion Control Logo and Its Usage

