
PLCopen
®

for efficiency in automation

 Total number of pages: 27

PLCopen - Promotional Committee 2
–

Training

Guidelines for usage of Object-Oriented Programming

Version 1.0 – Official Release

DISCLAIMER OF WARANTIES

THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS AND MAY BE SUBJECT TO FUTURE ADDITIONS,

MODIFICATIONS, OR CORRECTIONS. PLCOPEN HEREBY DISCLAIMS ALL WARRANTIES OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR

A PARTICULAR PURPOSE, FOR THIS DOCUMENT. IN NO EVENT WILL PLCOPEN BE RESPONSIBLE

FOR ANY LOSS OR DAMAGE ARISING OUT OR RESULTING FROM ANY DEFECT, ERROR OR

OMISSION IN THIS DOCUMENT OR FROM ANYONE’S USE OF OR RELIANCE ON THIS DOCUMENT.

Copyright © 2021 by PLCopen. All rights reserved.

Date: November 18, 2021

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 2/27

PLCopen Guidelines for usage of Object-Oriented Programming

The following paper is a document created within the PLCopen Promotional Committee 2 – Training.

It summarizes the results of the PLCopen Promotional Committee meetings, containing contributions of its

members as well as external sources:

Name Company

Rene Simon Hochschule Harz

Wolfgang Doll Codesys

Yves de la Broise IntervalZero

Anders Lekve Brandseth Framo

Daniel Wall Eaton

Filippo Venturi SACMI

Georg Rempfler Wyon

John Dixon ABB

Dominik Franz ABB

Ralf Dreesen Beckhoff

Saele Beltrani SACMI

Yo Takahashi Mitsubishi Electric

Juliane Fischer TUM

Eelco van der Wal PLCopen

Change Status List:

Version

number

Date Change comment

V 0.1 May 28, 2019 Document created by EvdW as input for the webmeeting

V 0.2 June 19, 2019 As result of the webmeeting June 11

V 0.3 July 2, 2019 As result of the webmeeting on July 2

V 0.4 July 30,2019 As result of the webmeeting on July 30

V 0.5 Oct. 30, 2019 As a result of the discussions upfront and webmeeting

V 0.6 Feb. 2, 2021 Conversion to boiler demo example

V0.6c March 5, 2021 Added examples and text in Ch. 3

V0.7 April 22, 2021 After feedback and webmeeting

V0.8 May 6, 2021 After feedback and webmeeting

V0.9 May 20, 2021 After additional feedback and decisions at webmeeting

V0.99 May 27, 2021 Published as Release for Comments to the public

V1.0 Nov. 18, 2021 As a result of the feedback and webmeeting on Nov. 17

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 3/27

Contents

1 INTRODUCTION TO THIS DOCUMENT ... 5
1.1. GOALS OF THIS WORKING GROUP ... 5

2 INTRODUCTION TO OOP FEATURES OF THE 3RD EDITION OF THE IEC 61131-3

STANDARD. .. 6
2.1. THE 3RD

 EDITION OF IEC 61131-3 ... 6

2.2. DEFINITIONS IN THE IEC 61131-3 STANDARD .. 6

2.3. DIFFERENCES IN OOP LANGUAGES .. 8

3 GENERIC APPROACH .. 9
3.1. GENERAL ... 9

3.2. MODULES AND COMMANDS AS OBJECTS .. 9

4 THE BASIC EXAMPLE: BOILER DEMO ... 11

4.1. OVERVIEW OF THE DIFFERENT PHASES ... 11

4.2. APPLICATION DESCRIPTION .. 11

4.3. THE EXAMPLE IN A CLASSICAL PROGRAM STYLE .. 12

4.4. CONVERTING THE PROGRAM TO A PLCOPEN COMPLIANT VERSION 13

4.5. ADDING ERROR BEHAVIOUR .. 16

4.6. ADDING A SYSTEM ALARM LIST .. 24

5 ADDITIONAL REFERENCES ... 26

5.1. FUNDAMENTALS FOR OOP GUIDELINES – CONSIDERATIONS.. 26

5.2. NOTES ON PERFORMANCE CONSIDERATIONS .. 26

5.3. NOTES FOR FURTHER INVESTIGATIONS ... 27

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 4/27

List of figures

Figure 1: Representation of IModules and ICommands ... 9

Figure 2: The boiler demo. ... 11

Figure 3: Layout of the POUs .. 12

Figure 4: Function block interface and state diagram of LConC ... 14

Figure 5: Same interfaces for different devices .. 15

Figure 6: Overview of the states in a simulation .. 16

Figure 7: The AttachDevice Method of the Error handler ... 17

Figure 8: The Error Handler FB with the list of the devices (FBs) .. 18

Figure 9: Initialization from the Error Handler in FB_Boiler .. 18

Figure 10: The structure for Error Handler ... 19

Figure 11: Main program with error handling .. 19

Figure 12: Example of the error message for one FB ... 20

Figure 13: Overview of the architecture ... 20

Figure 14: Example of a cyclic action linked to the IActionControl .. 21

Figure 15: Implementation of the Set action of the Behaviour Model ... 22

Figure 16: The needed changes in the Device FB ... 22

Figure 17: Corresponding changes to the attached devices .. 23

Figure 18: UML Diagram of the new design .. 23

Figure 19: Implementation of the delegation of the GetModelState ... 24

Figure 20: String array for the error handler ... 24

Figure 21: Example of an error string ... 25

Figure 22: Example of creating the string in the error message ... 25

Figure 23: The function FC_ErrorCode .. 25

List of abbreviations:

FB Function Block conform IEC 61131-3

FC Flow Controller

FD Feedwater Drum

FT Flow Transfer

LY Level Yield

LC Level Controller

OOP Object-Oriented Programming

OT Operation Technology

PID Proportional, Integral Derivative control algorithm

PLC Programmable Logic Controller

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 5/27

1 Introduction to this document

The 3rd edition of the IEC 61131-3 standard makes the usage of Object-Oriented Programming, OOP,

possible. Parallel to this, PLCopen has defined the concept of function block libraries including OOP and

the PLCopen Common Behaviour Model (see on the PLCopen Website “Creating PLCopen Compliant

Libraries V1_0” dated May 4, 2017), as well as sets of function blocks for motion control, safety, and

communication.

Starting with OOP, several choices need to be made right from the beginning: are all function blocks in one

Class? Think about the PLCopen Motion Control function blocks as an example, do we need then the

AxisRef as the reference to the axis or even the MC_ as part of the FB name? How do they contain the

methods? And will we use only methods, or also direct access to variables? Is the state machine for the axis

controlled by the methods? Are all axes’ objects with methods, and we access them only via these methods?

How about interfaces? And do we prefer composition above inheritance?

All these choices give a different look & feel to the users across the different systems, different training

guidelines and differences in maintenance. And this is where PLCopen wants to help and give guidance to

create a more homogeneous programming methodology.

1.1. Goals of this working group

Overall, there is little information on how to use OOP for industrial control or the operation technology

(OT). The goal of this group is to help here with the following recommendations:

• Guidance to using OOP in addition to the “classical” way.

• Provide the same look & feel in using OOP across the different platforms and implementations.

• Create generic design patterns for industrial control programming.

• The classical programming way should be possible to be used in addition to the OOP way (e.g. this

can mean that we have to extend the classical FBs with interfaces, methods, properties, and maybe

input and outputs).

As example, a boiler demo will be used to represent the different forms of programming.

https://plcopen.org/node/90?file=166
https://plcopen.org/node/90?file=166

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 6/27

2 Introduction to OOP features of the 3rd edition of the IEC 61131-3

standard.

2.1. The 3rd edition of IEC 61131-3

Modern programming environments refer in many cases to OOP which is included in Python, C++,

Objective-C, Smalltalk, Delphi, Java, Swift, C#, Perl, Ruby and PHP.

Important aspects of the 3rd Edition of the IEC 61131-3 standard are the integration of object-oriented

features. This includes Classes, including Methods and Interfaces, OOP features for Function blocks, and

Namespaces.

The 3rd edition of standard IEC 61131-3 – Programming Languages is approved as International Standard.

This means that this edition is now official and is available as International Standard at www.IEC.ch . This

standard is fully upwards compatible to IEC 61131-3, 2003 (2nd edition).

The inclusion of these extensions allows to implement PLC code with the same proven concepts and best

practices as the ones used in (object oriented) software development using higher level languages since

decades. These concepts yield easier readable, more modular, and finally more maintainable code.

Moreover, by becoming more modern and similar to the mentioned highly distributed languages, a whole

pool of software engineers may be attracted into the field of PLC development. And therewith, PLC code

may become a first-class citizen in the software portfolio of enterprises.

Note that references are made to the IEC 61131-3 standard itself as is available at www.IEC.ch. These used

references are for explanation only and for completeness the standard itself should be bought.

2.2. Definitions in the IEC 61131-3 standard

With these OOP extensions, there are several changes or new definitions in comparison to the 2nd edition.

For instance, a program organization unit, originally defined as function, function block, or program, is

extended to include a category “class”.

Function blocks and classes may contain methods. Moreover, they are inheritable what leads to the concepts

of base types, derived function blocks and derived classes, respectively.

The most important new definitions are listed here:

Name Description

base type data type, function block type or class from which further types are

inherited/derived.

call language construct causing the execution of a function, function block, or method.

class program organization unit consisting of:

• the definition of a data structure,

• a set of methods (like subroutines) to be performed upon the data structure

A class is an implementation— a concrete data structure and collection of

subroutines— while a type is an interface.

derived class class created by inheritance from another class.

Note 1 to entry: Derived class is also named extended class or child class.

Note 2: this is of course very much in line with derived data type and derived

function block type as defined in the IEC 61131-3-2003.

https://www.iec.ch/

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 7/27

dynamic

binding

situation in which the instance of a method call is retrieved during runtime

according to the actual type of an instance or interface.

inheritance creation of a new class, function block type or interface based on an existing

class, function block type or interface, respectively.

input variable variable which is used to supply a value to a program organization unit except for

class.

instance individual, named copy of the data structure associated with a function block

type, class, or program type, which keeps its values from one call of the

associated operations to the next.

interface language element in the context of OOP containing a set of method prototypes.

Example: it is similar to a motor flange: it describes holes diameter, distance,

shaft size, but it is not a motor.

method language element similar to a function that can only be defined in the scope of a

function block or class type and with implicit access to instance variables of the

function block instance or class instance.

Example: a boiler can have a Fill method, a HeatUp method, each one performing

a specific task.

override keyword used with a method in a derived class or function block type for a

method with the same signature as a method of the base class or function block

type using a new method body

output variable variable which is used to return a value from the program organization unit except

for classes.

program

organization

unit

function, function block, class, or program.

signature set of information defining unambiguously the identity of the parameter interface

of a METHOD consisting of its name and the names, types, and order of all its

parameters (i.e., inputs, outputs, in-out variables, and result type).

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 8/27

2.3. Differences in OOP languages

There are other OOP languages, and the table hereunder gives a short overview of the commonalities and

differences.

Language Properties IEC 61131-3

2nd edition

IEC 61131-3

3rd Edition

C++ Java C#

Multi languages + + - - -

OOP/procedural mixed - + + - -

Classes ~ (FB) + + + +

Methods ~ (Actions) + + + +

Interfaces - + - + +

Polymorphism - + +/- + +

Semantic Reference - + (Interfaces) - + +

Constructor/Destructor -/+ -/+ + + +

Properties - - - - +

Dyn. Memory („new“) - - + + +

Access control ~ (Variables) ~ (Variables) + + +

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 9/27

3 Generic Approach

3.1. General

The PLCopen document "Guidelines for usage of Object Orientation" defines a set of currently generally

accepted rules for good OOP design in the context of the IEC61131-3 3rd Edition.

It is advised to read the document PLCopen Software Creation Guidelines: Creating PLCopen Compliant

Libraries, Version 1.0 of May 4, 2017, which is downloadable from the PLCopen website. As part of this,

we will use the SOLID principles in the automation technology environment. SOLID stands for:

- SRP — Single Responsibility Principle

- OCP — Open/Closed Principle

- LSP — Liskov Substitution Principle

- IPS — Interface Segregation Principle

- DIP — Dependency Inversion Principle

3.2. Modules and Commands as Objects

When designing applications and libraries in an OOP way, we differentiate between modules and

commands.

• A module represents a part of an automation application including their software function and can

also be nested hierarchically as required. For example, actors, sensors, or component assemblies of

machines may be represented in code by "modules".

• A command represents a concrete action of a module. It is assigned to one module or to a group of

modules that implement the same interface.

Figure 1: Representation of IModules and ICommands

https://plcopen.org/node/90?file=166
https://plcopen.org/node/90?file=166

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 10/27

Every module is implementing a generic IModule interface.

Some modules implement additionally a more specialized interface. For example, the modules that provide

the functionality of an axis, are implementing an IAxis interface.

Every command will implement a generic ICommand interface and will follow the design guidelines for

PLCopen conforming function blocks.

The axis related commands provide an input of type IAxis to get the reference to a related axis instance they

will act upon.

With this construction it is possible to bring two worlds reconcilable together.

For example, the classic PLCopen Motion function blocks can be reused in their traditional form. At the

same time, these function blocks can also be controlled via their modern interface. This opens new

possibilities for innovative solutions such as reconfiguring applications at runtime.

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 11/27

4 The basic example: boiler demo

4.1. Overview of the different phases

The original example was used for a demonstration at the Hanover Fair in cooperation with the OPC

Foundation.

This original code is transferred into a format that is compliant with the PLCopen Guidelines, so based on

the harmonized function block interfaces.

The next step is to convert this to Object Orientation, which is followed by the addition of an error handler

and alarm management.

The program is written in Structured Text and the code can be found on the PLCopen website as a Codesys

project.

4.2. Application description

The application of the example “Boiler Demo” consists of a simulated boiler as shown in Figure 2: The

boiler demo.

Figure 2: The boiler demo.

https://plcopen.org/plcopen-oop-boiler-demo

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 12/27

4.3. The example in a classical program style

The application simulates a boiler process with a basic PID controller supported by flow control (FC) and

level control (LC) including a random generator for disturbances in the feeds.

There are two programs, 4 user derived functions and 17 user derived function blocks.

PROGRAM - MAIN & P_Initialisation

Defined FUNCTIONS

F_FeedwaterEstimator

F_AlignValues

F_IntToReal

F_RealToInt

Defined FUNCTION BLOCKS

FB_AutomaticMode

FB_InputParameter

FB_DRAND

FB_BasicPIDCtrl

FB_Boiler

FB_OutputPipe

FB_SteamFlow

FB_InputPipe

FB_Valve

FB_FeedwaterRate

FB_Drum

FB_FillLevel

FB_Potentiometer

FB_Motor

FB_LevelController

FB_FlowController

FB_ControlComputation

Figure 3: Layout of the POUs

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 13/27

4.4. Converting the program to a PLCopen compliant version

The design is already well structured with regards to the first SOLID rule "Single Responsibility Principle".

There is a separate FB for every hardware element, as well as for every new task.

Unfortunately, this application has not yet been designed according to an OOP approach, so the other rules

are not adhered to.

There is no interface and there is no abstraction. All FBs were programmed and used directly on the detail

level.

There are two possible approaches to adapting this application:

1. A complete redesign of the application according to OOP approaches and rules. An exceptionally good

architecture can be achieved in this way.

Unfortunately, this solution is very time-consuming and expensive, which makes it difficult for a machine

builder to get a completely new software generation approved by the management.

2. Therefore, we try to present a second possibility to partially restore the application. Due to the good

starting point, this step can be considered. For (brownfield) applications that have grown over many years

and are too nested, it is better to rely on a new generation.

The original building blocks were programmed on the lowest level of detail. The first step is to achieve

standardization and abstraction of the building blocks. The PLCopen guidelines for function block libraries

offer a clear interface and standardized behaviour for this purpose. The essence of the guidelines is the so-

called "behaviour model". So, the first step was to convert the original program including the defined

function and function blocks into the applicable behaviour model, including the state machine and the error

behaviour. The OOP structure of the PLCopen Common Behaviour Model offers us excellent opportunities

to implement this in just a few steps and changes.

Also, we try to use the “Open/Closed Principle” and “Dependency Inversion Principle”. In addition, a first

interface is defined which can be used for future extensions.

Because the building blocks can be extended by the defined behaviour models, in this case the LConC is

used, they get an abstract higher level that does not depend on the details of the lower level. The LConC

also defines an interface which must now be implemented by the old FB’s. In the first step, however, only

the code from the body of the old FB’s has to be copied into the Cyclic Action method.

As a result, the “Open/Closed Principle” is adhered to, the block retains its functionality, and the existing

software code does not have to be changed. This also gives classic style software developers the opportunity

to slowly get used to the changeover. Since the FB’s are still 1-to-1 identical, and the implementation has

not been changed significantly either. But the modules are now open for expansion. Also, incorrect user

entries and parameterization can now be monitored in the StartAction (as used in the edge triggered function

blocks as defined in the PLCopen library document), in order to increase the stability. In addition, the

modules now have an abstract and uniform interface with which further extensions can be made that follow

the “Interface Segregation Principle”.

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 14/27

Figure 4: Function block interface and state diagram of LConC

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 15/27

Figure 5: Same interfaces for different devices

The consistent design of the Common Behaviour Model enables us to create an abstraction that is even

independent of the state machine chosen. As all state machines, it is derived from an abstract class with a

general defined interface.

This now offers the possibility to manage the FBs in a uniform way at a higher level. For example, to

implement an error handler that can manage all FBs regardless of their implementation (Interface

Segregation Principle).

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 16/27

Figure 6: Overview of the states in a simulation

Be aware that the main program here is not usable in real applications as it is missing a start-up sequence, a

shutdown sequence, and error handling. This is the part that is customized for every application. These

additions will show further benefits of the OOP due to the re-use.

4.5. Adding Error Behaviour

As an example of this, the error behaviour is added as a central error handling function block, which traces

all the used function blocks. This is shown in 2 ways: via inheritance and via composition.

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 17/27

We will not use the different detailed FBs directly, but we will use our abstract Interface IBehaviourModel

(see Figure 5:Same interfaces for different devices). This interface gives access to the Outputs from the

function blocks which include xDone, xBusy, xError, xAborted, iErrorID. This is the idea from the Interface

Segregation Principle, and with this, all the FBs from the Common Model Library can now be connected.

This is not corresponding to only one FB-type, nor to one Behaviour Model. All described Behaviours and

types can be connected without any adaptation to this ErrorHandler.

The idea is to map all the function blocks to an array which is included in the error handler, to enable an

iteration through all the function blocks. In this Array we will not have a Pointer to the different FBs on

detail level, but we will have the basic interface IBehaviour Model only. With the Method GetModelState

we can monitor the required information from all FB. See Figure 8:The Error Handler FB with the list of the

devices (FBs).

The Error Handler has two methods to link it to the devices (FBs): AttachDevice and DetachDevice. The

error handler has these two methods for attach and detach, reflecting it in the device list. The error handler

references to this list (see Figure 10:The structure for Error Handler).

We can now monitor all FBs with the same Method GetModelState and build a structure with Status

Information so that one can see the status from all the function blocks.

Figure 7: The AttachDevice Method of the Error handler

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 18/27

Figure 8: The Error Handler FB with the list of the devices (FBs)

The definition of the Attach and Detach Methods is done in an Interface which is implemented from the

Error Handler. This interface can now be used by the Boiler to attach all the instances to the Error Handler.

Figure 9: Initialization from the Error Handler in FB_Boiler

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 19/27

Figure 10: The structure for Error Handler

In the main program we can now build an instance from the Error Handler and connect the Error Handler to

the Boiler instance:

Figure 11: Main program with error handling

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 20/27

Figure 12: Example of the error message for one FB

The error handler is now a standard component of all FBs. It handles all the devices centrally without

separately calling all the instances of the used FBs, while being able to centrally read all the relevant

information of the FBs.

This concept makes it easier to control all the function blocks with one list only. In an alternative way, one

must connect to all the FBs and point to all the different available function blocks. Now you have only one

interface with one list from which you can control all listed function blocks.

Figure 13: Overview of the architecture

The model in Figure 13: Overview of the architecture shows that LConC (and its interface) inherits from the

BehaviourModelIBase and so the interface IBehaviourModel.

The I_ErrorHandler interface is linked to all the FBs which are used in the demo as well as to the

FB_ErrorHandler. In this way, the ErrorHandler can connect to all applicable FBs.

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 21/27

Using inheritance as a base design for FBs gives a nice abstract control option but shows some limitations.

We are no longer able to extend the detailed device FB on an abstract Level. The reason for this limitation is

that one cannot use inheritance on the abstract Level BehaviourModelBase as it uses inheritance already.

This is the point to check, if we can optimize this design by using composition instead of inheritance for the

Behaviour Model (see 5.1 Fundamentals for OOP Guidelines – considerations). For this, we must show how

we can define the Behaviour Modell as a member of our FBs but define the Method for the different states

in the same way as before. (Open/Closed Principle).

A feature from the Common Behaviour Model can help us to implement this design. The FBs in the Library

support the connection of an Action Controller - see red lines in figure 16 - which allows a FB which

implements the IActionControl to do a Method call instead of the methods which come from the Behaviour

Model.

The idea is now to create a new Abstract Device Base Class, which has as a new feature ‘Name’ from the

FB as a complete Path. To support now the Composition from Behaviour Model, our Base Class implements

the IActionControl. To follow the “Open/Closed Principle”, it is recommended to implement the

IActionProvider Interface also. This allows the detailed Device FB to work with the behaviour

implementation on the same way as before.

In the Method from the Action Controller, one calls a Method, which comes from the Action Provider.

The following example shows this situation for the method ControlCyclicAction:

Figure 14: Example of a cyclic action linked to the IActionControl

The Base Class will also get a Property to ‘get’ and ‘set’ the IBehaviourModel. In the Setter the

IActionControl will directly link to the instance of the created Behaviour Model.

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 22/27

Figure 15: Implementation of the Set action of the Behaviour Model

The detailed FB can now decide, which Behaviour Model it will use. The only applicable changes are the

following:

• Change the inheritance from the LConC to our own Base Class.

• Create an Input variable for xEnable or xExecute based on your decided Behaviour.

• Create an instance from the Behaviour you want to use.

• Change the Execution from the Model in the Body and give the member Behaviour instance to the

Property.

See the following example:

Figure 16: The needed changes in the Device FB

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 23/27

To attach our FBs to the Error Handler we use our property so that the interface to the Error Handler can

still be the same.

Figure 17: Corresponding changes to the attached devices

The architecture is shown in Figure 18:UML Diagram of the new design. It has now the advantage, that we

can use the new abstract FB to add new features which are related to all FBs in a consistent way. Code

redundance is also avoided in every FB. Furthermore, it provides the possibility to inject the Behaviour

Model from outside with the Property BehaviourModel.

Figure 18: UML Diagram of the new design

Based on this, it is easy to create additional functionalities, like an alarm list, as done in 4.6 Adding a system

alarm list.

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 24/27

4.6. Adding a system alarm list

One can differentiate between process alarms and system alarms, to filter them for different users (e.g. tank

operator and system administrator). This example deals with system alarms, but the process alarms can be

created in a similar way. One can even extend the FBs with an output like ProcessAlarm and handle these

separately.

To create an error list it may be useful, to know in which FB the Error is happening or even the complete

instance path.

For that, we have implemented the name and a Method to have access to the Name in our Abstract Base

class. The name is generated here by a feature of the Codesys Development System, but it can also be set

via a Property, for example during the Init Routine in the Boiler FB. Using an Interface which describes the

Method directly follows the Interface Segregation Principle.

To get access to this method, we need a new or extended Interface for the Error Handler. Changing the

interface is normally not the best style but, in this case, we can directly implement the interface in such a

way, so that it includes only the necessary information. In this sample these are the GetModuleState and the

GetName Methods. So, it makes sense to adapt the Interface in the Attach / Detach Method and the Array of

Interfaces in a way that they do not use the IBehaviourModel but the new Interface IBasicElement. The

Method GetModelState will delegate the request to the internal set State Machine, as shown hereunder

(Note: ERROR type is defined in Figure 4: Function block interface and state diagram of LConC):

Figure 19: Implementation of the delegation of the GetModelState

This is implemented in a way that all errors which happen are presented in a string array, which users can

read.

Figure 20: String array for the error handler

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 25/27

Figure 21: Example of an error string

Figure 22:Example of creating the string in the error message, shows a small function as part of the error

handling which converts the Error into a clear string, only on the rising and falling edge of the xError

Output.

Combined with a function FC_ErrorCode which converts the iErrorID to a string (see Figure 23:The

function FC_ErrorCode).

Figure 22: Example of creating the string in the error message

Figure 23: The function FC_ErrorCode

A possible improvement in the design can be to change the way the ErrorHandler checks all the FBs in a

cyclic way. One idea can be to use here the Observer Pattern in this way that the ErrorHandler is connected

to the Devices as an Observer and the Devices will send out a notification if the Status is changed.

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 26/27

5 Additional References

5.1. Fundamentals for OOP Guidelines – considerations

Within this document, some key aspects shall be taken into consideration:

• Good design but bad performance -- Which details should be considered in order not to influence the

performance too much?

• Inheritance and composition -- How inheritance weakens encapsulation

Many respected OO designers1 have stated that composition should be given preference over

inheritance whenever possible and that inheritance should only be used when necessary.

However, this statement is somewhat shortened. The call that composition should be used whenever

possible obscures the actual problem.

Experience shows that composition is in most cases more appropriate than the use of inheritance.

The fact that composition seems more appropriate in most cases does not mean that the use of

inheritance is to be avoided.

Both methods, inheritance, and composition, have their justification, but in the right context.

• Avoidance of dependencies

The introduction of dependencies at runtime (Dependency injection) plays a central role in the

discussion whether the composition should be given a priority over inheritance.

It is very important to note that this is only a discussion.

The purpose of this discussion is not necessarily to find the "optimal" way to design a class, but to

provide food for thought on how to deal adequately with the decision for or against the use of

inheritance or composition.

5.2. Notes on performance considerations

With the change in the architecture, it is very important not to lose sight of the special situation of a PLC

compared to a PC/server system.

Overall, there are three actors who could still do a little more for the application of OOP:

▪ Hardware design

Currently we can see a big difference in the measurements of the runtime. Depending on the hardware, a

virtual method call takes drastically more time or is of little importance compared to a normal subroutine

call. Of course, a small runtime extension in a cyclic executed PLC operation is often of great importance.

The decisive factor here is the connection of the data/code memory to address and data buses and the

possibilities of proper cache mechanisms. Especially the cache can help us to save time in cyclic operation.

When designing a controller today, it is no longer just a question of how much time 1024 IL instructions

require!

▪ Compiler design

The code generator for a PLC must ensure that the code parts of an application are in relation to the cache

structure in the neighborhood. So, code and data which are used cyclically can be processed very fast

without a new transfer from the main memory. The implementation of interfaces, methods, and properties

but also references must be adapted to the needs of a PLC. So, use cases like OnlineChange and

1 Like: Design Patterns: Elements of Reusable Object-Oriented Software by ErichGamma, RichardHelm,

RalphJohnson, and JohnVlissides (the GangOfFour).

http://wiki.c2.com/?ErichGamma
http://wiki.c2.com/?RichardHelm
http://wiki.c2.com/?RalphJohnson
http://wiki.c2.com/?JohnVlissides
http://wiki.c2.com/?GangOfFour

PLCopen
®

for efficiency in automation

TC2 Training – Guidelines for usage of OOP © PLCopen (2021)

V1.0 – Official Release November 18, 2021 page 27/27

Debugging must be considered early and well. The allocation of memory on the stack (local variables)

must not create a problem when using methods. The initialization of extensive data structures can become

a problem (e.g., when cyclically called) and should be accordingly controllable by the user.

▪ Software design

The keywords ABSTRACT, FINAL, PRIVATE, ... must be used consciously.

This allows the developer to influence essential aspects of the runtime of his software at a very early stage.

The developer must keep an eye on whether and when the initialization of his local variables must take

place. The PLC development environment should provide a way to prevent the initialization of a set of

specific variables so that "much" time can be saved here.

5.3. Notes for further investigations

• Synchronous versus a-synchronous communication / run-time environments

• Should we introduce dynamic memory allocation to the classical control world?

• Show no preferences for already existing implementations and programming styles.

• It can be that a programming paradigm shift is unavoidable.

	PLCopen - Promotional Committee 2
	Guidelines for usage of Object-Oriented Programming
	1 Introduction to this document
	1.1. Goals of this working group

	2 Introduction to OOP features of the 3rd edition of the IEC 61131-3 standard.
	2.1. The 3rd edition of IEC 61131-3
	2.2. Definitions in the IEC 61131-3 standard
	2.3. Differences in OOP languages

	3 Generic Approach
	3.1. General
	3.2. Modules and Commands as Objects

	4 The basic example: boiler demo
	4.1. Overview of the different phases
	4.2. Application description
	4.3. The example in a classical program style
	4.4. Converting the program to a PLCopen compliant version
	4.5. Adding Error Behaviour
	4.6. Adding a system alarm list

	5 Additional References
	5.1. Fundamentals for OOP Guidelines – considerations
	5.2. Notes on performance considerations
	5.3. Notes for further investigations

