

F O U N D A T I O N

®

O

P
C

 U
A

 C
o

m
p

a
n

io
n

-S
p

e
c

ific
a

tio
n

OPC 30000

OPC UA for Programmable Logic Controllers
based on IEC61131-3

Release 1.02

2020-11-25

Standard
Type:

OPC UA Information Model
for IEC 61131-3

Comments:

Title: OPC Unified Architecture

for IEC 61131-3
Date: 2020-11-25

Version: Release1.02 Software: MS-Word

Editors: Source: OPC 30000 - UA Companion
Specification for IEC61131-3
Model 1.02.docx

Owner: Joint working group "OPCF

& PLCopen"
Status: Release

CONTENTS

FIGURES ...iv

TABLES ... v

AGREEMENT OF USE .. vii

REVISION HIGHLIGHTS .. viii

1 Scope ... 9

2 Normative references .. 9

3 Terms, definitions and conventions ... 10

3.1 Overview ... 10

3.2 OPC UA for IEC 61131-3 terms ... 10

3.3 Abbreviations and symbols .. 10

3.4 Conventions used in this document ... 11

3.4.1 Conventions for Node descriptions ... 11

3.4.2 NodeIds and BrowseNames ... 12

3.4.2.1 NodeIds .. 12

3.4.2.2 BrowseNames .. 12

3.4.3 Common Attributes... 12

3.4.3.1 General .. 12

3.4.3.2 Objects ... 13

3.4.3.3 Variables .. 13

3.4.3.4 VariableTypes .. 13

3.4.3.5 Methods ... 14

3.4.4 Reference to IEC 61131-3 Definitions .. 14

4 General information to IEC 61131-3 and OPC UA ... 15

4.1 Introduction to IEC 61131-3 ... 15

4.1.1 Common Elements ... 15

4.1.1.1 Data Typing .. 15

4.1.1.2 Ctrl Variables ... 15

4.1.1.3 Ctrl Configuration, Ctrl Resources and Ctrl Tasks 15

4.1.1.4 Ctrl Program Organization Units ... 16

4.1.1.5 Ctrl Functions ... 16

4.1.1.6 Ctrl Function Blocks ... 16

4.1.1.7 Sequential Function Chart .. 16

4.1.1.8 Ctrl Programs ... 16

4.1.2 Programming Languages ... 16

4.2 Introduction to OPC Unified Architecture ... 17

4.2.1 What is OPC UA? ... 17

4.2.2 Basics of OPC UA .. 17

4.2.3 Information modelling in OPC UA ... 18

4.2.3.1 Concepts .. 18

4.2.3.2 Namespaces .. 22

4.2.3.3 Companion Specifications .. 22

4.2.3.4 Introduction to OPC UA Devices ... 22

4.3 Introductory Example ... 24

5 Use cases ... 27

6 IEC 61131-3 Information Model overview .. 28

OPC 30000: 61131-3 Model for PLCs ii V 1.02

7 OPC UA ObjectTypes .. 30

7.1 CtrlConfigurationType ObjectType Definition ... 30

7.1.1 Overview .. 30

7.1.2 Resources components .. 32

7.1.3 MethodSet components .. 32

7.2 CtrlResourceType ObjectType Definition ... 32

7.2.1 Overview .. 32

7.2.2 Tasks components ... 34

7.2.3 Programs components ... 34

7.2.4 MethodSet components .. 34

7.3 CtrlProgramOrganizationUnitType ObjectType Definition 34

7.4 CtrlProgramType ObjectType Definition ... 36

7.5 CtrlFunctionBlockType ObjectType Definition .. 37

7.6 CtrlTaskType ObjectType Definition .. 38

7.7 SFCType ObjectType Definition ... 39

8 Reference Types ... 39

8.1 General ... 39

8.2 HasInputVar .. 39

8.3 HasOutputVar .. 40

8.4 HasInOutVar ... 40

8.5 HasLocalVar .. 41

8.6 HasExternalVar ... 41

8.7 With .. 41

9 Definition of Ctrl Variable Attributes and Properties ... 42

9.1 Common Attributes .. 42

9.2 DataType .. 43

9.2.1 Mapping of elementary data types .. 43

9.2.2 Mapping of generic data types ... 44

9.2.3 Mapping of derived data types ... 44

9.2.3.1 Mapping of enumerated data types ... 44

9.2.3.2 Mapping of subrange data types ... 45

9.2.3.3 Mapping of array data types ... 46

9.2.3.4 Mapping of structure data types .. 47

9.3 Variable specific Node Attributes ... 50

9.3.1 General .. 50

9.3.2 Access Level .. 50

9.4 Variable Properties .. 50

9.4.1 IEC Ctrl Variable Keywords .. 50

9.4.2 Configuration of OPC UA defined Properties 51

10 Objects used to organise the AddressSpace structure ... 51

10.1 DeviceSet as entry point for engineering applications (Mandatory) 51

10.2 CtrlTypes Folder for server specific Object Types (Mandatory) 52

10.3 Entry point for Observation and Operation (Examples) 53

11 System Architecture .. 55

11.1 General ... 55

11.2 Embedded OPC UA Server .. 55

11.3 PC based OPC UA Server ... 55

OPC 30000: 61131-3 Model for PLCs iii V 1.02

11.4 PC based OPC UA Server with engineering capabilities 55

12 Profiles and Namespaces .. 55

12.1 Namespace Metadata .. 55

12.2 Conformance Units and Profiles .. 56

12.3 Server Facets .. 56

12.4 Client Facets ... 57

12.5 Handling of OPC UA Namespaces ... 57

Annex A (normative): IEC 61131-3 Namespace and mappings ... 59

A.1 Namespace and identifiers for IEC 61131-3 Information Model 59

A.2 Profile URIs for IEC 61131-3 Information Model .. 59

A.3 Namespace for IEC61131-3 Function Blocks ... 59

Annex B (informative): PLCopen XML Additional Data Schema .. 60

B.1 XML Schema ... 60

OPC 30000: 61131-3 Model for PLCs iv V 1.02

FIGURES

Figure 1 – Software Model ... 15

Figure 2 – The Scope of OPC UA within an Enterprise ... 18

Figure 3 – A Basic Object in an OPC UA Address Space .. 19

Figure 4 – The Relationship between Type Definitions and Instances 20

Figure 5 – Examples of References between Objects ... 21

Figure 6 – The OPC UA Information Model Notation ... 21

Figure 7 – OPC UA Devices Example ... 23

Figure 8 – OPC UA Devices Example ... 23

Figure 9 – Ctrl Function Block CTU_INT declaration ... 24

Figure 10 – Ctrl Function Block MyCounter / MyCounter2 instantiation and usage 25

Figure 11 – Introductory Example – OPC UA representation .. 26

Figure 12 – Use case diagram .. 28

Figure 13 – OPC UA IEC 61131-3 ObjectTypes Overview .. 28

Figure 14 – OPC UA IEC 61131-3 Object Instance Example ... 30

Figure 15 – CtrlConfigurationType Overview .. 31

Figure 16 – CtrlResourceType Overview .. 33

Figure 17 – CtrlProgramOrganizationUnitType Overview .. 35

Figure 18 – CtrlProgramType Overview .. 36

Figure 19 – CtrlFunctionBlockType Overview ... 37

Figure 20 – CtrlTaskType Overview .. 38

Figure 21 – Reference Types Overview .. 39

Figure 22 – Deprecated Mapping of structure data types .. 48

Figure 23 – Mapping of structure data types ... 48

Figure 24 – Mapping of structure data types to Variable components 49

Figure 25 – DeviceSet as entry point for engineering applications .. 52

Figure 26 – CtrlTypes Folder used to structure POU types ... 53

Figure 27 – Browse entry point for Operation with Ctrl Resource .. 54

Figure 28 – Browse entry point for Operation with simplified Folder 55

Figure 29 – System Architecture... 55

Figure 30 – Example for the use of namespaces in NodeIds and BrowseNames 58

OPC 30000: 61131-3 Model for PLCs v V 1.02

TABLES

Table 1 – Examples of DataTypes .. 11

Table 2 – Type Definition Table .. 12

Table 3 – Common Node Attributes .. 13

Table 4 – Common Object Attributes .. 13

Table 5 – Common Variable Attributes ... 13

Table 6 – Common VariableType Attributes .. 14

Table 7 – Common Method Attributes ... 14

Table 8 – CtrlConfigurationType Definition ... 31

Table 9 – Components of the Resources Object ... 32

Table 10 – Components of the CtrlConfigurationType MethodSet ... 32

Table 11 – CtrlResourceType Definition ... 33

Table 12 – Components of the Tasks Object .. 34

Table 13 – Components of the Programs Object ... 34

Table 14 – Components of the CtrlResourceType MethodSet ... 34

Table 15 – CtrlProgramOrganizationUnitType Definition ... 35

Table 16 – CtrlProgramType Definition ... 36

Table 17 – CtrlFunctionBlockType Definition .. 37

Table 18 – CtrlTaskType Definition ... 38

Table 19 – SFCType Definition ... 39

Table 20 – HasInputVar ReferenceType ... 40

Table 21 – HasOutputVar ReferenceType .. 40

Table 22 – HasInOutVar ReferenceType .. 40

Table 23 – HasLocalVar ReferenceType .. 41

Table 24 – HasExternalVar ReferenceType .. 41

Table 25 – With ReferenceType ... 42

Table 26 – Common Node Attributes .. 42

Table 27 – Mapping IEC 61131-3 elementary data types to OPC UA built in data types 43

Table 28 – Mapping IEC 61131-3 generic data types to OPC UA data types 44

Table 29 – Enumeration Data Type Definition ... 45

Table 30 – Subrange Property Definition .. 46

Table 31 – Array Data Type Property Definition .. 46

Table 32 – Value of the DataTypeDefinition .. 49

Table 33 – Variable Node Attributes ... 50

Table 34 – IEC 61131-3 Variable Key Word Property Definition .. 50

Table 35 – Range XML attributes ... 51

Table 36 – CtrlTypes definition ... 52

Table 37 – NamespaceMetadata Object for this Specification ... 56

Table 38 – Controller Operation Server Facet Definition ... 56

Table 39 – Controller Engineering Server Facet Definition .. 56

Table 40 – Controller Engineering Client Facet Definition ... 57

Table 41 – Namespaces used in a Controller Server .. 57

OPC 30000: 61131-3 Model for PLCs vi V 1.02

Table 42 – Namespaces used in this specification .. 58

Table 43 – Profile URIs .. 59

OPC 30000: 61131-3 Model for PLCs vii V 1.02

OPC FOUNDATION, PLCOPEN
AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

This document is provided "as is" by the OPC Foundation and the PLCopen.
Right of use for this specification is restricted to this specification and does not grant rights of use for referred documents.
Right of use for this specification will be granted without cost.
This document may be distributed through computer systems, printed or copied as long as the content remains unchanged
and the document is not modified.
OPC Foundation and PLCopen do not guarantee usability for any purpose and shall not be made liable for any case using
the content of this document.
The user of the document agrees to indemnify OPC Foundation and PLCopen and their officers, directors and agents
harmless from all demands, claims, actions, losses, damages (including damages from personal injuries), costs and
expenses (including attorneys' fees) which are in any way related to activities associated with its use of content from this
specification.
The document shall not be used in conjunction with company advertising, shall not be sold or licensed to any party.
The intellectual property and copyright is solely owned by the OPC Foundation and the PLCopen.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC or PLCopen specifications
may require use of an invention covered by patent rights. OPC Foundation or PLCopen shall not be responsible for identifying
patents for which a license may be required by any OPC or PLCopen specification, or for conducting legal inquiries into the
legal validity or scope of those patents that are brought to its attention. OPC or PLCopen specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION NOR PLCOPEN MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED,
WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OPC FOUNDATION NOR PLCOPEN BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS
OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

COMPLIANCE

The combination of PLCopen and OPC Foundation shall at all times be the sole entities that may authorize developers,
suppliers and sellers of hardware and software to use certification marks, trademarks or other special designations to
indicate compliance with these materials as specified within this document. Products developed using this specification may
claim compliance or conformance with this specification if and only if the software satisfactorily meets the certification
requirements set by PLCopen or the OPC Foundation. Products that do not meet these requirements may claim only that
the product was based on this specif ication and must not claim compliance or conformance with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of Germany.

This Agreement embodies the entire understanding between the parties with respect to and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

OPC 30000: 61131-3 Model for PLCs viii V 1.02

REVISION HIGHLIGHTS

This section specifies the interesting changes to the previous revisions:

Version Date Description

1.00.00 March 24, 2010 Release first specification 1.0

1.02.00 June 19, 2019 Update to use new UA Companion Specification Template v1.01.11 including
additional sections

Table 27: Adding additional data types from 3rd edition of IEC61131-3
Table 27: Adding Datatype NodeIDs
Table 30: Added SubrangeMin, SubrangeMax
Table 31: Added Dimensions, IndexMin, IndexMax
Table 34: Added RETAIN, NON_RETAIN, CONSTANT, AT
Deprecated Mapping of structure data types
Updated NodeSet to meet validation tool

OPC 30000: 61131-3 Model for PLCs 9 V 1.02

1 Scope

This specification was created by a joint working group of the OPC Foundation and PLCopen. It defines
an OPC UA Information Model to represent the IEC 61131-3 architectural models.

It is important that the controller as a main component of automation systems is accessible in the
vertical information integration which will be strongly influenced by OPC UA. OPC UA servers which
represent their underlying manufacturer specific controllers in a similar, IEC 61131-3 based manner
provide a substantial advantage for client applications as e.g. visualizations or MES. Controller
vendors may reduce costs for the development of these OPC UA servers if an OPC UA Information
Model for IEC 61131-3 is used.

OPC Foundation

OPC is the interoperability standard for the secure and reliable exchange of data and information in
the industrial automation space and in other industries. It is platform indepen dent and ensures the
seamless flow of information among devices from multiple vendors. The OPC Foundation is
responsible for the development and maintenance of this standard.

OPC UA is a platform independent service-oriented architecture that integrates al l the functionality of
the individual OPC Classic specifications into one extensible framework. This multi -layered approach
accomplishes the original design specification goals of:

Platform independence: from an embedded microcontroller to cloud-based infrastructure

Secure: encryption, authentication, authorization and auditing

Extensible: ability to add new features including transports without affecting existing applications

Comprehensive information modelling capabilities: for defining any model from simple to complex

PLCopen

PLCopen, as an organization active in industrial control, is creating a higher efficiency in your
application software development: in one-off projects as well as in higher volume products. As such it
is based on standard available tools to which extensions are and will be defined.

With results like Motion Control Library, Safety, XML specification, Reusability Level and Conformity
Level, PLCopen made solid contributions to the community, extending the hardware independence
from the software code, as well as reusability of the code and coupling to external software tools. One
of the core activities of PLCopen is focused around IEC 61131-3, the only global standard for industrial
control programming. It harmonizes the way people design and operate industrial controls by
standardizing the programming interface. This allows people with different backgrounds and skills to
create different elements of a program during different stages of the software lifecycle: specification,
design, implementation, testing, installation and maintenance. Yet all pieces adhere to a common
structure and work together harmoniously.

2 Normative references

The following referenced documents are indispensable for the application of this specification. For
dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

IEC 61131-3: 2nd Edition, Subset of 3rd Edition, Programmable Controllers – Part 3: Programming
Languages

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts

http://www.opcfoundation.org/UA/Part1/

OPC 10000-2, OPC Unified Architecture - Part 2: Security Model

http://www.opcfoundation.org/UA/Part2/

OPC 30000: 61131-3 Model for PLCs 10 V 1.02

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings

http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles

http://www.opcfoundation.org/UA/Part7/

OPC 10000-8, OPC Unified Architecture - Part 8: Data Access

http://www.opcfoundation.org/UA/Part8/

OPC 10000-100, OPC Unified Architecture – Part 100: Devices

http://www.opcfoundation.org/UA/Part100/

3 Terms, definitions and conventions

3.1 Overview

It is assumed that basic concepts of OPC UA information modelling and IEC 61131-3 are understood
in this specification. This specification will use these concepts to describe the IEC 61131-3 Information
Model. For the purposes of this document, the terms and definitions given in OPC 10000-1, OPC
10000-3, OPC 10000-4, OPC 10000-5, OPC 10000-7, OPC 10000-8, OPC 10000-100, IEC 61131-3
as well as the following apply.

To avoid naming conflicts between IEC 61131-3 and OPC UA terms the prefix Ctrl for controller is
used together with IEC 61131-3 terms like Ctrl Variable or Ctrl Program.

Note that OPC UA terms and terms defined in this specification are italicized in the specification.

3.2 OPC UA for IEC 61131-3 terms

3.2.1
Controller

a digitally operating electronic system, designed for use in an industrial environment, which uses
a programmable memory for the internal storage of user-oriented instructions for implementing
specific functions such as logic, sequencing, timing, counting and arithmetic, to control, through
digital or analogue inputs and outputs, various types of machines or processes

3.3 Abbreviations and symbols

Ctrl Controller
DA Data Access
HDA Historical Data Access
HMI Human-Machine Interface
IEC International Electrotechnical Commission
MES Manufacturing Execution System
PLC Programmable Logic Controller
SCADA Supervisory Control And Data Acquisition
UA Unified Architecture
XML Extensible Markup Language

http://www.opcfoundation.org/UA/Part100/

OPC 30000: 61131-3 Model for PLCs 11 V 1.02

3.4 Conventions used in this document

3.4.1 Conventions for Node descriptions

Node definitions are specified using tables (see Table 2).

Attributes are defined by providing the Attribute name and a value, or a description of the value.

References are defined by providing the ReferenceType name, the BrowseName of the TargetNode
and its NodeClass.

 If the TargetNode is a component of the Node being defined in the table, the Attributes of the
composed Node are defined in the same row of the table.

 The DataType is only specified for Variables; “[<number>]” indicates a single-dimensional array,
for multi-dimensional arrays the expression is repeated for each dimension (e.g. [2][3] for a
two-dimensional array). For all arrays the ArrayDimensions is set as identified by <number>
values. If no <number> is set, the corresponding dimension is set to 0, indicating an unknown
size. If no number is provided at all the ArrayDimensions can be omitted. If no brackets are
provided, it identifies a scalar DataType and the ValueRank is set to the corresponding value
(see OPC 10000-3). In addition, ArrayDimensions is set to null or is omitted. If it can be Any or
ScalarOrOneDimension, the value is put into “{<value>}”, so either “{Any}” or
“{ScalarOrOneDimension}” and the ValueRank is set to the corresponding value (see OPC
10000-3) and the ArrayDimensions is set to null or is omitted. Examples are given in Table 1.

Table 1 – Examples of DataTypes

Notation Data-
Type

Value-
Rank

Array-
Dimensions

Description

Int32 Int32 -1 omitted or null A scalar Int32.

Int32[] Int32 1 omitted or {0} Single-dimensional array of Int32 with an
unknown size.

Int32[][] Int32 2 omitted or {0,0} Two-dimensional array of Int32 with unknown
sizes for both dimensions.

Int32[3][] Int32 2 {3,0} Two-dimensional array of Int32 with a size of 3 for
the first dimension and an unknown size for the
second dimension.

Int32[5][3] Int32 2 {5,3} Two-dimensional array of Int32 with a size of 5 for
the first dimension and a size of 3 for the second
dimension.

Int32{Any} Int32 -2 omitted or null An Int32 where it is unknown if it is scalar or array
with any number of dimensions.

Int32{ScalarOrOneDimension} Int32 -3 omitted or null An Int32 where it is either a single-dimensional
array or a scalar.

 The TypeDefinition is specified for Objects and Variables.

 The TypeDefinition column specifies a symbolic name for a NodeId, i.e. the specified Node
points with a HasTypeDefinition Reference to the corresponding Node.

 The ModellingRule of the referenced component is provided by specifying the symbolic name
of the rule in the ModellingRule column. In the AddressSpace, the Node shall use a
HasModellingRule Reference to point to the corresponding ModellingRule Object.

If the NodeId of a DataType is provided, the symbolic name of the Node representing the DataType

shall be used.

Nodes of all other NodeClasses cannot be defined in the same table; therefore, only the used
ReferenceType, their NodeClass and their BrowseName are specified. A reference to another part of

this document points to their definition.

Table 2 illustrates the table. If no components are provided, the DataType, TypeDefinition and
ModellingRule columns may be omitted and only a Comment column is introduced to point to the Node

definition.

OPC 30000: 61131-3 Model for PLCs 12 V 1.02

Table 2 – Type Definition Table

Attribute Value

Attribute name Attribute value. If it is an optional Attribute that is not set “--“ will be used.

References NodeClass BrowseName DataType TypeDefinition ModellingRule

ReferenceType
name

NodeClass
of the
TargetNode.

BrowseName of the
target Node. If the
Reference is to be
instantiated by the
server, then the
value of the target
Node’s
BrowseName is “--“.

DataType
of the
referenced
Node, only
applicable
for
Variables.

TypeDefinition of the referenced
Node, only applicable for
Variables and Objects.

Referenced
ModellingRule of
the referenced
Object.

NOTE Notes referencing footnotes of the table content.

Components of Nodes can be complex that is containing components by themselves. The
TypeDefinition, NodeClass, DataType and ModellingRule can be derived from the type definitions, and
the symbolic name can be created as defined in 3.4.3.1. Therefore, those containing components are
not explicitly specified; they are implicitly specified by the type definitions.

3.4.2 NodeIds and BrowseNames

3.4.2.1 NodeIds

The NodeIds of all Nodes described in this standard are only symbolic names. Annex A defines the
actual NodeIds.

The symbolic name of each Node defined in this specification is its BrowseName, or, when it is part
of another Node, the BrowseName of the other Node, a “.”, and the BrowseName of itself. In this case
“part of” means that the whole has a HasProperty or HasComponent Reference to its part. Since all
Nodes not being part of another Node have a unique name in this specification, the symbolic name is

unique.

The NamespaceUri for all NodeIds defined in this specification is defined in Annex A. The
NamespaceIndex for this NamespaceUri is vendor-specific and depends on the position of the
NamespaceUri in the server namespace table.

Note that this specification not only defines concrete Nodes, but also requires that some Nodes shall
be generated, for example one for each Session running on the Server. The NodeIds of those Nodes
are Server-specific, including the namespace. But the NamespaceIndex of those Nodes cannot be the
NamespaceIndex used for the Nodes defined in this specification, because they are not defined by
this specification but generated by the Server.

3.4.2.2 BrowseNames

The text part of the BrowseNames for all Nodes defined in this specification is specif ied in the tables
defining the Nodes. The NamespaceUri for all BrowseNames defined in this specification is defined in

Annex A.

If the BrowseName is not defined by this specification, a namespace index prefix like
‘0:EngineeringUnits’ or ‘2:DeviceRevision’ is added to the BrowseName. This is typically necessary if
a Property of another specification is overwritten or used in the OPC UA types defined in this
specification. Table 42 provides a list of namespaces and their indexes as used in this specification.

3.4.3 Common Attributes

3.4.3.1 General

The Attributes of Nodes, their DataTypes and descriptions are defined in OPC 10000-3. Attributes not
marked as optional are mandatory and shall be provided by a Server. The following tables define if
the Attribute value is defined by this specification or if it is server -specific.

For all Nodes specified in this specification, the Attributes named in Table 3 shall be set as specified

in the table.

OPC 30000: 61131-3 Model for PLCs 13 V 1.02

Table 3 – Common Node Attributes

Attribute Value

DisplayName The DisplayName is a LocalizedText. Each server shall provide the DisplayName identical to
the BrowseName of the Node for the LocaleId “en”. Whether the server provides translated
names for other LocaleIds is server-specific.

Description Optionally a server-specific description is provided.

NodeClass Shall reflect the NodeClass of the Node.

NodeId The NodeId is described by BrowseNames as defined in 3.4.2.1.

WriteMask Optionally the WriteMask Attribute can be provided. If the WriteMask Attribute is provided, it
shall set all non-server-specific Attributes to not writable. For example, the Description Attribute
may be set to writable since a Server may provide a server-specific description for the Node.
The NodeId shall not be writable, because it is defined for each Node in this specification.

UserWriteMask Optionally the UserWriteMask Attribute can be provided. The same rules as for the WriteMask
Attribute apply.

RolePermissions Optionally server-specific role permissions can be provided.

UserRolePermissions Optionally the role permissions of the current Session can be provided. The value is server-
specific and depend on the RolePermissions Attribute (if provided) and the current Session.

AccessRestrictions Optionally server-specific access restrictions can be provided.

3.4.3.2 Objects

For all Objects specified in this specification, the Attributes named in Table 4 shall be set as specified
in the Table 4. The definitions for the Attributes can be found in OPC 10000-3.

Table 4 – Common Object Attributes

Attribute Value

EventNotifier Whether the Node can be used to subscribe to Events or not is server-specific.

3.4.3.3 Variables

For all Variables specified in this specification, the Attributes named in Table 5 shall be set as specified
in the table. The definitions for the Attributes can be found in OPC 10000-3.

Table 5 – Common Variable Attributes

Attribute Value

MinimumSamplingInterval Optionally, a server-specific minimum sampling interval is provided.

AccessLevel The access level for Variables used for type definitions is server-specific, for all other
Variables defined in this specification, the access level shall allow reading; other settings are
server-specific.

UserAccessLevel The value for the UserAccessLevel Attribute is server-specific. It is assumed that all
Variables can be accessed by at least one user.

Value For Variables used as InstanceDeclarations, the value is server-specific; otherwise it shall
represent the value described in the text.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is
server-specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the Variable.

Historizing The value for the Historizing Attribute is server-specific.

AccessLevelEx If the AccessLevelEx Attribute is provided, it shall have the bits 8, 9, and 10 set to 0,
meaning that read and write operations on an individual Variable are atomic, and arrays can
be partly written.

3.4.3.4 VariableTypes

For all VariableTypes specified in this specification, the Attributes named in Table 6 shall be set as
specified in the table. The definitions for the Attributes can be found in OPC 10000-3.

OPC 30000: 61131-3 Model for PLCs 14 V 1.02

Table 6 – Common VariableType Attributes

Attributes Value

Value Optionally a server-specific default value can be provided.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is server-
specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the VariableType.

3.4.3.5 Methods

For all Methods specified in this specification, the Attributes named in Table 7 shall be set as specified
in the table. The definitions for the Attributes can be found in OPC 10000-3.

Table 7 – Common Method Attributes

Attributes Value

Executable All Methods defined in this specification shall be executable (Executable Attribute set to “True”),
unless it is defined differently in the Method definition.

UserExecutable The value of the UserExecutable Attribute is server-specific. It is assumed that all Methods can
be executed by at least one user.

3.4.4 Reference to IEC 61131-3 Definitions

Referenced key words in this document like VAR_GLOBAL are defined in the IEC 61131-3
specification. See table delimiters and key words in the IEC 61131-3 for a complete list.

OPC 30000: 61131-3 Model for PLCs 15 V 1.02

4 General information to IEC 61131-3 and OPC UA

4.1 Introduction to IEC 61131-3

IEC 61131-3 is the first real endeavour to standardize programming languages for industrial
automation. With its worldwide support, it is independent of any single company.

IEC 61131-3 is the third part of the IEC 61131 family. This consists of: (1) General information, (2)
Equipment requirements and tests, (3) Programming languages, (4) User guidelines, (5)
Communications, (6) Safety, (7) Fuzzy control programming, and (8) Guidelines for the application
and implementation of programming languages.

IEC 61131-3 basically describes the Common Elements and Programming Languages.

4.1.1 Common Elements

4.1.1.1 Data Typing

Within the common elements, the data types are defined. Data typing prevents errors in an early stage.
It is used to define the type of any parameter used. This avoids for instance dividing a Date by an
Integer.

Common data types are Boolean, Integer, Real and Byte and Word, but also Date, Time_of_Day and
String. Based on these, one can define own personal data types, known as derived data types. In this
way one can define an analogue input channel as data type, and re -use this over and over again.

4.1.1.2 Ctrl Variables

Ctrl Variables are only assigned to explicit hardware addresses (e.g. input and outputs) in Ctrl
Configurations, Ctrl Resources or Ctrl Programs. In this way a high level of hardware independency is

created, supporting the reusability of the software.

The scopes of the Ctrl Variables are normally limited to the organization unit in which they are declared,
e.g. local. This means that their names can be reused in other parts without any conflict, eliminating
another source of errors. If the Ctrl Variables should have global scope, they have to be declared as
such (VAR_GLOBAL). Ctrl Variables can be assigned an initial value at start up and cold restart, in

order to have the right setting.

4.1.1.3 Ctrl Configuration, Ctrl Resources and Ctrl Tasks

These elements are integrated within the software model as defined in the standard (see below).

Ctrl Task

Ctrl Program

Ctrl

FB

Ctrl

FB

Ctrl Program

Ctrl Resource

Ctrl Program

Ctrl

FB

Ctrl

FB

Ctrl Program

Ctrl Resource

Ctrl Configuration

Ctrl TaskCtrl TaskCtrl Task

Figure 1 – Software Model

At the highest level, the entire software required to solve a particular control problem can be formulated
as a Ctrl Configuration. A Ctrl Configuration is specific to a particular type of control system, including
the arrangement of the hardware, i.e. processing resources, memory addresses for I/O channels and
system capabilities.

OPC 30000: 61131-3 Model for PLCs 16 V 1.02

Within a Ctrl Configuration one can define one or more Ctrl Resources. One can look at a Ctrl Resource
as a processing facility that is able to execute Ctrl Programs.

Within a Ctrl Resource, one or more Ctrl Tasks can be defined. Ctrl Tasks control the execution of a
set of Ctrl Programs and/or Ctrl Function Blocks. These can either be executed periodically or upon
the occurrence of a specified trigger, such as the change of a Ctrl Variable.

Ctrl Programs are built from a number of different software elements written in any of the defined
programming languages. Typically, a Ctrl Program consists of a network of Ctrl Functions and Ctrl
Function Blocks, which are able to exchange data. Ctrl Functions and Ctrl Function Blocks are the

basic building blocks, containing a data structure and an algorithm.

4.1.1.4 Ctrl Program Organization Units

Within IEC 61131-3, the Ctrl Programs, Ctrl Function Blocks and Ctrl Functions are called Ctrl Program

Organization Units, POUs.

4.1.1.5 Ctrl Functions

IEC 61131-3 has defined standard Ctrl Functions and user defined Ctrl Functions. Standard Ctrl
Functions are for instance ADD(addition), ABS(absolute), SQRT, SIN(sinus) and COS(cosinus). User
defined Ctrl Functions, once defined, can be used over and over again.

4.1.1.6 Ctrl Function Blocks

Ctrl Function Blocks are the equivalent to integrated circuits, representing a specialized control
function. They contain data as well as the algorithm, so they can keep track of the past (which is one
of the differences w.r.t. Ctrl Functions). They have a well-defined interface and hidden internals, like
an integrated circuit or black box. In this way they give a clear separation between different levels of
programmers, or maintenance people.

A temperature control loop, or PID, is an excellent example of a Ctrl Function Block. Once defined, it
can be used over and over again, in the same Ctrl Program, different Ctrl Programs, or even different

projects. This makes them highly re-usable.

Ctrl Function Blocks can be written in any of the languages, and in most cases even in “C”. This way
they can be defined by the user. Derived Ctrl Function Blocks are based on the standard defined Ctrl
Function Blocks, but also completely new, customized Ctrl Function Blocks are possible within the

standard: it just provides the framework.

The interfaces of Ctrl Functions and Ctrl Function Blocks are described in the same way.

4.1.1.7 Sequential Function Chart

Within the standard Sequential Function Chart (SFC) is defined as a structuring tool. This means that
syntax and semantics have been defined, leaving no room for dialects. The language consists of a
textual and a graphical version.

4.1.1.8 Ctrl Programs

A Ctrl Program is a network of Ctrl Functions and Ctrl Function Blocks. A Ctrl Program can be written

in any of the defined programming languages.

4.1.2 Programming Languages

Within the standard four programming languages are defined. This means that their syntax and
semantics have been defined, leaving no room for dialects. The languages consist of textual and
graphical versions:

OPC 30000: 61131-3 Model for PLCs 17 V 1.02

Instruction List, IL (textual)

Structured Text, ST (textual)

Ladder Diagram, LD (graphical)

Function Block Diagram, FBD (graphical)

4.2 Introduction to OPC Unified Architecture

4.2.1 What is OPC UA?

OPC UA is an open and royalty free set of standards designed as a universal communication protocol.
While there are numerous communication solutions available, OPC UA has key advantages:

A state of art security model (see OPC 10000-2).

A fault tolerant communication protocol.

An information modelling framework that allows application developers to represent their data in a way
that makes sense to them.

OPC UA has a broad scope which delivers for economies of scale for application developers. This
means that a larger number of high-quality applications at a reasonable cost are available. When
combined with semantic models such as IEC61131-3, OPC UA makes it easier for end users to access
data via generic commercial applications.

The OPC UA model is scalable from small devices to ERP systems. OPC UA Servers process
information locally and then provides that data in a consistent format to any application requesting
data - ERP, MES, PMS, Maintenance Systems, HMI, Smartphone or a standard Browser, for examples.
For a more complete overview see OPC 10000-1.

4.2.2 Basics of OPC UA

As an open standard, OPC UA is based on standard internet technologies, like TCP/IP, HTTP, Web
Sockets.

As an extensible standard, OPC UA provides a set of Services (see OPC 10000-4) and a basic
information model framework. This framework provides an easy manner for creating and exposing
vendor defined information in a standard way. More importantly all OPC UA Clients are expected to
be able to discover and use vendor-defined information. This means OPC UA users can benefit from
the economies of scale that come with generic visualization and historian applications. This
specification is an example of an OPC UA Information Model designed to meet the needs of developers

and users.

OPC UA Clients can be any consumer of data from another device on the network to browser based

thin clients and ERP systems. The full scope of OPC UA applications is shown in Figure 2.

OPC 30000: 61131-3 Model for PLCs 18 V 1.02

Browser

Thin Client

Visualization

HMI

Firewall

Cloud

Application

SCADA

MES

ERP

Device DeviceDevice

Secure

Communication

Across the

Internet

Fast, Non-

Proprietary

Device to

Device

Control to Device

Network

Integration

Integration

with

ERP and MES

OPC
UA
Clients

OPC
UA
Servers
&
Clients

Figure 2 – The Scope of OPC UA within an Enterprise

OPC UA provides a robust and reliable communication infrastructure having mechanisms for handling
lost messages, failover, heartbeat, etc. With its binary encoded data, it offers a high-performing data
exchange solution. Security is built into OPC UA as security requirements become more and more
important especially since environments are connected to the office network or the internet and
attackers are starting to focus on automation systems.

4.2.3 Information modelling in OPC UA

4.2.3.1 Concepts

OPC UA provides a framework that can be used to represent complex information as Objects in an
AddressSpace which can be accessed with standard services. These Objects consist of Nodes
connected by References. Different classes of Nodes convey different semantics. For example, a
Variable Node represents a value that can be read or written. The Variable Node has an associated
DataType that can define the actual value, such as a string, float, structure etc. It can also describe
the Variable value as a variant. A Method Node represents a function that can be called. Every Node
has a number of Attributes including a unique identifier called a NodeId and non-localized name called
as BrowseName. An Object representing a ‘Reservation’ is shown in Figure 3.

OPC 30000: 61131-3 Model for PLCs 19 V 1.02

Reservation

Who

When

First Name
“John”

Last Name
“Smith”

Start
“2:00PM”

End
“4:00PM”

Cancel

Object Nodes
convey semantics

 and structure

Method Nodes
define complex

behaviors

Variable Nodes
provide access to data

Figure 3 – A Basic Object in an OPC UA Address Space

Object and Variable Nodes represent instances and they always reference a TypeDefinition
(ObjectType or VariableType) Node which describes their semantics and structure. Figure 4 illustrates
the relationship between an instance and its TypeDefinition.

The type Nodes are templates that define all of the children that can be present in an instance of the
type. In the example in Figure 4 the PersonType ObjectType defines two children: First Name and Last
Name. All instances of PersonType are expected to have the same children with the same
BrowseNames. Within a type the BrowseNames uniquely identify the children. This means Client
applications can be designed to search for children based on the BrowseNames from the type instead
of NodeIds. This eliminates the need for manual reconfiguration of systems if a Client uses types that
multiple Servers implement.

OPC UA also supports the concept of sub-typing. This allows a modeller to take an existing type and
extend it. There are rules regarding sub-typing defined in OPC 10000-3, but in general they allow the
extension of a given type or the restriction of a DataType. For example, the modeller may decide that
the existing ObjectType in some cases needs an additional Variable. The modeller can create a
subtype of the ObjectType and add the Variable. A Client that is expecting the parent type can treat
the new type as if it was of the parent type. Regarding DataTypes, subtypes can only restrict. If a
Variable is defined to have a numeric value, a sub type could restrict it to a float.

OPC 30000: 61131-3 Model for PLCs 20 V 1.02

Who

First Name
“John”

Last Name
“Smith”

First Name
[String]

Last Name
[String]

Middle Name
“Jacob”

Instances can
be extended

Structure and
semantics can
be inherited

from other types

ObjectType Nodes
are templates that

describe the structure
of an instance

Every Instance Node
has a

TypeDefinition Node
which defines its structure

Semantics: An instance of PersonType represents a human
Structure: An instance of PersonType has a First Name and a Last Name

BaseObjectType

PersonType

Figure 4 – The Relationship between Type Definitions and Instances

References allow Nodes to be connected in ways that describe their relationships. All References have
a ReferenceType that specifies the semantics of the relationship. References can be hierarchical or
non-hierarchical. Hierarchical references are used to create the structure o f Objects and Variables.
Non-hierarchical are used to create arbitrary associations. Applications can define their own
ReferenceType by creating subtypes of an existing ReferenceType. Subtypes inherit the semantics of
the parent but may add additional restrictions. Figure 5 depicts several References, connecting
different Objects.

OPC 30000: 61131-3 Model for PLCs 21 V 1.02

Joe Sam Dogs Cats

Animals

OrganizesOrganizes HasClassification HasClassification

Kennel #2

Owns

PoodleBreeds

HasClassification

Farmers

Siamese

HasClassification

Fido HasBreedLivesIn

Organizes

Owns

Has

Classification

Non-

Hierarchical

Breeds

HasBreed

LivesIn

Reference Types
can be created

 from other reference types

They can be used to
show hierarchies

 or just relationships

Figure 5 – Examples of References between Objects

The figures above use a notation that was developed for the OPC UA specification. The notation is
summarized in Figure 6. UML representations can also be used; however, the OPC UA notation is less
ambiguous because there is a direct mapping from the elements in the figures to Nodes in the
AddressSpace of an OPC UA Server.

Object Variable Method View

<TypeName> <TypeName> <TypeName>

Instances

Types

Standard
References

VariableTypeObjectType DataType ReferenceType

Symmetric
Reference

Asymmetric
Reference

Hierarchical
Reference

HasEventSource
HasComponent

HasProperty

HasTypeDefinition

HasSubtype

Figure 6 – The OPC UA Information Model Notation

A complete description of the different types of Nodes and References can be found in OPC 10000-3
and the base structure is described in OPC 10000-5.

OPC 30000: 61131-3 Model for PLCs 22 V 1.02

OPC UA specification defines a very wide range of functionality in its basic information model. It is not
expected that all Clients or Servers support all functionality in the OPC UA specifications. OPC UA
includes the concept of Profiles, which segment the functionality into testable certifiable units. This
allows the definition of functional subsets (that are expected to be implemented) within a companion
specification. The Profiles do not restrict functionality, but generate requirements for a minimum set

of functionalities (see OPC 10000-7)

4.2.3.2 Namespaces

OPC UA allows information from many different sources to be combined into a single coherent
AddressSpace. Namespaces are used to make this possible by eliminating naming and id conflicts
between information from different sources. Namespaces in OPC UA have a globally unique string
called a NamespaceUri and a locally unique integer called a NamespaceIndex. The NamespaceIndex
is only unique within the context of a Session between an OPC UA Client and an OPC UA Server. The
Services defined for OPC UA use the NamespaceIndex to specify the Namespace for qualified values.

There are two types of values in OPC UA that are qualified with Namespaces: NodeIds and
QualifiedNames. NodeIds are globally unique identifiers for Nodes. This means the same Node with
the same NodeId can appear in many Servers. This, in turn, means Clients can have built in knowledge
of some Nodes. OPC UA Information Models generally define globally unique NodeIds for the
TypeDefinitions defined by the Information Model.

QualifiedNames are non-localized names qualified with a Namespace. They are used for the
BrowseNames of Nodes and allow the same names to be used by different information models without
conflict. TypeDefinitions are not allowed to have children with duplicate BrowseNames; however,
instances do not have that restriction.

4.2.3.3 Companion Specifications

An OPC UA companion specification for an industry specific vertical market describes an Information
Model by defining ObjectTypes, VariableTypes, DataTypes and ReferenceTypes that represent the
concepts used in the vertical market, and potentially also well-defined Objects as entry points into the
AddressSpace.

4.2.3.4 Introduction to OPC UA Devices

The OPC 10000-100 specification is an extension of the overall OPC Unified Architecture specification
series and defines the information model associated with Devices. The model is intended to provide a
unified view of Devices irrespective of the underlying Device protocols. Controllers are physical or
logical Devices and the Devices model is therefore used as base for the IEC 61131-3 information
model.

The Devices information model specifies different ObjectTypes and procedures used to represent
Devices and related components like the communication infrastructure in an OPC UA Address Space.
The main use cases are Device configuration and diagnostic, but it allows a general and standardized
way for any kind of application to access Device related information. The following examples illustrate
the concepts used in this specification. See OPC 10000-100 for the complete definition of the Devices

information model.

Figure 7 shows an example for a temperature controller represented as Device Object. The component
ParameterSet contains all Variables describing the Device. The component MethodSet contains all
Methods provided by the Device. Both components are inherited from the TopologyElementType which
is the root Object type of the Device Object type hierarchy. Objects of the type FunctionalGroupType
are used to group the Parameters and Methods of the Device into logical groups. The
FunctionalGroupType and the grouping concept are defined in OPC 10000-100 but the groups are
Device type specific i.e. the groups ProcessData and Configuration are defined by the
TemperatureControllerType in this example.

OPC 30000: 61131-3 Model for PLCs 23 V 1.02

FunctionalGroupType:

ProcessData

TemperatureControllerType:

Device1

BaseObjectType:

ParamerterSet

Organizes

BaseObjectType:

MethodSet

Start

Stop

FunctionalGroupType:

Configuration

Organizes

Organizes

Temperature

TemperatureSetpoint

Organizes

ChangeSetpointOrganizes

RunStateOrganizes

Figure 7 – OPC UA Devices Example

Another OPC 10000-100 concept used in this specification is described in Figure 8. The
ConfigurableObjectType is used to provide a way to group subcomponents of a Device and to indicate
which types of subcomponents can be instantiated. The allowed types are referenced from the
SupportedTypes folder. This information can be used by configuration clients to allow a user to select
the type to instantiate as subcomponent of the Device.

ModularControllerType:

Contoller1

BaseObjectType:

ParamerterSet

BaseObjectType:

MethodSet

ConfigurableObjectType:

Resources FolderType:

SupportedTypes

CPU_675:

CPU

Input_542:

IOModule1

Output_442:

IOModule2

Input_542

Input_546

Input_588

Output_442

Output_446

Output_488

Organizes

Organizes

Figure 8 – OPC UA Devices Example

The SupportedTypes Folder can contain different subsets of ObjectTypes for different instances of the
ModularControlerType depending on their current configuration since the list contains only types that
can be instantiated for the current configuration. The example expects that only one CPU can be used
in the ModularControlerType and this CPU is already configured. The SupportedTypes Folder on the
ModularControlerType contains all possible types including CPU types that can be used in the
ModularControlerType.

OPC 30000: 61131-3 Model for PLCs 24 V 1.02

4.3 Introductory Example

A simple example shall be used to explain how the above introduced OPC UA concepts are used to
represent elements in an OPC UA Server.

According to IEC 61131-3, Ctrl Function Blocks consist of a name, Ctrl Variables with associated data
types (input, output, internal), and a body containing the algorithm to be executed. These data are
represented by OPC UA ObjectTypes derived from the ObjectType CtrlFunctionBlockType (see Figure
11).

To start, IEC 61131-3 requires a Ctrl Function Block type declaration. Here an integer up-counter is
used which follows the standard counter Ctrl Function Block. CTU_INT contains three input Ctrl
Variables (CU – counter up, R – reset, PV – primary value), one local Ctrl Variable (PVmax) and two
output Ctrl Variables (Q, CV – counter value) with their respective data types. Furthermore, CTU_INT
has a body containing the algorithm to do the actual counting. The formal declaration of CTU_INT
using the Structured Text programming language is shown in Figure 9.

FUNCTION_BLOCK CTU_INT

VAR_INPUT

 CU: BOOL;

 R: BOOL;

 PV: INT;

END_VAR

VAR

 PVmax: INT := 32767;

END_VAR

VAR_OUTPUT

 Q: BOOL;

 CV: INT;

END_VAR

 IF R THEN

 CV := 0;

 ELSIF CU AND (CV < PVmax) THEN

 CV := CV + 1;

 END_IF ;

 Q := (CV >= PV);

END_FUNCTION_BLOCK

Figure 9 – Ctrl Function Block CTU_INT declaration

OPC 30000: 61131-3 Model for PLCs 25 V 1.02

The OPC UA representation of CTU_INT is shown in Figure 11. The ObjectType CTU_INT is a subtype
of the ObjectType CtrlFunctionBlockType. Its components are defined by instance declaration and
referenced by HasInputVar, HasLocalVar, and HasOutputVar References.

After declaration of CTU_INT it is instantiated twice (MyCounter, MyCounter2) and used within a Ctrl
Program MyTestProgram shown in Figure 10. Signal and Signal 2 are counted, the Ctrl Function Block
output Ctrl Variables are transferred to some temporary Ctrl Variables but are not further processed

in this example.

PROGRAM MyTestProgram

VAR_INPUT

 Signal: BOOL;

 Signal2: BOOL;

END_VAR

VAR

 MyCounter: CTU_INT;

 MyCounter2: CTU_INT;

END_VAR

VAR_TEMP

 QTemp: BOOL;

 CVTemp: INT;

END_VAR

 MyCounter(CU := Signal, R := FALSE, PV := 24);

 QTemp := MyCounter.Q;

 CVTemp := MyCounter.CV;

 MyCounter2(CU := Signal2, R := FALSE, PV := 19);

 QTemp := MyCounter2.Q;

 CVTemp := MyCounter2.CV;

END_PROGRAM

Figure 10 – Ctrl Function Block MyCounter / MyCounter2 instantiation and usage

The OPC UA representation of the Objects MyCounter and MyCounter2 is shown in Figure 11. The
Objects are instances of the ObjectType CTU_INT which is indicated by the HasTypeDefinition
References. The example specific ObjectType CTU_INT is derived from the ObjectType

OPC 30000: 61131-3 Model for PLCs 26 V 1.02

CtrlFunctionBlockType which is indicated by the HasSubType Reference. Current values at a certain
point in time are provided by the instances, e. g. the current counter value of MyCo unter equals 11.
The Ctrl Program MyTestProgram is not represented in the figure.

Instances

Types

MyCounter

CtrlFunctionBlockType

HasSubtype

CTU_INT

Has Type
Definition

HasInputVar HasOutputVar

HasInputVar

PV

Value = 24

HasOutputVar

PV

DataType = Int16
Value = 0

CV

DataType = Int16
Value = 0

Q

DataType = Boolean
Value = FALSE

CU

DataType = Boolean
Value = FALSE

R

DataType = Boolean
Value = FALSE

R

Value = FALSE

CU

Value = TRUE

CV

Value = 11

Q

Value = FALSE

MyCounter2

HasInputVar

PV

Value = 19

HasOutputVar

R

Value = FALSE

CU

Value = FALSE

CV

Value = 74

Q

Value = TRUE

PVmax

DataType = Int16
Value = 32767

HasLocalVar

PVmax

Value = 32767

HasLocalVar

PVmax

Value = 32767

HasLocalVar

Figure 11 – Introductory Example – OPC UA representation

OPC 30000: 61131-3 Model for PLCs 27 V 1.02

5 Use cases

The following use cases illustrate the usage of the information model. Not all necessary Objects must

be realized within a concrete OPC UA Server.

Observation

Observation comprises reading and monitoring data of Ctrl Configurations, Ctrl Resources, Ctrl Tasks,
Ctrl Programs, Ctrl Function Blocks, Ctrl Variables, and their ObjectTypes represented in the OPC UA

Server.

Example 1: In a brewery, several tanks of the same type are operated. They are controlled by the
same Ctrl Function Block which is instantiated in the Controller once for each tank. For developing the
visualization it is useful to create first a template for operating a tank, which is based on the tank
CtrlFunctionBlockType provided by the OPC UA server. Then this template can be instantiated and
connected to the Ctrl Function Block instances within the OPC UA server as often as required (reuse).

Example 2: In a brewery, the number of bottles produced in the current shift shall be presented on a
visualization panel. The bottles are counted by the Controller and the result provided as an output Ctrl
Variable of a Ctrl Function Block. The visualization panel subscribes to the corresponding Variable in
the OPC UA server, gets the current number of bottles delivered each time it is changing, and presents
it to the user.

Operation

Operation inherits the functionality of observation and extends it.

Operation comprises writing data of Ctrl Variables represented in the OPC UA Server and execution
control of Ctrl Programs and Ctrl Function Blocks using Ctrl Tasks represented in the OPC UA Server.

Example: In a brewery, several recipes are used to produce different kinds of beer. To choose the
recipe for the next batch, the number of that recipe is written from an HMI to an input Ctrl Variable of
a Ctrl Function Block via a corresponding Variable in the OPC UA server. After this, the batch is started
using a Ctrl Task in the OPC UA server which triggers the Ctrl Function Block.

Engineering (Programming / Maintenance)

Engineering inherits the functionality of operation and extends it.

Engineering comprises writing of Ctrl Configurations, Ctrl Resources, Ctrl Tasks, Ctrl Programs, Ctrl
Function Blocks, Ctrl Functions, Ctrl Variables , and their ObjectTypes into the OPC UA Server.

Example: The Ctrl Program of a machine tool shall be updated via remote access (internet). This
download is done using programming software by writing the corresponding Ctrl Program ObjectType

into the OPC UA server while observing strict security (and safety) regulations.

Service

Service inherits the functionality of engineering and extends it.

Service comprises the carrying out of service specific functions, e. g. reading / writing of special data
and firmware updates.

The following Figure 12 shows the use case diagram.

OPC 30000: 61131-3 Model for PLCs 28 V 1.02

Actor

Observation Operation

«extends»

Engineering

«extends»

Service

«extends»

Figure 12 – Use case diagram

6 IEC 61131-3 Information Model overview

Figure 13 depicts the main ObjectTypes of this specification and their relationships. The drawing is
not intended to be complete. For the sake of simplicity only a few components and relations were
captured so as to give a rough idea of the overall structure of the IEC 61131-3 Information Model.

OPC-UABaseVariableType

OPC UA Part 5

OPC-UA DI

Examples

IEC 61131-3 OPC-UA

CtrlProgramType

BaseObject Type

OPC UA Part 5

CPU_A100

CtrlTaskType

FolderType

OPC UA Part 5

Main

nInput

CtrlResourceType

CtrlFunctionBlockType

CtrlConfigurationType

PLC_Z345 FB_MotorControler

FB_MotorControler:

MotorControler1
fOutput

bLocal

bLocalMain

CPU_A100:

CPU1

CtrlProgramOrganizationUnitType

DeviceType

TopologyElement

Type
FunctionalGroupType

Configurable

ObjectType

FolderType:

SupportedTypes

BaseObjectType:

ParameterSet

ConfigurableComponentsType:

Resources

ConfigurableComponentsType:

Resources

FB_MotorControler:

MotorControler2

CPU_A100:

CPU2

Priority

BlockType

Figure 13 – OPC UA IEC 61131-3 ObjectTypes Overview

OPC 30000: 61131-3 Model for PLCs 29 V 1.02

The boxes in this drawing show the ObjectTypes used in this specification as well as some elements
from other specifications that help understand the overall context. The upper grey box shows the OPC
UA core ObjectTypes from which the OPC UA Device Integration Types are derived. The Device
Integration model and its Types in the second level are used as base for the IEC 61131-3 ObjectTypes.
The grey box in the third level shows the IEC 61131-3 ObjectTypes that this specification introduces.
The components of those ObjectTypes are illustrated only in an abstract way in this overall picture.
The grey box in the lowest level represents examples of sub types defined by vendors or Controller

programmers.

Typically, the components of an ObjectType are fixed and can be extended by subtyping. However,
since each Object of an ObjectType can be extended with additional components, this specification
allows extending the standard ObjectTypes defined in this document with additional components.
Thereby, it is possible to express the additional information in the type definition that would already
be contained in each Object. Some ObjectTypes already provide entry points for server specific
extensions. However, it is not allowed to restr ict the components of the standard ObjectTypes defined
in this specification. An example of extending the ObjectTypes is putting the standard Property
NodeVersion defined in OPC 10000-3 into the BaseObjectType, stating that each Object of the server
will provide a NodeVersion.

It is not the objective to map all IEC 61131-3 constraints to the OPC UA Information Model, but to
define an OPC UA Information Model which is capable to hold at least all possible data of one or more
IEC 61131-3 compliant Ctrl Configurations.

A Ctrl Configuration compliant to IEC 61131-3 represents the special case of a complete engineered
Controller with an OPC UA server providing access to all data of one or more IEC 61131-3 compliant
Ctrl Configurations. In general, an OPC UA server may provide incomplete Ctrl Configurations, e.g.
during the engineering process or because not all data shall be accessed from outside.

Examples for Object and Variable instances of the vendor or controller programmer specific types are
shown in Figure 14. The Root and the Objects Folder are Nodes defined by OPC 10000-5. The Objects
Folder is the main entry point for Object instances.

OPC 30000: 61131-3 Model for PLCs 30 V 1.02

FolderType:

Objects

FolderType:

Root

Organizes

Comficurat ion_PLC_Z345:

PLC1

Organizes

Resource_CPU_A100:

CPU1

Resource_CPU_A100:

CPU2
TaskType:

Task1 Priority

FolderType:

GlobalVars nGlobal1

nGlobal2

Main:
Main1

With

FB_MotorControler:

Motor1

nInputHasInputVar

fOutputHasOutputVar

bLocalHasLocalVar

bLocalMainHasLocalVar

DeviceSet

Organizes

Figure 14 – OPC UA IEC 61131-3 Object Instance Example

7 OPC UA ObjectTypes

7.1 CtrlConfigurationType ObjectType Definition

7.1.1 Overview

This ObjectType defines the representation of a Ctrl Configuration of a programmable Controller
system in an OPC UA Address Space. It introduces Objects to group Ctrl Resources and different
types of Ctrl Variables. The CtrlConfigurationType is derived from the TopologyElementType defined
in OPC 10000-100. Figure 15 shows the CtrlConfigurationType. It is formally defined in Table 8. The
dark grey nodes in the figure are examples and are not part of the ObjectType definition.

OPC 30000: 61131-3 Model for PLCs 31 V 1.02

CtrlConfigurationType

BaseObjectType:

ParamerterSet

BaseObjectType:

MethodSet

Start

Stop

FunctionalGroupType:

Diagnostics

FunctionalGroupType:

Configuration

Organizes

Organizes

TopologyElementType

ResourceType:

<ResourceName>

FunctionalGroupType:

GlobalVars

FunctionalGroupType:

AccessVars

FunctionalGroupType:

ConfigVars

ConfigurableObjectType:

Resources

Var1

Var3

Var2

Organizes

Organizes

Organizes

Figure 15 – CtrlConfigurationType Overview

The Ctrl Configuration type is formally defined in Table 8.

Table 8 – CtrlConfigurationType Definition

Attribute Value

BrowseName CtrlConfigurationType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the TopologyElementType defined in OPC 10000-100, i.e. inheriting the InstanceDeclarations of that Node.

HasComponent Object 2:MethodSet BaseObjectType Optional

HasComponent Object Resources ConfigurableObjectType Mandatory

HasComponent Object GlobalVars FunctionalGroupType Optional

HasComponent Object AccessVars FunctionalGroupType Optional

HasComponent Object ConfigVars FunctionalGroupType Optional

HasComponent Object Configuration FunctionalGroupType Optional

HasComponent Object Status FunctionalGroupType Optional

The CtrlConfigurationType ObjectType is a concrete type and can be used directly. It is recommended
to create subtypes for vendor or user specific configurations.

OPC 30000: 61131-3 Model for PLCs 32 V 1.02

A concrete Ctrl Configuration type or instance may have ParameterSet, Parameters and
FunctionalGroups as defined for the TopologyElementType in OPC 10000-100.

The MethodSet Object is defined by the TopologyElementType and is overwritten in the
CtrlConfigurationType to add the HasComponent References to the Methods defined for the
CtrlConfigurationType.

The Object Resources is used to group Ctrl Resources that are part of the Ctrl Configuration. It uses
the concept of configurable Objects defined OPC 10000-100. It contains Objects of the type
CtrlResourceType representing a Ctrl Resource and a Folder with possible Ctrl Resource types that
can be instantiated in the Ctrl Configuration. For a complete configuration at least one resource is
necessary from an IEC 61131-3 point of view but not necessary from an OPC UA point of view.
Temporary, incomplete configurations are allowed, e.g. during a configuration process.

The FunctionalGroup GlobalVars contains the corresponding list of Ctrl Variables declared by the key

word VAR_GLOBAL.

The FunctionalGroup AccessVars contains the corresponding list of Ctrl Variables declared by the key

word VAR_ACCESS.

The FunctionalGroup ConfigVars contains the corresponding list of Ctrl Variables declared by the key

word VAR_CONFIG.

The FunctionalGroup Configuration contains configuration Variables and Methods like start and stop.

The FunctionalGroup Status contains diagnostic and status information like system variables, status
variables or diagnostic codes.

Starting a Ctrl Configuration causes the initialization of global Ctrl Variables and the start of all Ctrl
Resources. Stopping a Ctrl Configuration stops all Ctrl Resources.

7.1.2 Resources components

The configurable Object Resources of the CtrlConfigurationType is formally defined in Table 9.

Table 9 – Components of the Resources Object

Attribute Value

BrowseName Resources

References NodeClass BrowseName TypeDefinition ModellingRule

HasComponent Object <ResourceName> CtrlResourceType OptionalPlaceholder

7.1.3 MethodSet components

The Methods available as parts of the CtrlConfigurationType are formally defined in Table 10.

Table 10 – Components of the CtrlConfigurationType MethodSet

Attribute Value

BrowseName MethodSet

References Node
Class

BrowseName Description Modelling
Rule

Configuration FunctionalGroup

The following components are also referenced from the FunctionalGroup Configuration using Organizes References.

HasComponent Method Start This Method is used to start a Ctrl Configuration.
Only the browse name is defined for this Method.
The Method parameters are vendor specific.

Optional

HasComponent Method Stop This Method is used to stop a Ctrl Configuration.
Only the browse name is defined for this Method.
The Method parameters are vendor specific.

Optional

7.2 CtrlResourceType ObjectType Definition

7.2.1 Overview

This ObjectType defines the representation of a Crtl Resources of a programmable Controller system
in an OPC UA Address Space. It introduces Objects to group Configuration and Diagnostic capabilities,

OPC 30000: 61131-3 Model for PLCs 33 V 1.02

GlobalVars and Ctrl Programs executed under the control of Tasks. The CtrlResourceType is derived
from the DeviceType defined in OPC 10000-100. Figure 16 shows the CtrlResourceType. It is formally
defined in Table 11. The dark grey node in the figure is an example and is not part of the ObjectType

definition.

CtrlTaskType:

<ServerGeneratedName>

DeviceType

FunctionalGroupType:

GlobalVars

CtrlResourceType

CtrlProgramType:

<ServerGeneratedName>

ConfigurableObjectType:

Tasks

ConfigurableObjectType:

Programs

BaseObjectType:

ParamerterSet

Var1Organizes

BaseObjectType:

MethodSet

Start

Stop

FunctionalGroupType:

Diagnostics

FunctionalGroupType:

Configuration

Organizes

Organizes

Figure 16 – CtrlResourceType Overview

The Ctrl Resource ObjectType is formally defined in Table 11.

Table 11 – CtrlResourceType Definition

Attribute Value

BrowseName CtrlResourceType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DeviceType defined in OPC 10000-100, i.e. inheriting the InstanceDeclarations of that Node.

HasComponent Object 2:MethodSet BaseObjectType Optional

HasComponent Object Tasks ConfigurableObjectType Mandatory

HasComponent Object Programs ConfigurableObjectType Mandatory

HasComponent Object GlobalVars FunctionalGroupType Optional

HasComponent Object Configuration FunctionalGroupType Optional

HasComponent Object Status FunctionalGroupType Optional

The CtrlResourceType ObjectType is a concrete type and can be used directly. It is recommended to

create subtypes for vendor or user specific resources.

A concrete Ctrl Resource type or instance may have ParameterSet, Parameters and FunctionalGroups
as defined for the TopologyElementType in OPC 10000-100.

OPC 30000: 61131-3 Model for PLCs 34 V 1.02

The MethodSet Object is defined by the TopologyElementType and is overwritten in the
CtrlResourceType to add the HasComponent References to the Methods defined for the
CtrlResourceType.

The Object Tasks is used to group Ctrl Tasks that are part of the Ctrl Resource. It uses the concept
of configurable Objects defined OPC 10000-100. It contains Objects of the type CtrlTaskType
representing a Ctrl Resource and a Folder with possible Ctrl Task types that can be instantiated in the
Ctrl Resource.

The configurable Object Programms is used to group Ctrl Programs that are part of the Ctrl Resource.
It contains Objects of the type CtrlTaskType representing a Ctrl Resource and a Folder with possible
Ctrl Program types that can be instantiated in the Ctrl Resource.

The FunctionalGroup GlobalVars contains the corresponding list of GlobalVars that may be accessed
in the programmable Controller system within the scope of the Ctrl Resource.

The FunctionalGroup Configuration contains configuration Variables and Methods like start and stop.

The FunctionalGroup Status contains diagnostic and status information like system variables, system

events or diagnostic codes.

7.2.2 Tasks components

The configurable Object Tasks of the CtrlResourceType is formally defined in Table 12.

Table 12 – Components of the Tasks Object

Attribute Value

BrowseName Tasks

References NodeClass BrowseName TypeDefinition ModellingRule

HasComponent Object <TaskName> CtrlTaskType OptionalPlaceholder

7.2.3 Programs components

The configurable Object Programs of the CtrlResourceType is formally defined in Table 13.

Table 13 – Components of the Programs Object

Attribute Value

BrowseName Programs

References NodeClass BrowseName TypeDefinition ModellingRule

HasComponent Object <ProgramName> CtrlProgramType OptionalPlaceholder

7.2.4 MethodSet components

The Methods available as parts of the CtrlResourceType are formally defined in Table 14.

Table 14 – Components of the CtrlResourceType MethodSet

Attribute Value

BrowseNa
me

MethodSet

References NodeClass BrowseName Description ModellingRule

Configuration FunctionalGroup

The following components are also referenced from the FunctionalGroup Configuration using Organizes References.

HasComponent Method Start This Method is used to start a Ctrl Resource. Only
the browse name is defined for this Method. The
Method parameters are vendor specific.

Optional

HasComponent Method Stop This Method is used to stop a Ctrl Resource. Only
the browse name is defined for this Method. The
Method parameters are vendor specific.

Optional

7.3 CtrlProgramOrganizationUnitType ObjectType Definition

This ObjectType defines the representation of a Ctrl Program Organization Unit of a programmable
Controller system in an OPC UA Address Space. It defines how components of the Ctrl Program
Organization Unit like Variables and Ctrl Function Blocks are represented. The

OPC 30000: 61131-3 Model for PLCs 35 V 1.02

CtrlProgramOrganizationUnitType is derived from the BlockType defined in OPC 10000-100. Figure
17 shows the CtrlProgramOrganizationUnitType . It is formally defined in Table 15.

BlockType

CtrlProgramOrganizationUnitType

HasInputVar

HasOutputVar

HasInOutVar

HasLocalVar

BaseDataVariableType:

<VarInputName>

BaseDataVariableType:

<VarIOutputName>

BaseDataVariableType:

<VarInOutName>

BaseDataVariableType:

<VarLocalName>

CtrlTaskType:

<TaskName>

With

CtrlFunctionBlockType:

<BlockName>

HasLocalVar

HasExternalVar BaseDataVariableType:

<VarExternalName>

BaseDataVariableType:

Body

SFCType:

<SFCName>

Figure 17 – CtrlProgramOrganizationUnitType Overview

The Ctrl Program Organization Unit ObjectType is formally defined in Table 15.

Table 15 – CtrlProgramOrganizationUnitType Definition

Attribute Value

BrowseName CtrlProgramOrganizationUnitType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BlockType defined in OPC 10000-100, i.e. inheriting the InstanceDeclarations of that Node.

HasSubtype ObjectType CtrlProgramType Defined in Clause 7.4

HasSubtype ObjectType CtrlFunctionBlock
Type

Defined in Clause 7.5

With Object <TaskName> CtrlTaskType OptionalPlaceholder

HasInputVar Variable <VarInputName> BaseDataType BaseDataVariableType OptionalPlaceholder

HasOutputVar Variable <VarOutputName> BaseDataType BaseDataVariableType OptionalPlaceholder

HasInOutVar Variable <VarInOutName> BaseDataType BaseDataVariableType OptionalPlaceholder

HasLocalVar Variable <VarLocalName> BaseDataType BaseDataVariableType OptionalPlaceholder

HasExternalVar Variable <VarExternalName> BaseDataType BaseDataVariableType OptionalPlaceholder

HasLocalVar Object <BlockName> CtrlFunctionBlockType OptionalPlaceholder

HasComponent Variable Body XmlElement BaseDataVariableType Optional

HasComponent Object <SFCName> SFCType OptionalPlaceholder

The CtrlProgramOrganizationUnitType ObjectType is abstract. It is the common base type for all Ctrl
Program Organization Unit specific types.

The With Reference defined in 8.7 is used to reference the Ctrl Task that is used to execute the Ctrl
Program Organization Unit.

OPC 30000: 61131-3 Model for PLCs 36 V 1.02

Variables declared for a Ctrl Program Organization Unit type are referenced with different subtypes of
the HasComponent Reference. The used Reference type depends on the IEC 61131-3 variable
declaration keywords. The characteristics of the Variables like data type and access rights and their
mapping from IEC 61131-3 information and key words is defined in chapter 9. The name of the Variable
depends on the Variable name in the Ctrl Program Organization Unit .

Variables declared with the key word VAR_INPUT are referenced with HasInputVar defined in 8.2.

Variables declared with the key word VAR_OUTPUT are referenced with HasOutputVar defined in 8.3.

Variables declared with the key word VAR_IN_OUT are referenced with HasInOutVar defined in 8.4.

Variables declared with the key word VAR are referenced with HasLocalVar defined in 8.5.

Variables declared with the key word VAR_EXTERNAL are referenced with HasExternalVar defined in
8.6.

Ctrl Function Blocks declared with the key word VAR are referenced with HasLocalVar defined in 8.5.
The name of the Object depends on the name of the block in the Ctrl Program Organization Unit .

The Variable Body contains the body of the Ctrl Program Organisation Unit as XmlElement.

Sequential function charts (SFC) declared in the Ctrl Program Organisation Unit are represented as
Objects of the type SFCType defined in chapter 7.7.

7.4 CtrlProgramType ObjectType Definition

This ObjectType defines the representation of a Ctrl Program of a programmable Controller system in
an OPC UA Address Space. It is derived from CtrlProgramOrganizationUnitType and introduces
additional Variables in addition to the components of the base type. Figure 18 shows the
CtrlProgramType. It is formally defined in Table 16.

CtrlProgramOrganizationUnitType

CtrlProgramType

BaseDataVariableType:

Program

Figure 18 – CtrlProgramType Overview

The Ctrl Program ObjectType is formally defined in Table 16.

Table 16 – CtrlProgramType Definition

Attribute Value

BrowseName CtrlProgramType

IsAbstract True

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the CtrlProgramOrganizationUnitType defined in 7.3, i.e. inheriting the InstanceDeclarations of that Node.

HasComponent Variable Program Structure BaseDataVariableType Optional

The CtrlProgramType ObjectType is abstract. There will be no instances of a CtrlProgramType itself,
but there will be instances of subtypes of this type like instances of vendor or user specific Ctrl
Programs.

OPC 30000: 61131-3 Model for PLCs 37 V 1.02

The Program Variable component contains the complete Ctrl Program data in a complex Variable.

7.5 CtrlFunctionBlockType ObjectType Definition

This ObjectType defines the representation of a Ctrl Function Blocks of a programmable Controller
system in an OPC UA Address Space. It is derived from CtrlProgramOrganizationUnitType and
introduces Ctrl Function Block specific components in addition to the components of the base type.
Figure 19 shows the CtrlFunctionBlockType. It is formally defined in Table 17.

CtrlFunctionBlockType

BaseDataVariableType:

FunctionBlock

HasInputVar

HasOutputVar

HasInOutVar

CtrlProgramOrganizationUnitType

CtrlFunctionBlockType:

<FunctionBlockInputName>

CtrlFunctionBlockType:

<FunctionBlockOutputName>

CtrlFunctionBlockType:

<FunctionBlockInOutName>

Figure 19 – CtrlFunctionBlockType Overview

The CtrlFunctionBlock ObjectType is formally defined in Table 17.

Table 17 – CtrlFunctionBlockType Definition

Attribute Value

BrowseName CtrlFunctionBlockType

IsAbstract True

References NodeClass BrowseName TypeDefinition ModellingRule

Inherit the Properties and components of the CtrlProgramOrganizationUnitType

HasInputVar Object <FunctionBlockInputName> CtrlFunctionBlockType OptionalPlaceholder

HasOutputVar Object <FunctionBlockOutputName> CtrlFunctionBlockType OptionalPlaceholder

HasInOutVar Object <FunctionBlockInOutName> CtrlFunctionBlockType OptionalPlaceholder

HasComponent Variable FunctionBlock BaseDataVariableType Optional

The CtrlFunctionBlockType ObjectType is abstract. There will be no instances of a
CtrlFunctionBlockType itself, but there will be instances of subtypes of this type like instances of
vendor or user specific Ctrl Function Blocks.

Ctrl Function Block instances declared for a Ctrl Function Block type are referenced with different
subtypes of the HasComponent Reference. The used Reference type depends on the IEC 61131-3
declaration keywords. The name of the Object depends on the name of the block in the Ctrl Function
Block.

Ctrl Function Block instances declared with the key word VAR_INPUT are referenced with HasInputVar

defined in 8.2.

Ctrl Function Block instances declared with the key word VAR_OUTPUT are referenced with
HasOutputVar defined in 8.3.

OPC 30000: 61131-3 Model for PLCs 38 V 1.02

Ctrl Function Block instances declared with the key word VAR_IN_OUT are referenced with
HasInOutVar defined in 8.4.

The FunctionBlock Variable component contains the complete Ctrl Function Block data in a complex
Variable. The DisplayName for the Variable is FunctionBlock.

7.6 CtrlTaskType ObjectType Definition

This ObjectType defines the representation of a Ctrl Task of a programmable Controller system in an
OPC UA Address Space. It introduces Properties providing information about the Ctrl Task. Figure 20
shows the CtrlTaskType. It is formally defined in Table 18.

BaseObjectType

CtrlTaskType

Priority

Interval

Single

Figure 20 – CtrlTaskType Overview

The Ctrl Task ObjectType is formally defined in Table 18.

Table 18 – CtrlTaskType Definition

Attribute Value

BrowseName CtrlTaskType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in OPC 10000-5, i.e. inheriting the InstanceDeclarations of that Node.

HasProperty Variable Priority UInt32 PropertyType Mandatory

HasProperty Variable Interval String PropertyType Optional

HasProperty Variable Single String PropertyType Optional

The Priority Property indicates the scheduling priority of the associated Ctrl Program Organization Unit.

The Interval Property indicates the periodical scheduling of the associated Ctrl Program Organization
Unit at the specified interval.

The Single Property indicates a single scheduling of the associated Ctrl Program Organization Unit at
each rising edge.

OPC 30000: 61131-3 Model for PLCs 39 V 1.02

7.7 SFCType ObjectType Definition

The SFC ObjectType is formally defined in Table 19. This type is a container for Sequential Function
Chart (SFC) related information. The representation of this information is vendor specific. Future
versions of this specification may define standard representations.

Table 19 – SFCType Definition

Attribute Value

BrowseName SFCType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in OPC 10000-5, i.e. inheriting the InstanceDeclarations of that Node.

8 Reference Types

8.1 General

Figure 21 depicts the main ReferenceTypes of this specification and their relationship.

OPC-UA
References

HirarcicalReferences NonHierarchicalReferences

Aggregates Organizes

With

HasComponent

HasInputVar HasLocalVarHasInOutVarHasOutputVar HasExternalVar

Figure 21 – Reference Types Overview

The upper grey box shows the OPC UA core ReferenceTypes from which the IEC 61131-3
ReferenceTypes are derived. The grey box in the second level shows the IEC 61131-3
ReferenceTypes that this specification introduces.

8.2 HasInputVar

This ReferenceType is a subtype of the HasComponent ReferenceType defined in OPC 10000-5. Its
representation in the AddressSpace is specified in Table 20.

OPC 30000: 61131-3 Model for PLCs 40 V 1.02

Table 20 – HasInputVar ReferenceType

Attributes Value

BrowseName HasInputVar

InverseName InputVarOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of HasComponent ReferenceType defined in OPC 10000-5

The HasInputVar ReferenceType is a concrete ReferenceType and can be used directly.

The semantic of this ReferenceType is to reference components of a Ctrl Program Organization Unit

declared with the key word VAR_INPUT.

The SourceNode of References of this type shall be a subtype of CtrlProgramOrganizationUnitType

or an instance of one of its subtypes.

The TargetNode of this ReferenceType shall be a Variable or an Object of the ObjectType
CtrlFunctionBlockType or one of its subtypes.

8.3 HasOutputVar

This ReferenceType is a subtype of the HasComponent ReferenceType defined in OPC 10000-5. Its
representation in the AddressSpace is specified in Table 21.

Table 21 – HasOutputVar ReferenceType

Attributes Value

BrowseName HasOutputVar

InverseName OutputVarOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of HasComponent ReferenceType defined in OPC 10000-5

The HasOutputVar ReferenceType is a concrete ReferenceType and can be used directly.

The semantic of this ReferenceType is to reference components of a Ctrl Program Organization Unit

declared with the key word VAR_OUTPUT.

The SourceNode of References of this type shall be a subtype of CtrlProgramOrganizationUnitType

or an instance of one of its subtypes.

The TargetNode of this ReferenceType shall be a Variable or an Object of the ObjectType
CtrlFunctionBlockType or one of its subtypes.

8.4 HasInOutVar

This ReferenceType is a subtype of the HasComponent ReferenceType defined in OPC 10000-5. Its
representation in the AddressSpace is specified in Table 22.

Table 22 – HasInOutVar ReferenceType

Attributes Value

BrowseName HasInOutVar

InverseName InOutVarOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of HasComponent ReferenceType defined in OPC 10000-5

The HasInOutVar ReferenceType is a concrete ReferenceType and can be used directly.

OPC 30000: 61131-3 Model for PLCs 41 V 1.02

The semantic of this ReferenceType is to reference components of a Ctrl Program Organization Unit

declared with the key word VAR_INOUTPUT.

The SourceNode of References of this type shall be a subtype of CtrlProgramOrganizationUnitType

or an instance of one of its subtypes.

The TargetNode of this ReferenceType shall be a Variable or an Object of the ObjectType
CtrlFunctionBlockType or one of its subtypes.

8.5 HasLocalVar

This ReferenceType is a subtype of the HasComponent ReferenceType defined in OPC 10000-5. Its
representation in the AddressSpace is specified in Table 23.

Table 23 – HasLocalVar ReferenceType

Attributes Value

BrowseName HasLocalVar

InverseName LocalVarOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of HasComponent ReferenceType defined in OPC 10000-5

The HasLocalVar ReferenceType is a concrete ReferenceType and can be used directly.

The semantic of this ReferenceType is to reference components of a Ctrl Program Organization Unit

declared with the key word VAR.

The SourceNode of References of this type shall be a subtype of CtrlProgramOrganizationUnitType

or an instance of one of its subtypes.

The TargetNode of this ReferenceType shall be a Variable or an Object of the ObjectType
CtrlFunctionBlockType or one of its subtypes.

8.6 HasExternalVar

This ReferenceType is a subtype of the Organizes ReferenceType defined in OPC 10000-5. Its
representation in the AddressSpace is specified in Table 24.

Table 24 – HasExternalVar ReferenceType

Attributes Value

BrowseName HasExternalVar

InverseName ExternalVarOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of Organizes ReferenceType defined in OPC 10000-5

The HasExternalVar ReferenceType is a concrete ReferenceType and can be used directly.

The semantic of this ReferenceType is to reference components of a Ctrl Program Organization Unit

declared with the key word VAR_EXTERNAL.

The SourceNode of References of this type shall be a subtype of CtrlProgramOrganizationUnitType

or an instance of one of its subtypes.

The TargetNode of this ReferenceType shall be a Variable or an Object of the ObjectType
CtrlFunctionBlockType or one of its subtypes.

8.7 With

This ReferenceType is a subtype of the NonHierarchicalReferences ReferenceType defined in OPC
10000-5. Its representation in the AddressSpace is specified in Table 25.

OPC 30000: 61131-3 Model for PLCs 42 V 1.02

Table 25 – With ReferenceType

Attributes Value

BrowseName With

InverseName Executes

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of NonHierarchicalReferences ReferenceType defined in OPC 10000-5

The With ReferenceType is a concrete ReferenceType and can be used directly.

The semantic of this ReferenceType is to reference the Ctrl Task that executes a Ctrl Program
Organization Unit.

The SourceNode of References of this type shall be an Object of the ObjectType
CtrlProgramOrganizationUnitType or an instance of one of its subtypes.

The TargetNode of this ReferenceType shall be an Object of the ObjectType CtrlTaskType or one of

its subtypes.

9 Definition of Ctrl Variable Attributes and Properties

9.1 Common Attributes

The common Attributes of OPC UA Address Space Nodes and their mapping from IEC 61131-3 are
defined in Table 26.

Table 26 – Common Node Attributes

Attribute Use DataType Description

NodeId Mandatory NodeId The NodeId is a unique identifier for a Node in an OPC UA Address
Space. The identifier is server specific and its format is not defined in
this specification.

NodeClass Mandatory NodeClass The NodeClass is Variable for all Ctrl Variables.

BrowseName Mandatory QualifiedName The BrowseName is a QualifiedName composed of a name string and a
namespace index. It is used to create paths that can be passed to the
TranslateBrowsePathsToNodeIds Service to get the NodeId of a
Variable Node. This is typically used to get the NodeId of Variable in an
Object instance based on the path known from the Object type. The
BrowseName is not used to display the name of the Node.

The name part is generated from the Ctrl Variable name.

The namespace part depends of the scope where the Variable is
defined. Chapter 12.5 describes the handling of namespaces.

DisplayName Mandatory LocalizedText The DisplayName is a LocalizedText used by clients to display the name
of a Node. It is composed of a localized text part and a LocaleId
identifying the language of the text.

The DisplayName is server specific if the server supports localization of
Variable names.

The DisplayName is composed of the Ctrl Variable name and an empty
LocaleId string if the server does not support localization.

Description Optional LocalizedText The optional Description shall describe the meaning of the Node using a
localized text.

The Description may correspond to the element Documentation of the
element Variable in PLCopen XML.

WriteMask Optional UInt32 The WriteMask provides the optional information which attributes of the
Node can be written by a client. This excludes the Value Attribute where
the access is described by the AccessLevel Attribute.

The value of this Attribute is server specific.

Servers only supporting the use cases Observation and Operation are
typically setting this Attribute to 0 or are not providing this optional
Attribute.

Servers supporting also the use cases Engineering and Service may
allow clients to change Node Attributes.

UserWriteMask Optional UInt32 The user specific settings for the WriteMask.

OPC 30000: 61131-3 Model for PLCs 43 V 1.02

9.2 DataType

9.2.1 Mapping of elementary data types

The mapping of IEC 61131-3 elementary data types to OPC UA data types is formally defined in Table
27. The OPC UA built in data types are used for the wire representat ion of the data type. Additional
PLCopen specific OPC UA data type definitions are used to provide the special semantic if necessary.

Table 27 – Mapping IEC 61131-3 elementary data types to OPC UA built in data types

No. IEC 61131-3
elementary data types
(Keyword / Description)

DataType
NodeID

OPC UA
built in data
types

PLCopen
specific OPC
UA simple
data type
definitions

Comment

1 BOOL / Boolean --- Boolean (UA:1) - A one bit value (true or false).

2 SINT / Short integer --- SByte (UA:2) - An 8 bit signed integer value.

3 INT / Integer --- Int16 (UA:4) - A 16 bit signed integer value.

4 DINT --- Int32 (UA:6) - A 32 bit signed integer value.

5 LINT / Long integer --- Int64 (UA:8) - A 64 bit signed integer value.

6 USINT / Unsigned short integer --- Byte (UA:3) - An 8 bit unsigned integer value.

7 UINT / Unsinged integer --- UInt16 (UA:5) - A 16 bit unsigned integer value.

8 UDINT / Unsigned double
integer

--- UInt32 (UA:7) - A 32 bit unsigned integer value.

9 ULINT / Unsigned long integer --- UInt64 (UA:9) - A 64 bit unsigned integer value.

10 REAL / Real numbers --- Float (UA:10) - OPC UA definition: An IEEE-754 single precision
(32 bit) floating point value.
IEC 61131-3 definition: Real (32 bit) with a range of
values as defined in IEC 60559 for the basic single
width floating-point format.
Both standards are identical.

11 LREAL / Long reals --- Double (UA:11) - OPC UA definition: An IEEE-754 double precision
(64 bit) floating point value.
IEC 61131-3 definition: Long real (64 bit) with a
range of values as defined in IEC 60559 for the
basic double width floating-point format.
Both standards are identical.

12a TIME / Duration x:3005 Int64 (UA:8) TIME The OPC UA simple data type TIME/Duration is
derived from the built-in data type Int64. It describes
that the type is used as interval of time in
milliseconds. The range of valid values is vendor
specific.

12b LTIME / Duration x:3006 Int64 (UA:8) LTIME The PLCopen simple data type LTIME is derived
from the build in data type Int64. It describes that
the type is used as interval of time in nanoseconds.
The valid range is LT#-
106751d23h47m16s854ms775us808ns to
LT#+106751d23h47m16s854ms775us807ns. The
representation contains information for days (d),
hours (h), minutes (m), seconds (s) milliseconds
(ms), microseconds (us) and nanoseconds (ns).

13a DATE / Date (only) x:3007 DateTime
(UA:13)

DATE The PLC open specific OPC UA simple data type
DATE is derived from the built-in data type
DateTime. It describes that the type is used as a
date only.

13b LDATE / Long date (only) X:3014 Int64 (UA:8) LDATE The PLCopen specific OPC UA simple data type
LDATE is derived from the built-in data type Int64. It
describes that the type is used as date only. The
interval is nanoseconds since 1970-01-01.

14a TOD
Time of day (only)

x:3008 UInt32 (UA:7) TOD TOD (TIME_OF_DAY) stores number of
milliseconds since the beginning of the day:
TOD#00:00:00.000 to TOD#23:59:59.999.

14b LTOD
(Time of day)

x:3009 Int64 (UA:8) LTOD LTOD (LTIME_OF_DAY) stores the number of
nanoseconds since the beginning of the day:
LTOD#00:00:00.000000000 to
LTOD#23:59:59.999999999.

15a DT
Date and time of day

x:3010 DateTime
(UA:13)

DT The range and resolution of this type is vendor
specific.

OPC 30000: 61131-3 Model for PLCs 44 V 1.02

15b LDT
Date and time of day

x:3015 Int64 (UA:8) LDT The PLCopen specific OPC UA Simple datatype
LDT is derived from the build in data type Int64. It
describes the number of nanoseconds elapsed
since 1970-01-01-00:00:00

16a STRING
variable-length single-byte
character string

x:3013 String (UA:12) STRING The PLC open specific OPC UA simple data type
STRING is derived from the built-in data type String.
It describes that the type is used as a variable-
length single-byte character string.

16b WSTRING
variable-length double-byte
character string

--- String (UA:12) - OPC UA definition: A sequence of UTF8 characters.
IEC 61131-3 definition: Variable-length double-byte
character string

17a CHAR
single-byte character

x:3011 Byte (UA:3) CHAR The PLC open specific OPC UA simple data type
CHAR is derived from the built-in data type Byte. It
describes that the type is used as single-byte
character

17b WCHAR
double-byte character

x:3012 UInt16 WCHAR The PLC open specific OPC UA simple data type
WCHAR is derived from the built-in data type
UInt16. It describes that the type is used as double-
byte character.

18 BYTE
Bit string of length 8

x:3001 Byte BYTE The PLC open specific OPC UA simple data type
BYTE is derived from the built-in data type Byte. It
describes that the type is used as bit string of length
8.

19 WORD
Bit string of length 16

x:3002 UInt16 WORD The PLC open specific OPC UA simple data type
WORD is derived from the built-in data type UInt16.
It describes that the type is used as bit string of
length 16

20 DWORD
Bit string of length 32

x:3003

UInt32 DWORD The PLC open specific OPC UA simple data type
DWORD is derived from the built-in data type
UInt32. It describes that the type is used as bit string
of length 32

21 LWORD
Bit string of length 64

x:3004 UInt64 LWORD The PLC open specific OPC UA simple data type
LWORD is derived from the built-in data type
UInt64. It describes that the type is used as bit string
of length 64

9.2.2 Mapping of generic data types

The mapping of IEC 61131-3 generic data types to OPC UA data types is formally defined in Table 28.
Since the generic data type should not be used in user -declared Ctrl Program Organization Units, this
mapping definition is defined for completeness but is normally not used in an OPC UA AddressSpace.

Table 28 – Mapping IEC 61131-3 generic data types to OPC UA data types

IEC 61131-3 generic data
types

OPC UA data
types

Description

ANY BaseDataType This abstract OPC UA DataType defines a value that can have any valid
OPC UA DataType. ANY_DERIVED BaseDataType

 ANY_ELEMENTARY BaseDataType

 ANY_MAGNITUDE BaseDataType

 ANY_NUM Number This abstract OPC UA DataType defines a number value that can have any
of the OPC UA Number subtypes. ANY_REAL Number

 ANY_INT Number

 ANY_BIT Number

 ANY_STRING String This OPC UA Built-in DataType defines a Unicode character string that
should exclude control characters that are not whitespaces (0x00 - 0x08,
0x0E-0x1F or 0x7F).

 ANY_DATE DateTime This OPC UA Built-in DataType defines a Gregorian calendar date. It is a 64-
bit signed integer which represents the number of 100 nanosecond intervals
since January 1, 1601.

9.2.3 Mapping of derived data types

9.2.3.1 Mapping of enumerated data types

Both OPC UA and IEC 61131-3 allow the definition of enumerations on a data type or on a variable
instance.

OPC 30000: 61131-3 Model for PLCs 45 V 1.02

In OPC UA the enumerated data types are defined as subtypes of Enumeration. The data has an
EnumStrings Property that contains the possible string values. The value is transferred as integer on
the wire where the integer defines the index into the EnumStrings array. The index is zero based and
has no gaps. Another option is to provide the possible string values in the Property EnumValues. This
option is used if individual integer values are assigned to the string. The used option depends o n the
way the string enumeration is defined in the Controller program. If integer values are assigned to the
string values the Property EnumValues is used to represent the enumeration values. If the integer
value is zero based and has no gaps the EnumStrings Property should be used since the processing

on the client side is more efficient.

The definition on a variable instance is using the MultiStateDiscreteType Variable Type which defines
also the EnumStrings or the EnumValues Property containing the enumeration values as string array.

Example for an enumerated data type declaration in IEC 61131-3:

TYPE

 ANALOG_SIGNAL_TYPE : (SINGLE_ENDED, DIFFERENTIAL) ;

END_TYPE

Example for use of an enumeration in a Ctrl Variable instantiation in IEC 61131-3:

VAR

 Y : (Red, Yellow, Green) ;

END_VAR

The IEC 61131-3 enumeration data type declaration is mapped to an OPC UA Enumeration data type.
The representation in the address space is formally defined in Table 29.

Table 29 – Enumeration Data Type Definition

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the Enumeration defined in OPC 10000-5 i.e. inheriting the InstanceDeclarations of that Node.

HasProperty Variable EnumString String [] PropertyType Optional

HasProperty Variable EnumValues EnumValueDataType [] PropertyType Optional

The Property EnumString is defined in OPC 10000-5

The Property EnumValues is defined in OPC 10000-5.

The IEC 61131-3 enumeration in a Ctrl Variable declaration is mapped to a MultiStateDiscreteType

Variable Type defined in OPC 10000-8.

9.2.3.2 Mapping of subrange data types

IEC 61131-3 defines the subrange for all integer data types (ANY_INT) which excludes real values.

OPC UA has no standard concept to limit the range on the data type.

Example for a subrange data type declaration in IEC 61131-3:

TYPE

 ANALOG_DATA : INT (-4095..4095) ;

END_TYPE

Example for use of a subrange in a Ctrl Variable instantiation in IEC 61131-3:

VAR

 Z : SINT (5..95) ;

OPC 30000: 61131-3 Model for PLCs 46 V 1.02

END_VAR

The IEC 61131-3 subrange is mapped to two OPC UA properties def ined in Table 30.

Table 30 – Subrange Property Definition

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Instance of any Variable Type or a Data Type Node.

HasProperty Variable SubrangeMin Number PropertyType Mandatory

HasProperty Variable SubrangeMax Number PropertyType Mandatory

The Property SubrangeMin contains the lower bound of the subrange. The data type depends on the
elementary data type used for the subrange.

The Property SubrangeMax contains the upper bound of the subrange. The data type depends on the
elementary data type used for the subrange.

The IEC 61131-3 subrange data type is mapped to an OPC UA number data type derived from the
corresponding elementary data types defined in Table 27. The data type has the two Properties defined
in Table 30. The IEC example in this chapter is mapped to an OPC UA data type with the name
ANALOG_DATA which is a subtype of Int16.

The IEC 61131-3 subrange in a Ctrl Variable declaration is mapped to the two Properties defined in
Table 30. The Properties are children of the OPC UA Variable representing the Ctrl Variable.

9.2.3.3 Mapping of array data types

OPC UA provides the information if a value is an array in the Variable Attributes ValueRank and
ArrayDimensions. Every data type can be exposed as array. Arrays can have multiple dimensions.
The dimension is defined through the Attribute ValueRank. Arrays can have variable or fixed lengths.
The length of each dimension is defined by the Attribute ArrayDimensions. The array index starts with
zero.

IEC 61131-3 allows the declaration of array data types with one or multiple dimensions and an index
range instead of a length.

OPC UA has no standard concept for defining special array data types or exposing index ranges.

Example for an array data type declaration in IEC 61131-3:

TYPE

 ANALOG_16_INPUT_DATA : ARRAY [1..16] OF INT ;

END_TYPE

Example for use of an array in a Ctrl Variable instantiation in IEC 61131-3:

VAR

 MyArray : ARRAY [1..16] OF INT;

END_VAR

The IEC 61131-3 array data type is mapped to three OPC UA properties defined in Table 31.

Table 31 – Array Data Type Property Definition

References NodeClass BrowseName DataType TypeDefinition ModellingR
ule

Instance of any VariableType or a DataType Node.

HasProperty Variable Dimensions UInt32 PropertyType Mandatory

HasProperty Variable IndexMin Int32 [] PropertyType Mandatory

HasProperty Variable IndexMax Int32 [] PropertyType Mandatory

OPC 30000: 61131-3 Model for PLCs 47 V 1.02

The Property Dimensions contains the number of dimensions of the array.

The Property IndexMin contains an array of lower bounds, one for each array dimension.

The Property IndexMax contains an array of upper bounds, one for each array dimension.

The IEC 61131-3 array data type is mapped to an OPC UA data type derived from the corresponding
elementary data types defined in Table 27. The data type has the two Properties defined in Table 31.
The IEC example in this chapter is mapped to an OPC UA data type with the name
ANALOG_16_INPUT_DATA which is a subtype of Int16.

The IEC 61131-3 array in a Ctrl Variable declaration is mapped to the two Properties defined in Table
31. The Properties are children of the OPC UA Variable representing the Ctrl Variable.

9.2.3.4 Mapping of structure data types

IEC 61131-3 structure data types are mapped as subtypes of the OPC UA DataType Structure. OPC
UA servers must explicitly describe how structured DataTypes are encoded / decoded and provide this
information to the client which is using it while reading / writing structure data.

The following example of an IEC 61131-3 structure data type declaration (using Structured Text) will
be used for further illustrations. This structure data type comprises three structure elements of different
elementary data types.

TYPE ExampleIEC611313Structure:

 STRUCT

 IntStructureElement: INT;

 RealStructureElement: REAL;

 BoolStructureElement: BOOL;

 END_STRUCT;

END_TYPE

9.2.3.4.1 Deprecated Mapping of structure data types

The following Figure 22 shows the deprecated mapping of the above example. This mapping is
deprecated since it is deprecated in OPC UA V1.04.

OPC 30000: 61131-3 Model for PLCs 48 V 1.02

DataType Structure ExampleIEC611313Structure

Default Binary:

DataTypeEncoding

HasEncoding

ExampleIEC611313StructureTypeDescription:

DataTypeDescriptionType

Attribute

DataType = ByteString

ValueRank = Scalar

Value = { ExampleIEC611313Structure

HasDescription

CtrlServerTypeDictionary:

DataTypeDictionaryType

Attribute

DataType = ByteString

ValueRank = Scalar

Value = {
<opc:StructuredType Name= ExampleIEC611313Structure

 <opc:Field Name= IntStructureElement TypeName= opc:Int16

 <opc:Field Name= RealStructureElement TypeName= opc:Float

 <opc:Field Name= BoolStructureElement TypeName= opc:Boolean

</opc:StructuredType>

...“}

Has
Component

OPC Binary:

DataTypeSystemType

Has
Component

Figure 22 – Deprecated Mapping of structure data types

Ctrl servers must support the binary encoding (“Default Binary”). Additionally, other encodings may be
provided (not shown in above figure). A Server may provide, for backward compatibility, the
deprecated DataTypeDictionary Variable describing all necessary DataTypes. Each DataType is
represented by a DataTypeDescription Variable. Optionally, a Property DictionaryFragment may be
available, allowing clients not to read the complete DataTypeDictionary in order to get the information
about only a single DataType (not shown in above figure).

9.2.3.4.2 Mapping of structure data types

DataType Structure ExampleIEC611313Structure

Default Binary:

DataTypeEncoding

HasEncoding

Figure 23 – Mapping of structure data types

Ctrl servers shall support the binary encoding (“Default Binary”). Additionally, other encodings may be
provided (not shown in above figure). Since OPC UA V1.04 a structured DataType provides the new
attribute DataTypeDefinition. This attribute is defined in OPC 10000-6 – F.12. Implementations shall
use this new attribute instead of the deprecated DataTypeDictionary.

A Server provides on a structured DataType Node the DataTypeDefinition attribute describing all
elements and their order in this structure.

OPC 30000: 61131-3 Model for PLCs 49 V 1.02

The Value of the DataTypeDefinition Attribute for a DataType Node describing
ExampleIEC611313Structure is shown in Table 32.

Table 32 – Value of the DataTypeDefinition

Name Type Description

defaultEncodingId NodeId NodeId of the “ExampleIEC611313Structure_Encoding_DefaultBinary” Node.

baseDataType NodeId “i=22” [Structure]

structureType StructureType Structure_0 [Structure without optional fields]

fields [0] StructureField

name String “IntStructureElement”

description LocalizedText Description of IntStructureElement

dataType NodeId “i=4” [Int16]

valueRank Int32 -1 (Scalar)

isOptional Boolean False

fields [1] StructureField

Name String “RealStructureElement“

Description LocalizedText Description of RealStructureElement

dataType NodeId “i=10” [Float]

valueRank Int32 -1 (Scalar)

isOptional Boolean false

fields [2] StructureField

name String “BoolStructureElement“

description LocalizedText Description of BoolStructureElement

dataType NodeId “i=1” [Boolean]

valueRank Int32 -1 (Scalar)

isOptional Boolean false

9.2.3.4.3 Structure and VariableType

It is strongly recommended for Ctrl servers to provide additionally the structured data as a set of sub
variables (components of the variable) providing the structure as several separated values. This allows
clients that do not support complex data to access the scalar values. The following Figure 24 shows
an example (instances based on the above type descriptions).

ExampleIEC611313StructureVariable:

VariableType

Attribute

Value = {42, 3.1415, TRUE}

DataType = ExampleIEC611313Structure

ValueRank = Scalar

IntStructureElement:

VariableType

Attribute

Value = 42

DataType = Int16

ValueRank = Scalar

RealStructureElement:

VariableType

Attribute

Value = 3.1415

DataType = Float

ValueRank = Scalar

BoolStructureElement:

VariableType

Attribute

Value = TRUE

DataType = Boolean

ValueRank = Scalar

Has

Component

Has

Component
Has

Component

Figure 24 – Mapping of structure data types to Variable components

If a structure element is not an elementary data type, it has to be divided again into sub variables.

It is recommended that Ctrl servers do support complex data. If a server does not support complex
data it provides only sub variables for structure variables . The structured variable would be a Folder
object in this case.

OPC 30000: 61131-3 Model for PLCs 50 V 1.02

9.3 Variable specific Node Attributes

9.3.1 General

The Variable specific Attributes of OPC UA Address Space Nodes and their mapping from IEC 61131-

3 are defined in Table 33.

Table 33 – Variable Node Attributes

Attribute Use DataType Description

Value Mandatory Defined by
DataType

The most recent value of the Variable that the server has. Its data type is
defined by the DataType, ValueRank and ArrayDimension Attribute.

DataType Mandatory NodeId The DataType of the Variable Value. It defines the type specific content of
the Value together with the ValueRank and the ArrayDimension Attributes,

The mapping is defined in 9.2.

ValueRank Mandatory Int32 This Attribute indicates whether the Value of the Variable is an

array and how many dimensions the array has.

Ctrl Variables declared as scalar type have the ValueRank -1.

Ctrl Variables declared with the key word ARRAY OF have a ValueRank
that indicates the number of dimension of the array declared for the Ctrl
Variable.

ArrayDimensions Optional UInt32[] This Attribute specifies the length of each dimension for an array value.
The Attribute is intended to describe the capability of the Variable, not the
current size.

The dimension entries have the length defined with the key word
ARRAY OF.

AccessLevel Mandatory Byte The AccessLevel Attribute is used to indicate how the Value of a Variable
can be accessed (read/write) and if it contains current and/or historic data.

The handling of access to historic data is server specific and is not part of
this specification.

The mapping of the read and write access part of the AccessLevel is
defined in 9.3.2

UserAccessLevel Mandatory Byte The user specific settings for the AccessLevel.

MinimumSampling
Interval

Optional Duration The MinimumSamplingInterval Attribute indicates how “current” the Value
of the Variable will be kept. It specifies (in milliseconds) how fast the server
can reasonably sample the value for changes.

A MinimumSamplingInterval of 0 indicates that the server is to monitor the
item continuously.

A MinimumSamplingInterval of -1 means indeterminate.

The value of this Attribute is server specific.

Historizing Mandatory Boolean Indicates if the server is currently collecting history for the Variable Value.
The support of value history is server specific.

9.3.2 Access Level

If the IEC attribute CONSTANT is set, the Access Level shall be read only.

The IEC standard does not define a key word to set the Access Level for a Ctrl Variable. The
configuration in a programming system is vendor specific but it is recommended to provide a
configuration option for the OPC UA Access Level.

When using the PLCopen XML format the AccessLevel shall be provided in PLCopen XML Additional
Data in the XML element addData using the XML element UaAccessLevel as part of the XML element
representing the variable. The value is a bit mask where the first bit indicates the read access and the
second bit indicates the write access.

9.4 Variable Properties

9.4.1 IEC Ctrl Variable Keywords

The IEC 61131-3 key word mapping to OPC UA Properties is formally defined in Table 34.

Table 34 – IEC 61131-3 Variable Key Word Property Definition

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Instance of any Variable Type.

HasProperty Variable RETAIN Boolean PropertyType Optional

HasProperty Variable NON_RETAIN Boolean PropertyType Optional

HasProperty Variable CONSTANT Boolean PropertyType Optional

HasProperty Variable AT String PropertyType Optional

OPC 30000: 61131-3 Model for PLCs 51 V 1.02

The Property RETAIN indicates if the RETAIN key word is set for the Ctrl Variable. It provides an
explicit declaration of “warm start” behaviour of the Ctrl Variable (and Ctrl Function Blocks and Ctrl
Programs).

The Property NON_RETAIN indicates if the NON_RETAIN key word is set for the Ctrl Variable. It
provides an explicit declaration of “warm start” behaviour of the Ctrl Variable (and Ctrl Function Blocks
and Ctrl Programs).

The Property CONSTANT indicates if the CONSTANT key word is set for the Ctrl Variable. It provides
a declaration of a fixed value for the Ctrl Variable. The Ctrl Variable cannot be modified.

The Property AT contains the location assignment to the Ctrl Variable as string if the AT key word is
set for the Ctrl Variable.

9.4.2 Configuration of OPC UA defined Properties

The IEC standard does not define key words to configure information like the value range or the
engineering unit for a Ctrl Variable. The configuration in a programming system is vendor specific but
this specification defines the export format in the PLCopen XML Additional Data in the XML element
addData.

The InstrumentRange Property defined in OPC 10000-8 shall be provided in the XML element
UaInstrumentRange as part of the XML element representing the Ctrl Variable. The attributes of the

XML element are formally defined in Table 35.

Table 35 – Range XML attributes

Name Type Use Default

Low double required

High double required

The EURange Property defined in OPC 10000-8 shall be provided in the XML element UaEURange as
part of the XML element representing the Ctrl Variable. The attributes of the XML element are formally

defined in Table 35.

The EngineeringUnits Property defined in OPC 10000-8 shall be provided in the XML element
UaEngineeringUnits as part of the XML element representing the Ctrl Variable.

10 Objects used to organise the AddressSpace structure

10.1 DeviceSet as entry point for engineering applications (Mandatory)

The full object component hierarchy based on Object Types defined in this specification shall be
provided as components of the DeviceSet Object defined in OPC 10000-100. Figure 25 provides an

example for such a component hierarchy.

The DeviceSet Object is typically used as entry point by a UA client in the use cases Engineering and
Service.

OPC 30000: 61131-3 Model for PLCs 52 V 1.02

FolderType:

Objects

FolderType:

Root

Organizes

PLC_Z345:

PLC1

Organizes

CPU_A100:

CPU1

CPU_A100:

CPU2
TaskType:

Task1 Priority

FolderType:

GlobalVars nGlobal1

nGlobal2

Main:
Main1

Executes

FB_MotorControler:

Motor1

nInputHasInputVar

fOutputHasOutputVar

bLocalHasLocalVar

bLocalMainHasLocalVar

BaseObjectType:

DeviceSet

Ctrl Configuration

ConfigurableObjectType:

Resources

Ctrl Resource

ConfigurableObjectType:

Programs

Ctrl Program

Organization Units

Figure 25 – DeviceSet as entry point for engineering applications

10.2 CtrlTypes Folder for server specific Object Types (Mandatory)

The server specific ObjectTypes like vendor specific Ctrl Configuration types or user specific Ctrl
Function Block types can be found by a UA client by following the type hierarchy.

To provide UA clients all relevant server specific types in one place, the Ctrl Function Block types shall
be referenced directly or indirectly from the CtrlTypes Folder Object using Organizes References.
Other types like Ctrl Resources or Ctrl Program types may be included in addition. The CtrlTypes node

is formally defined in Table 36

Table 36 – CtrlTypes definition

References Node
Class

BrowseName TypeDefinition Description

Organized by the ObjectType Folder defined in OPC 10000-5

HasTypeDefinition ObjectType Folder

Organizes Object <Server specific> FolderType Optional server specific additional structuring
of the type information building to a type
catalogue

Organizes ObjectType <Server specific> Server specific Object Types

The server may provide additional Folder objects below the CtrlTypes Object to organize the types.

This can be used to create a library structure like in the example in Figure 26.

OPC 30000: 61131-3 Model for PLCs 53 V 1.02

FolderType:

Types

FolderType:

Root

Organizes

BaseObjectType

FolderType:

CtrlTypes

Organizes

BlockType

CtrlProgramOrganizationUnitType

CtrlFunctionBlockType

CTD

CTU

TOF

TON

FolderType:

StdLibrary
Organizes

FolderType:

Counter

FolderType:

Timer

Organizes

Organizes

Organizes

Organizes

FolderType:

ObjectTypes

Organizes

FolderType:

UserLibrary

Organizes

Figure 26 – CtrlTypes Folder used to structure POU types

10.3 Entry point for Observation and Operation (Examples)

The entry point for UA client for the use cases Observation and Operation is the Objects Folder. One
typical entry point is a list of Objects representing Ctrl Resources. Additional Folders Objects used to
structure the Ctrl Resources into a hierarchy are server specific. Such an example is shown in Figure

27.

OPC 30000: 61131-3 Model for PLCs 54 V 1.02

FolderType:

Objects

FolderType:

Root

Organizes

PLC_Z345:

PLC1

Organizes

CPU_A100:

CPU1

FolderType:

GlobalVars nGlobal1

nGlobal2

Main:
Main1

FB_MotorControler:

Motor1

nInputHasInputVar

fOutputHasOutputVar

bLocalHasLocalVar

bLocalMainHasLocalVar

BaseObjectType:

DeviceSet

ConfigurableObjectType:

Resources

ConfigurableObjectType:

Programs

Organizes

Figure 27 – Browse entry point for Operation with Ctrl Resource

Servers that want to hide some of the components of a Ctrl Resources can create a Folder Object
representing the Ctrl Resources and can use Organizes References to reference only the components
of the Ctrl Resources that should be visible in this part of the hierarchy. Such an example is shown in

Figure 28.

FolderType:

Objects

FolderType:

Root

Organizes

PLC_Z345:

PLC1

Organizes

CPU_A100:

CPU1

FolderType:

GlobalVars

nGlobal1

nGlobal2

Main:
Main1

FB_MotorControler:

Motor1

nInputHasInputVar

fOutputHasOutputVar

bLocalHasLocalVar

bLocalMainHasLocalVar

BaseObjectType:

DeviceSet

ConfigurableObjectType:

Resources

ConfigurableObjectType:

Programs

Organizes

FolderType:

PLC1_CPU2

Organizes

OPC 30000: 61131-3 Model for PLCs 55 V 1.02

Figure 28 – Browse entry point for Operation with simplified Folder

11 System Architecture

11.1 General

This chapter describes typical system architectures where this specification can be applied. Figure 29
shows a possible configuration where OPC UA based interfaces are involved.

Figure 29 – System Architecture

11.2 Embedded OPC UA Server

Embedded OPC UA servers are directly integrated into a Controller providing Ctrl Program and Ctrl
Function Block Objects. Such a server allows direct access to information from a Controller using the
OPC UA protocol on the wire. Other embedded applications like HMI acting as OPC UA clients can
access the information from Controllers directly without the need of a PC.

11.3 PC based OPC UA Server

OPC UA servers running on a PC platform are capable of providing access to multiple Controllers.
They are providing full type information for Ctrl Resource, Ctrl Program and Ctrl Function Block Objects.
The communication to the Controllers may use OPC UA or a proprietary protocol on the wire.

11.4 PC based OPC UA Server with engineering capabilities

In addition to PC based OPC UA servers, this type of server includes access to the engineeri ng system
for the Controllers allowing access to the configuration for the use cases Engineering and Service.

12 Profiles and Namespaces

12.1 Namespace Metadata

Table 37 defines the namespace metadata for this specification. The Object is used to provide version
information for the namespace and an indication about static Nodes. Static Nodes are identical for all
Attributes in all Servers, including the Value Attribute. See Part5 for more details.

The information is provided as Object of type NamespaceMetadataType. This Object is a component
of the Namespaces Object that is part of the Server Object. The NamespaceMetadataType ObjectType
and its Properties are defined in OPC 10000-5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML file.
The UANodeSet XML schema is defined in OPC 10000-6.

OPC 30000: 61131-3 Model for PLCs 56 V 1.02

Table 37 – NamespaceMetadata Object for this Specification

Attribute Value

BrowseName http://PLCopen.org/OpcUa/IEC61131-3/

References BrowseName DataType Value

HasProperty NamespaceUri String http://PLCopen.org/OpcUa/IEC61131-3/

HasProperty NamespaceVersion String 1.02

HasProperty NamespacePublicationDate DateTime 2020-11-25

HasProperty IsNamespaceSubset Boolean Vendor-specific

HasProperty StaticNodeIdTypes IdType[] {Numeric}

HasProperty StaticNumericNodeIdRange NumericRange[]

HasProperty StaticStringNodeIdPattern String

12.2 Conformance Units and Profiles

This chapter defines the corresponding Profiles and Conformance Units for the OPC UA Information
Model for IEC61131-3. Profiles are named groupings of Conformance Units. Facets are Profiles that
will be combined with other Profiles to define the complete functionality of an OPC UA Server or Client.

12.3 Server Facets

The following tables specify the Facets available for Servers that implement the IEC 61131-3
Information Model companion specification.

Table 38 defines Conformance Units included in the minimum needed facet. It requires the support for
profile BaseDevice Server Facet defined in OPC 10000-100. It is used together with the Embedded
2017 UA Server profile or the Standard 2017 UA Server profile defined in OPC 10000-7.

A server supporting all data types including complex data types must support the ComplexType Server
Facet defined in OPC 10000-7.

Table 38 – Controller Operation Server Facet Definition

Conformance Unit Description Optional/

Mandatory

Ctrl DeviceSet Support the full component hirarchy with Ctrl Configuration, Ctrl
Resource, Ctrl Program and Ctrl FunctionBlock below the DeviceSet
Object defined in OPC 10000-100.

M

Ctrl Configuration Support vendor defined Ctrl Configuration object types and object
instances.

M

Ctrl Resource Support vendor defined Ctrl Resource object types and object instances M

Ctrl Program Support user defined Ctrl Program object types and object instances. M

Ctrl FunctionBlock Support user defined Ctrl FunctionBlock object types and object
instances.

M

Ctrl Task Support of Ctrl Task objects. O

Ctrl References Support of reference types specified in the IEC 61131-3 Information
Model companion standard.

O

Profile

BaseDevice_Server_Facet (defined in OPC 10000-100) M

Table 39 defines a facet for the support of the engineering information defined in the IEC 61131-3
Information Model. The Controller Engineering Server Facet requires the Controller Operation Server
Facet.

Table 39 – Controller Engineering Server Facet Definition

Conformance Unit Description Optional/

Mandatory

Ctrl Engineering Data Support to provide all engineering data defined in this specification like
properties describing data types.

M

Ctrl Engineering
Change

Support of engineering data changes through OPC UA O

Ctrl Type Creation Support of type node creation through NodeManagement Services to
create Ctrl Program Organization Unit declarations.

O

Profile

Controller Operation Server Facet M

OPC 30000: 61131-3 Model for PLCs 57 V 1.02

12.4 Client Facets

The following tables specify the Facets available for Clients that implement the IEC61131-3

Information Model companion specification.

Table 40 defines a facet available for Clients that implement the IEC 61131-3 Information Model
standard. Servers implementing the Controller Engineering Server Facet may use this facet to restrict
the engineering features to clients supporting this Client facet.

Table 40 – Controller Engineering Client Facet Definition

Conformance Unit Description Optional/

Mandatory

Ctrl Client Information
Model

Consume objects that conform to the types specified in the IEC 61131-3
Information Model companion standard.

M

Ctrl Client Engineering
Data

Consume engineering data defined in the IEC 61131-3 Information Model
companion standard like properties describing data types.

M

Ctrl Client Engineering
Change

Use engineering data changes through OPC UA O

Ctrl Type Creation Use type node creation through NodeManagement Services to create Ctrl
Program Organization Unit declarations.

O

Profile

12.5 Handling of OPC UA Namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming authorities. The
Attributes NodeId and BrowseName are identifiers. A Node in the UA AddressSpace is unambiguously
identified using a NodeId. Unlike NodeIds, the BrowseName cannot be used to unambiguously identify
a Node. Different Nodes may have the same BrowseName. They are used to build a browse path
between two Nodes or to define a standard Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName. However,
if they want to provide a standard Property, its BrowseName shall have the namespace of the
standards body although the namespace of the NodeId reflects something else, for example the
EngineeringUnits Property. Another example shown in Figure 30 is the ParameterSet and the
GlobalVars object components of a Ctrl Resource instance. The ParameterSet node BrowseName
shall use the OPC DI namespace and the GlobalVars node BrowseName shall use the namespace
defined by this specification. All NodeIds of Nodes not defined in this specification shall not use the
standard namespaces and are typically using the same namespace like the Ctrl Resource object

instance, for example local server.

Table 41 provides a list of mandatory and optional namespaces used in a Controller Server.

Table 41 – Namespaces used in a Controller Server

NamespaceURI Description Use

http://opcfoundation.org/UA/ Namespace for NodeIds and BrowseNames defined in the OPC
UA specification. This namespace shall have namespace index
0.

Mandatory

Local Server URI Namespace for nodes defined in the local server. This may
include types and instances used in a Ctrl Resource
represented by the server. This namespace shall have
namespace index 1.

Mandatory

http://opcfoundation.org/UA/DI/ Namespace for NodeIds and BrowseNames defined in OPC
10000-100. The namespace index is server specific.

Mandatory

http://PLCopen.org/OpcUa/IEC61131-
3/

Namespace for NodeIds and BrowseNames defined in this
specification. The namespace index is server specific.

Mandatory

http://PLCopen.org/OpcUa/IEC61131-
3/FB/

A server may provide IEC or PLCopen defined Ctrl Function
Block libraries.

Optional

User defined types and instances in a
Ctrl Resource

A server that provides access to different Ctrl Resources may
provide a separate namespace for each Ctrl Resources if it is
required to create unique identifiers across Ctrl Resources.

Optional

Vendor specific types A server may provide vendor specific types like types derived
from Ctrl Configuration or Ctrl Resource in a vendor specific
namespace.

Optional

Global user defined library A server may provide global user defined Ctrl Function Block
libraries in a user specific namespace.

Optional

OPC 30000: 61131-3 Model for PLCs 58 V 1.02

Figure 30 shows an example for the use of namespaces in NodeIds and BrowseNames.

VendorCtrlResourceType:

MyCtrlResource

Attribute

NodeId = 4:MyResource

BrowseName = 4:MyResource
Has

Component

Has

Component

Index Namespace

0 http://opcfoundation.org/UA/

1 http://192.168.2.65/ControllerServer

2 http://opcfoundation.org/UA/DI/

3 http://PLCopen.org/OpcUa/IEC61131-3/

4 http://vendor.com/ControllerServer/MyCtrlResource

Organizes

CtrlResourceType

Attribute

NodeId = 3:1002

BrowseName = 3:CtrlResourceType

VendorCtrlResourceType

Attribute

NodeId = 4:MyCtrlResourceType

BrowseName = 4:MyCtrlResourceType

HasSubtype

HasTypeDefinition

FolderType:

Objects

Attribute

NodeId = 0:85

BrowseName = 0:Objects

BaseObjectType:

ParameterSet

Attribute

NodeId = 4:MyCtrlResource.ParameterSet

BrowseName = 2:ParameterSet

FunctionalGroup:

GlobalVars

Attribute

NodeId = 4:MyCtrlResource.GlobalVars

BrowseName = 3:GlobalVars

FunctionalGroup:

GlobalVars

Attribute

NodeId = 3:5018

BrowseName = 3:GlobalVars

Figure 30 – Example for the use of namespaces in NodeIds and BrowseNames

Table 42 provides a list of namespaces and their index used for BrowseNames in this specification.
The default namespace of this specification is not listed since all BrowseNames without prefix use this

default namespace.

Table 42 – Namespaces used in this specification

NamespaceURI Namespace Index Example

http://opcfoundation.org/UA/ 0 0:EngineeringUnits

http://opcfoundation.org/UA/DI/ 2 2:DeviceRevision

OPC 30000: 61131-3 Model for PLCs 59 V 1.02

Annex A (normative): IEC 61131-3 Namespace and mappings

A.1 Namespace and identifiers for IEC 61131-3 Information Model

This appendix defines the numeric identifiers for all of the numeric NodeIds defined in this specification.

The identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

Where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an Instance
Node that appears in the specification and the Identifier is the numeric value for the NodeId.

The BrowsePath for an Instance Node is constructed by appending the BrowseName of the instance
Node to the BrowseName for the containing instance or type. An underscore character is used to
separate each BrowseName in the path. Let’s take for example, the CtrlConfigurationType ObjectType
Node which has the ParameterSet Object. The Name for the ParameterSet InstanceDeclaration within
the CtrlConfigurationType declaration is: CtrlConfigurationType_ParameterSet .

The NamespaceUri for all NodeIds defined here is http://PLCopen.org/OpcUa/IEC61131-3/

A computer processible version of the complete Information Model defined in this specification is also
provided. It follows the XML Information Model schema syntax defined in OPC 10000-6.

The Information Model Schema released with this version of the specification can be found here:

http://www.opcfoundation.org/UA/schemas/PLCOpen/1.02/Opc.Ua.PLCopen.NodeSet2_V1.02.xml

A.2 Profile URIs for IEC 61131-3 Information Model

Table 43 defines the Profile URIs for the IEC 61131-3 Information Model companion specification.

Table 43 – Profile URIs

Profile Profile URI

Controller Operation Server Facet http://PLCopen.org/OpcUa/IEC61131-3/Profile/Server/ControllerOperation

Controller Engineering Server Facet http://PLCopen.org/OpcUa/IEC61131-3/Profile/Server/ControllerEngineering

Controller Engineering Client Facet http://PLCopen.org/OpcUa/IEC61131-3/Profile/Client/ControllerEngineering

A.3 Namespace for IEC61131-3 Function Blocks

The namespace for all Ctrl Function Block Type nodes defined in other PLCopen documents like
Motion Ctrl Function Blocks is “http://PLCopen.org/OpcUa/IEC61131-3/FB/”.

The CSV file containing the numeric identifiers for this namespace can be found here:

http://www.PLCopen.org/OpcUa/IEC61131-3/FB/NodeIds.csv

The NodeIds for the defined nodes are composed of this namespace and the numeric identifier for the

defined node.

http://plcopen.org/OpcUa/IEC61131-3/
http://www.opcfoundation.org/UA/schemas/PLCOpen/1.02/Opc.Ua.PLCopen.NodeSet2_V1.02.xml
http://www.plcopen.org/OpcUa/IEC61131-3/FB/NodeIds.csv

OPC 30000: 61131-3 Model for PLCs 60 V 1.02

Annex B (informative): PLCopen XML Additional Data Schema

B.1 XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:pra="http://www.plcopen.org/xml/tc6_0200/OpcUa"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.plcopen.org/xml/tc6_0200/OpcUa">

 <xsd:simpleType name="AccessLevel">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Read" />

 <xsd:enumeration value="Write" />

 <xsd:enumeration value="ReadWrite" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="Visible">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Yes" />

 <xsd:enumeration value="No" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:complexType name="InstrumentRange">

 <xsd:attribute name="Low" type="xsd:double" use="required" />

 <xsd:attribute name="High" type="xsd:double" use="required" />

 </xsd:complexType>

 <xsd:complexType name="EuRange">

 <xsd:attribute name="Low" type="xsd:double" use="required" />

 <xsd:attribute name="High" type="xsd:double" use="required" />

 </xsd:complexType>

 <xsd:complexType name="EUInformation">

 <xsd:sequence>

 <xsd:element name="DisplayName" type="LocalizedText" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="Description" type="LocalizedText" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 <xsd:attribute name="NamespaceUri" type="xsd:string" use="optional" />

 <xsd:attribute name="UnitId" type="xsd:int" use="optional" />

 </xsd:complexType>

 <xsd:complexType name="InstanceInformation">

 <xsd:sequence>

 <xsd:element name="NodeId" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="InstanceNamespaceUri" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="Delimiter" type="xsd:string" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="LocalizedText">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="Key" type="xsd:string" use="optional" default="" />

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 <xsd:complexType name="NodeId">

 <xsd:sequence>

 <xsd:element name="Identifier" type="xsd:string" minOccurs="0"

maxOccurs="1" nillable="true" />

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

	Figures
	Tables
	AGREEMENT OF USE
	Revision Highlights
	1 Scope
	2 Normative references
	3 Terms, definitions and conventions
	3.1 Overview
	3.2 OPC UA for IEC 61131-3 terms
	3.3 Abbreviations and symbols
	3.4 Conventions used in this document
	3.4.1 Conventions for Node descriptions
	3.4.2 NodeIds and BrowseNames
	3.4.2.1 NodeIds
	3.4.2.2 BrowseNames

	3.4.3 Common Attributes
	3.4.3.1 General
	3.4.3.2 Objects
	3.4.3.3 Variables
	3.4.3.4 VariableTypes
	3.4.3.5 Methods

	3.4.4 Reference to IEC 61131-3 Definitions

	4 General information to IEC 61131-3 and OPC UA
	4.1 Introduction to IEC 61131-3
	4.1.1 Common Elements
	4.1.1.1 Data Typing
	4.1.1.2 Ctrl Variables
	4.1.1.3 Ctrl Configuration, Ctrl Resources and Ctrl Tasks
	4.1.1.4 Ctrl Program Organization Units
	4.1.1.5 Ctrl Functions
	4.1.1.6 Ctrl Function Blocks
	4.1.1.7 Sequential Function Chart
	4.1.1.8 Ctrl Programs

	4.1.2 Programming Languages

	4.2 Introduction to OPC Unified Architecture
	4.2.1 What is OPC UA?
	4.2.2 Basics of OPC UA
	4.2.3 Information modelling in OPC UA
	4.2.3.1 Concepts
	4.2.3.2 Namespaces
	4.2.3.3 Companion Specifications
	4.2.3.4 Introduction to OPC UA Devices

	4.3 Introductory Example

	5 Use cases
	6 IEC 61131-3 Information Model overview
	7 OPC UA ObjectTypes
	7.1 CtrlConfigurationType ObjectType Definition
	7.1.1 Overview
	7.1.2 Resources components
	7.1.3 MethodSet components

	7.2 CtrlResourceType ObjectType Definition
	7.2.1 Overview
	7.2.2 Tasks components
	7.2.3 Programs components
	7.2.4 MethodSet components

	7.3 CtrlProgramOrganizationUnitType ObjectType Definition
	7.4 CtrlProgramType ObjectType Definition
	7.5 CtrlFunctionBlockType ObjectType Definition
	7.6 CtrlTaskType ObjectType Definition
	7.7 SFCType ObjectType Definition

	8 Reference Types
	8.1 General
	8.2 HasInputVar
	8.3 HasOutputVar
	8.4 HasInOutVar
	8.5 HasLocalVar
	8.6 HasExternalVar
	8.7 With

	9 Definition of Ctrl Variable Attributes and Properties
	9.1 Common Attributes
	9.2 DataType
	9.2.1 Mapping of elementary data types
	9.2.2 Mapping of generic data types
	9.2.3 Mapping of derived data types
	9.2.3.1 Mapping of enumerated data types
	9.2.3.2 Mapping of subrange data types
	9.2.3.3 Mapping of array data types
	9.2.3.4 Mapping of structure data types
	9.2.3.4.1 Deprecated Mapping of structure data types
	9.2.3.4.2 Mapping of structure data types
	9.2.3.4.3 Structure and VariableType

	9.3 Variable specific Node Attributes
	9.3.1 General
	9.3.2 Access Level

	9.4 Variable Properties
	9.4.1 IEC Ctrl Variable Keywords
	9.4.2 Configuration of OPC UA defined Properties

	10 Objects used to organise the AddressSpace structure
	10.1 DeviceSet as entry point for engineering applications (Mandatory)
	10.2 CtrlTypes Folder for server specific Object Types (Mandatory)
	10.3 Entry point for Observation and Operation (Examples)

	11 System Architecture
	11.1 General
	11.2 Embedded OPC UA Server
	11.3 PC based OPC UA Server
	11.4 PC based OPC UA Server with engineering capabilities

	12 Profiles and Namespaces
	12.1 Namespace Metadata
	12.2 Conformance Units and Profiles
	12.3 Server Facets
	12.4 Client Facets
	12.5 Handling of OPC UA Namespaces

	Annex A (normative): IEC 61131-3 Namespace and mappings
	A.1 Namespace and identifiers for IEC 61131-3 Information Model
	A.2 Profile URIs for IEC 61131-3 Information Model
	A.3 Namespace for IEC61131-3 Function Blocks

	Annex B (informative): PLCopen XML Additional Data Schema
	B.1 XML Schema

