
 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines:

Structuring with SFC: do’s and don’ts

PLCopen Technical Document

Version 1.0 Official Release

DISCLAIMER OF WARANTIES

The name ‘PLCopen®’ is a registered trade mark and together with the PLCopen logos owned by

the association PLCopen.

This document is provided on an ‘as is’ basis and may be subject to future additions, modifications,

or corrections. PLCopen hereby disclaims all warranties of any kind, express or implied, including

any warranty of merchantability or fitness for a particular purpose, for this moment. In no event will

PLCopen be responsible for any loss or damage arising out or resulting from any defect, error or

omission in this document or from anyone’s use of or reliance on this document.

Copyright © 2018 by PLCopen. All rights reserved.

www.PLCopen.org

Date: Jul 3, 2018

http://www.plcopen.org/

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 2/59

The following paper

PLCopen Software Construction Guidelines:

Structuring with SFC: do’s and don’ts

is a PLCopen training document.

It is made possible and based on sections of the book “IEC 61131-3 Programming Methodology:

Software engineering methods for industrial automated systems” by Dr. Monari, Prof. Bonfatti and

Dr. Sampiery.

It summarises the results of the Task Force Structuring with SFC: do’s and don’ts and several

meetings of PLCopen Promotional Committee Training, containing contributions of all its

members.

The present specification was written thanks to the following members:

Name Company

Bert van der Linden ATS

Bernhard Werner Codesys

Hiroshi Yoshida Omron

Barry Buxton Omron

Arnulf Meixner Phoenix Contact

Andreas Weichelt Phoenix Contact Software

Eelco van der Wal PLCopen

Change Status List:

Version Content

V 0.1 Sept. 11, 2014. Basic document provided by Mr. Bonfatti et al. and basic editing by EvdW

V 0.2 Oct. 2, 2014. With comments from Barry Buxton. Provided to the group

V 0.3 Nov 28 – incl. comments and objective from Andreas Weichelt and Hiroshi Yoshida

V 0.4 Dec.3 2014 – during the Face2Face meeting in Frankfurt

V 0.5 March 2017 – as result of meeting with Bert van der Linden in Jan. and addition of PackML

V 0.6 June 29, 2017 as result of the webmeeting on May 31 and June 29

V0.6a July 31, 2017 as a result of the webmeeting on July 6

V 0.7 August 24, as result of the webmeeting and the addition of Ch 3.6 on final scan

V0.8 As result of the webmeeting January 25, 2018. Basis for V0.99 Release for Comments

V0.99 Release for Comments, published on Feb. 28, 2018

V 1.0 Official release

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 3/59

TABLE OF CONTENTS
1 Introduction to this document .. 6

1.1 Software Modularity and the role of SFC ... 6

2 Introduction SFC ... 8

2.1 Steps and transitions .. 8

2.2 Actions... 9

2.3 Qualifiers ... 10

2.4 SFC evolution rules ... 10

2.5 Divergence and convergence... 11

3 Structural properties of SFCs .. 13

3.1 Process Structure ... 13

3.2 Simultaneous sequences .. 15

3.3 Parallel sequences.. 16

3.4 Action Blocks .. 17

3.4.1 Introduction .. 17

3.5 Qualifiers ... 18

3.5.1 Introduction .. 18

3.6 Execution control .. 25

3.6.1 ACTION_CONTROL function block ... 25

3.6.2 Final Scan ... 26

4 Coding rules SFC... 30

4.1 Convergence and Divergence do’s and don’ts .. 30

4.2 Linearization in SFC ... 32

4.3 Mutually exclusive transition conditions .. 33

4.4 Do not use priorities for the different transitions .. 36

4.5 Dependence on the previous state ... 36

4.6 Advanced use of parallel sequences .. 38

4.7 Action independence ... 40

4.8 Rules for S/R qualifiers’ usage .. 42

4.9 Rules for Step variables ... 43

4.10 Rules for Actions ... 43

5 Introduction State Diagrams .. 44

6 Examples with state diagrams .. 48

6.1 Example 1: Simple motor control ... 48

6.1.1 Introduction .. 48

6.1.2 States and Transitions: ... 48

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 4/59

6.1.3 Mapping to SFC ... 49

6.2 Extended Example 1 .. 50

6.2.1 Introduction .. 50

6.2.2 States and Transitions .. 50

6.2.3 Mapping to SFC ... 51

6.3 Example 2: Mapping of the PackML state diagram to SFC.. 52

6.3.1 Introduction of PackML ... 52

6.3.2 Conversion of the State Diagram to SFC ... 53

6.3.3 Error handling via the loops Stop and Abort ... 53

6.3.4 Multi-level approach – safety required .. 56

6.4 SFC is not Petri Nets ... 59

6.5 Relation to Moore automata and the Mealy automata .. 59

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 5/59

 Graphical and textual representation of a step ... 8 Figure 1

 Graphical and textual representation of a transition .. 9 Figure 2

 SFC schema with divergence and convergence ... 11 Figure 3

 SFC scheme with parallel divergence and convergence .. 12 Figure 4

 Example for overlapping transition conditions .. 33 Figure 5

 Graph of transition precedence .. 34 Figure 6

 Disjoining the truth domains of two overlapping conditions .. 35 Figure 7

 Disjoining the truth domains of three overlapping conditions .. 35 Figure 8

 Action dependence on previous steps, original scheme .. 36 Figure 9

 Action dependence using step variables .. 37 Figure 10

 Action dependence by step splitting .. 37 Figure 11

 Parallel sequences in place of stored actions ... 38 Figure 12

 Synchronising parallel sequences .. 40 Figure 13

 Interdependent actions ... 41 Figure 14

 Solution of action conflicts .. 42 Figure 15

 State diagram representation and example ... 45 Figure 16

 Event trace diagram for a shuttle ... 46 Figure 17

 PackML State Diagram. ... 52 Figure 18

 Centralized versus Decentralized Error Handling ... 54 Figure 19

 Main states of PackML .. 55 Figure 20

 SFC of PackML Sate Diagram ... 56 Figure 21

 Multilevel Sates.. 57 Figure 22

 Examples of PLCopen Safety Function Block .. 58 Figure 23

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 6/59

1 Introduction to this document

This document explains the advantages of Sequential Function Chart, SFC. This is a very

expressive graphic formalism of the IEC 61131-3 standard. It is not considered a programming

language as it needs other languages to express transition conditions and actions.

SFC provides a means for partitioning a programmable controller program organization unit into a

set of steps and transitions interconnected by directed links. Associated with each step is a set of

actions, and with each transition is associated a transition condition. Since SFC elements require

storage of state information, the only POUs which can be structured using these elements are

function blocks and programs (not functions).

If any part of a program organization unit is partitioned into SFC elements, the entire program

organization unit shall be so partitioned. If no SFC partitioning is given for a program organization

unit, the entire program organization unit shall be considered to be a single action which executes

under the control of the calling entity.

Whenever a sequential process shall be controlled, SFC shall be considered as most suitable for

structuring the internal organization of a POU especially in the Functional Description:

 When the process consists of several steps to be executed sequentially in a time flow, for

example an assembly process, SFC can be used to map the different phases of assembly as

steps and structure the process as sequence of steps.

 When the process can be modelled as a state machine, these states can be mapped to steps

and changing from one state to another can be structured by transitions.

 SFC structures the internal organization of a program, and helps to decompose a control

problem into manageable parts, while maintaining the overview.

1.1 Software Modularity and the role of SFC

The main prerequisite to improve the current programming practice and create a higher productivity

and better quality of the resulting product is software modularity.

Software modularity means that a software program has to be organised into weakly coupled parts

and each of them should be developed and tested independently of the others.

For this the PLC software development process must rely on a proper methodology which, in our

opinion, should be based on two fundamental assumptions:

 Focus on design. The weight of the design phase should increase, so that the development
phase starts only after a clear definition of the control program structure and the interactions
between its parts.
 Focus on standard. The potentialities of the IEC 61131 standard languages should be fully
exploited in both the design and development phases, as they can cover most of the programmer
needs.

SFC is a suitable language (in IEC 61131-3) to support the initial and more crucial phases of the

PLC software development life cycle. Reasons include:

 High expressive power. The SFC language has the same expressive potential as state

diagrams and, it is comparable to Petrinets in facing concurrent problems. State diagrams

and Petrinets are considered the most appropriate tools to model dynamics and they are

extensively used in many fields. Thus, we can say that the SFC language is intrinsically

capable of modelling the behaviour of a system.

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 7/59

 Graphic formalism. SFC is not the only language with graphic primitives made available by

the standard, but with respect to the other two graphic languages (LD and FBD) it offers

higher level characteristics to describe system dynamics. Thanks to its graphic syntax, it is

very easy to learn and use. Moreover, it results particularly suited to represent the process at

different detail levels.

 Support of preliminary design. The SFC graphic formalism can be used right from the

beginning, to give a first formal representation of the system behaviour. Therefore, it is a

precious tool in the preliminary analysis and early design phases, when many aspects are

still not well defined or even unknown to the designer. Using SFC we avoid adding the

ambiguity of natural language description to the approximate specifications available to the

designer. In this way, the number of misunderstandings between customer, designer and

programmers is substantially reduced.

 Support of detailed design. The SFC scheme produced in the early design phase can be

progressively specified and refined as new information becomes available. Thus, the desired

level of detail is reached stepwise.

 Natural connection with the other languages. It is quite evident that the SFC language can

be used in combination with the other languages of the standard, particularly suited to

describe control details such as transition conditions and elementary actions. The possibility

to use the right language at the right moment increases the global efficiency of software

development and betters the performances of the resulting executable code.

 Support of software partitioning. Using the SFC language makes the partitioning of code

into portions to be executed at different cycle scans easier. This is one of the possible

techniques to reduce the maximum execution time of the cycle. The advantage given by

SFC schemes is that they represent such partitions explicitly and, above all, they clarify

which are the conditions affecting the execution order of the various software portions.

SFC is a good choice because:

 each state of the process can be clearly mapped to a step

 the transition from one state/step to different/next state/step can be expressed by its

corresponding condition

 the relation of states/steps and the activity flow from one state to another is

visualized/programmed (usually) in a graphical manner and easy to understand due to the

underlying rules for evolution of the active states of steps. Consequently, the SFC chart

mirrors the design of the process. This benefit applies to all phases of the PLC software

development life cycle: planning, design (incl. coding, debug and test), commissioning and

maintenance.

 the actions to be performed are created independently of the states/steps and combined with

them using action blocks (and corresponding action qualifiers)

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 8/59

2 Introduction SFC

2.1 Steps and transitions

SFC provides a means for partitioning the POU into a set of steps and transitions interconnected by

directed links. Associated with each step is a set of actions, and with each transition a transition

condition.

A step represents a process situation. A step is either active or inactive. A step is represented

graphically by a block containing a step name in the form of an identifier or textually by a

STEP...END_STEP construction (see Figure 1).

 Graphical and textual representation of a step Figure 1

It is advised for real programs to use more process related names like Mixing.

The step flag (representing in the system the active or inactive state of a step) is represented by the

logic value of the Boolean variable S.X, where S is the step name. Similarly, the elapsed time S.T

of the S step is defined as a TIME variable. When the step is deactivated the value of its time

parameter remains at the value it had at the deactivation event, while it is reset to t#0s when the step

is activated. The scope of step names, step flags, and step times is local to the POU wherein the step

is used.

The initial state of the POU is represented by the initial values of its internal and output variables

and by its set of initial steps, i.e., the steps which are initially active. Each SFC network, or its

textual equivalent, has exactly one initial step, drawn graphically with double lines for the borders

and with the keyword INITIAL_STEP in the textual representation. For system initialisation, the

default initial step flag is FALSE for ordinary steps and TRUE for the initial steps.

A transition represents the condition whereby control passes from one or more preceding steps to

one or more successor steps along the corresponding directed link. The processing order is from the

bottom of the predecessor step(s) to the top of the successor step(s). Each transition has an

associated transition condition which is the result of the evaluation of a single Boolean expression.

A transition condition which is always true shall be represented by the keyword TRUE.

The links reaching and leaving the steps are represented by vertical lines (see Figure 2). A transition

condition can be associated with a transition by one of the following means:

 an appropriate Boolean expression in ST

 a ladder diagram network in LD whose output intersects the vertical directed link

 a network in the FBD whose output intersects the vertical directed link

 a LD or FBD network whose output intersects the vertical directed link via a connector

Si
 Si actions

STEP Si:

(* action declarations *)

END_STEP

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 9/59

 a TRANSITION...END_TRANSITION construction using ST, consisting of the keywords

TRANSITION FROM followed by the predecessor step(s) name, the keyword TO followed

by the successor step(s) name, the assignment operator followed by a Boolean expression

specifying the condition, the terminating keyword END_TRANSITION

 a TRANSITION...END_TRANSITION construction using IL, consisting of the keywords

TRANSITION FROM, followed by the predecessor step(s) name and by a colon, the

keyword TO followed by the successor step(s) name, a list of instructions in the IL language

determining the transition condition, the terminating keyword END_TRANSITION

 a transition name associated to the directed link, referred to a

TRANSITION...END_TRANSITION construction, whose evaluation results in the

assignment of a Boolean value to the variable denoted by the transition name and whose

body is a network in the LD or FBD language, or a list of instructions in the IL language, or

an assignment of a Boolean expression in the ST language.

 Graphical and textual representation of a transition Figure 2

The scope of a transition name is local to the POU where the transition is located. No “side effects”

(for instance the assignment of a value to a variable other than the transition name) can occur during

the evaluation of a transition condition.

2.2 Actions

Zero, one or more actions may be associated with each step. A step with no associated actions is

providing a WAIT function, which is, waiting for the following transition condition to become true.

An action declaration consists of the action name (of type string) and the action body. The action

body can be a Boolean variable, a collection of instructions in IL, a collection of statements in ST, a

collection of rungs in LD, a collection of networks in FBD or a sequential function chart (SFC) in

its turn. Actions are declared and associated with steps via textual step bodies or graphical action

blocks. The scope of the declaration of an action is local to the POU containing the declaration.

IEC 61131-3 3
rd

 edition:

Table 60 – Action control features

No. Description Reference

1 With final scan per Figure 22 a) and Figure 23 a)

2 Without final scan per Figure 22 b) and Figure 23 b)

These two features are mutually exclusive, i.e., only one of the two shall be supported in a given

SFC implementation.

TRANSITION Tij:

(* transition condition *)

END_TRANSITION

Tij

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 10/59

2.3 Qualifiers

The control of actions is defined by action qualifiers. Possible action qualifiers are those listed in

the following table. Qualifiers specify the execution of actions at every execution cycle in relation

to the states of their associated steps. Actions using the qualifier N or none are executed as long as

their associated steps are active. The L, D, SD, DS, and SL qualifiers require an additional

associated parameter of type TIME for the delay or the limitation. See 3.5 Qualifiers for further

explanations of action qualifiers.

Qualifier Definition Effect on the action

None Null qualifier executes while the associated step is active

N Non-stored executes while the associated step is active

P Pulse executes when the associated step is activated

S Set executes until the related R qualifier is met

R Reset terminates the set (S) execution

L time Limited ends the execution after a given time

D time Delayed starts the execution after a given time

SD Stored and time Delayed starts set execution after a given time

DS time Delayed and Stored starts set execution if the step lasts a given time

SL Stored and time Limited starts set execution and ends after a given time

2.4 SFC evolution rules

The initial situation of an SFC network is characterized by the initial step which is in the active state

upon initialization of the program or function block containing the network. The processing order of

the active states of steps takes place along the directed links when caused by the clearing of one or

more transitions. A transition is enabled when all the preceding steps, connected to the

corresponding transition symbol by directed links, are active. The execution of a transition occurs

when the transition is enabled and when the associated transition condition is true.

The clearing of a transition causes the deactivation of all directly preceding steps connected to the

corresponding transition symbol by directed links, followed by the activation of all the directly

following steps. The clearing time of a transition may theoretically be considered as short as one

may wish but it can never be zero. In practice the clearing time will be imposed by the

programmable controller implementation. For the same reason the duration of a step activity can

never be considered to be zero. Several transitions which can be cleared simultaneously shall be

actually cleared within the timing constraints of the particular programmable controller. Testing of

the successor transition condition(s) of an active step is performed until the effects of the step

activation have propagated throughout the POU where the step is declared.

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 11/59

2.5 Divergence and convergence

Divergence is a multiple connection link from one SFC symbol (step or transition) to two or more

SFC symbols of the opposite type. Convergence is a multiple connection link from more than one

SFC symbol of the same type to one symbol of the opposite type. Divergence and convergence can

be alternate or parallel.

 SFC schema with divergence and convergence Figure 3

An alternate divergence is a multiple link from one step to many transitions. In the figure above

only one transition becomes TRUE because they are exclusive (see also 4.3 Mutually exclusive

transition conditions). Nevertheless, conditions attached to the different transitions at the beginning

of a single divergence are not necessarily exclusive, thus exclusivity has to be ensured by fixing a

priority among conflicting transitions (or by default, depending on the single implementation) so

that only one transition is cleared. A convergence from an alternate sequence is a multiple link from

many transitions to the same step. Such a convergence is generally used to group the SFC branches

which were started on a single divergence.

Alternate divergence and convergence are represented by single horizontal lines, as in the example

of Figure 3. A sequence skip is a special case of an alternate divergence where one or more of the

branches contain no steps. A sequence loop is a special case of simple divergence and convergence

where one or more of the branches return to a preceding step.

A parallel divergence (or simultaneous divergence) is a multiple link from one transition to many

steps. It corresponds to parallel operations of the process, also called simultaneous sequences. The

parallel divergence is executed when the preceding SFC step is active and the transition condition

becomes true. After the divergence, all the simultaneous sequences have activated their first steps.

A parallel (or simultaneous) convergence is a multiple link from many steps to the same transition.

It is generally used to group the SFC branches started on a double divergence. The parallel

convergence is executed when all the simultaneous steps preceding it are active and the following

transition condition is true. After the convergence, the preceding active steps are deactivated and a

single SFC schema step results again active.

2 Start motor M1

M1 started

3 Start Timer

Timer > t#3s

4 Stop motor M1

Tix

Run & not Error Error

101 Alarm

Acknowledge

1

1

1

2

3

4

101

102

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 12/59

Parallel divergence and convergence are represented by double horizontal lines as in the example of

Figure 4. Criteria for a correct use of simultaneous sequences are proposed in 4.3 Mutually

exclusive transition conditions, together with the analysis of the most frequent modelling errors.

 SFC scheme with parallel divergence and convergence Figure 4

2 Process1

End of Process1

3 Wait for Process2

True

101 Process2

1

1

2

3

End of Process2

102 Wait for Process2

101

Run1

Initialize

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 13/59

3 Structural properties of SFCs

3.1 Process Structure

The simplest structure of a control program is that constituted by a simple sequence of states as in

the example shown in hereunder. The initial step, represented by the double bar rectangle, is the one

activated by the turn on of the system under control. Then, the other steps reachable by the system

are visited in the given order following the diagram from top down.

Sequence of steps

An SFC program in its simplest form: “one shot” behaviour.

The system moves from one step to the other as soon as the

triggering condition associated to the transition between the two

states is verified. More precisely, when the condition associated to

T01 becomes true, the system moves from the Start step, which

consequently becomes inactive, to the S1 step, which becomes

active. The same occurs for T12, closing S1 and starting S2, and

for T2S that brings the system from S2 to the Stop step. Since

there are no leaving paths from the final step, the system remains

in that state until a warm or cold start happens.

Cyclic sequence of steps

The most common situation is that realising a cyclic execution of

the control. In the scheme here we imagine to return to the S1 step

after having reached S3 through S2.

In this case we still have an operator turning on the system in step

Start, but then the system keeps on running cyclically through

steps S1, S2 and S3 until an external (and therefore not

represented) event stops it.

One can interpret this on-going cycle as part of an SFC scheme

with an action associated to a step belonging to an upper level

SFC scheme. This action can be stopped (that is, no more

executed) by simply closing (making inactive) the upper level step

it is associated to.

Start

S1

S2

Stop

T01

T12

T2S

Start

S1

S2

S3

T01

T12

T23

T31

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 14/59

Cyclic sequence of steps with

controlled termination

In the scheme to the left a cyclic behaviour with a controlled

exit condition is represented. This condition is associated to

the transition T2S bringing from step S2 to step Stop, as an

alternative to transition T21 bringing back the system to S1

from S2. In this situation a smooth conclusion of the

execution is introduced. In practice, the PLC software

includes the functions which are required to keep under

control the system shut down sequence.

This can represent for example, the behaviour of a machine

tool which is turned on (Start), take a piece (S1), process the

piece (S2) and then take another piece to process. The

machine has a command that can stop it after the processing

of the last piece has been terminated, but it cannot move

directly from S1 to Stop.

Cyclic sequence of steps with

divergence

Divergence corresponds to operative situations where the

behaviour of the controlled system should differ according to

the conditions that occurred in conclusion of the step

immediately preceding the divergence.

The figure on the left shows a divergence after step S1 to

either steps S21 or S22. After them, the system converges

towards step S3 before reaching the final choice (again a

divergence) of coming back to S1 or exiting to the Stop step.

Concerning transitions, we observe that conditions T121 and

T122 should be disjoined to determine unambiguously the

choice between the two alternative steps S21 and S22. On the

contrary, conditions T213 and T223, leaving respectively S21

and S22, are independent of each other: they are individually

related to the steps they leave, thus, in general, each of them

has no relation with the step which has not been chosen at the

divergence.

Divergence and transition conditions

Divergence of sequence

This scheme shows a divergence of sequence case: it is

equivalent to the representation of the three transitions

linking step Sa respectively to steps Sx, Sy and Sz. Since

the leaving transitions from Sa are three, there are three

triggering conditions Tax, Tay and Taz, with necessary

disjunction to obtain a deterministic algorithm.

Convergence and transition conditions On the left a convergence case: it is equivalent to the

Start

S1

S2

Stop

T01

T12

T2ST21

Start

S1

S21 S22

Stop

S3

T01

T121

T213

T122

T223

T3ST31

Sx Sy Sz Sx Sy Sz

Sa Sa

Tax Tay Taz

T

(a) correct divergence (b) wrong divergence

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 15/59

Convergence of sequence

representation of the three transitions that link step Sx

respectively to steps Sa, Sb and Sc. Also in this case

there are as many triggering conditions as the number of

transitions.

Sequence loop and transition conditions

Sequence loop

In the figure on the left, with the ending of a sequence

loop, gives the representation of the (implicit)

convergence, where a triggering condition is

associated to each transition.

3.2 Simultaneous sequences

The SFC language allows the definition of parallel control sequences, that is, sequences executed

contemporarily so that two or more steps are active at the same time. The parallel sequences are

activated and deactivated by the simultaneous divergence and convergence constructs. As brief

summary:

 The activation of the parallel sequences following a simultaneous divergence occurs when the

previous step is active and the condition enabling the entrance transition is true. The

simultaneously diverging steps, that is, the initial steps of the involved (parallel) sequence, are

all activated and the previous step is deactivated.

 The parallel sequences preceding a simultaneous convergence are closed together when the final

steps of all them are active and the condition associated to the leaving transition is true. The

simultaneously converging steps are all deactivated and the following step becomes active.

Sa Sb Sc

Sx

Tax Tbx Tcx

(a) correct convergence (b) ambiguous divergence

Sa Sb Sc

Sx

T

Sa

Sb

Tab

(a) correct sequence loop (b) ambiguous sequence loop

Sa

Sb

T

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 16/59

3.3 Parallel sequences

Parallel sequences

In this example we have three parallel sequences formed,

respectively, by steps Sv and Sw, step Sx and step Sy. If

step Sp is active and the transition condition Ti becomes

true, the simultaneous divergence activating such parallel

sequences is applied. This means that step Sp is deactivated

and the first steps of the parallel sequences, namely Sv, Sx

and Sy, are activated. From this moment the three

sequences proceed autonomously, apart from possible

mutual influences caused by their actions and transitions.

The divergence cannot end until the final states of the three

parallel sequences, namely Sw, Sx and Sy, are all active (in

this particular case steps Sx and Sy are always active while

step Sw becomes active when the transition condition Tvw

turns true). When finally the condition associated to Tq

becomes true, the simultaneous convergence occurs, steps

Sw, Sx and Sy are deactivated and step Sq is activated.

The introduction of a simultaneous divergence means that,

at a given time, more independent processes (possibly

synchronized) may be activated in the described system.

This behaviour can be seen as if the control was organised

in levels. Whenever a simultaneous divergence is met, the

system intended as a whole is put in a sort of state like

“more active processes” and the control passes to the

diverging partial processes. Each of them has its own local

state, representing its evolution, and behaves in its turn as

an automaton. The condition for leaving the simultaneous

divergence synchronises the termination of the inner

automata. Thus, the SFC scheme representing the whole

system should be interpreted as a hierarchical state

diagram. Consider that the hierarchical structure can be

iterated, as parallel sequences may include further

simultaneous divergence.

Sv Sx Sy

Sw

Tvw

Ti

Tq

Sq

Sp

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 17/59

3.4 Action Blocks

3.4.1 Introduction

SFC scheme with action blocks

The complete description of a control program

modelled as an SFC scheme requires making

explicit the effects of step activation in terms of

actions. Each effect is described by an action

block associated to the step. The frequency of

action execution is chosen by means of proper

qualifiers. The example here shows an SFC

scheme with four steps and six associated actions.

If we refer to the generic i-th action, Qi represent

the qualifier, Ai identifies the action, Vi is the

name of an optional Boolean variable chosen to

summarise the results of the action.

Some of the steps may have no associated actions.

They represent waiting states, where no activity is

performed. In such states the system simply waits

for the occurrence of events, typically detected as

variations of input variables, which turn true the

exit condition

It is also allowed to associate the same action to

more than one step, in such a way that it is

executed in different phases of the control cycle.

This possibility is often connected with a proper

use of qualifiers.

Normally the action body is described aside, for

obvious reasons of space and readability of the

SFC scheme. However, if its text is reasonably

short, it can be included into the action block.

Examples of action blocks of this type are given

below.

The action can be programmed using any of the

standard languages.

As
Start

S1

S2

Stop

TS1

T12

S1

VsQs

V11Q11

V12Q12

A11

A12

A2 V2Q2

Qp1

Qp2

Ap1

Ap2

Vp1

Vp1

T21

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 18/59

3.5 Qualifiers

3.5.1 Introduction

The execution of an action block is related, through its qualifier, to the activation of the steps

invoking it and the duration of their staying in an active condition. For this reason, two special

variables are updated by implicit actions associated to all the steps. One is a Boolean variable,

called step active flag (and denoted as stepname.X) which represents the activation state of the step:

its value is 1 in every execution cycle where the step is active and 0 otherwise. The other is a TIME

variable, representing the step elapsed time (and denoted as stepname.T): it is set to zero whenever

the step becomes active. Both these variables may be tested in transition conditions and in actions

associated to other active steps for synchronisation purposes. The standard refers to several

qualifiers, representing alternative ways to associate actions to steps (Table 59 in IEC 61131-3):

 None Non-stored (null qualifier)

 N Normal, non-stored

 R overriding Reset

 S Set (Stored)

 L time Limited

 D time Delayed

 P Pulse

 SD Stored and time Delayed

 DS Delayed and Stored

 SL Stored and time Limited.

 P1 Pulse (rising edge)

 P0 Pulse (falling edge)

If the transition condition becomes TRUE there are 2 (implementation specific) options: with a final

scan or without a final scan of the related ACTION block. For details see Error! Reference source

ot found. Execution control.

Effect of the P qualifier

The P (pulse) qualifier characterizes the

actions that have to be executed only

once, just when the step becomes active.

The effect of a P qualifier is shown in the

figure on the left, where the action

associated to the step Sx increments the

integer variable Num.

The timing diagram shows the relation

between step activity (i.e. the value of the

Sx.X variable) and operations on the

Num variable. According to the action

definition, the Num value is incremented

by one unit in correspondence of each

rising edge of the Sx.X variable.

Effect of the N qualifier The N (normal) qualifier characterises all

the actions that have to be executed every

time the execution cycle of the control

program finds the associated steps active.

Sx
VxP Ax

Action Ax:

 Num:= Num+1

end_action

Step activity

Execution

Sx

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 19/59

In other words, as soon as a step becomes

active, all its N actions are executed and

the execution is repeated in the following

cycles until the step turns inactive. It may

happen that, due to the particular

execution mechanism adopted by the

single PLC machine, the last execution of

the N actions occurs immediately after

the deactivation of the step. It is

necessary that the programmer is aware

of this behaviour to forecast precisely the

operations that the code will execute.

The figure presents the case of an action

aimed at incrementing repeatedly the

Num variable, once at every cycle while

state Sx is active. As it can be seen from

the diagram, the amount of the increment

is proportional to the duration of the

interval when the Sx.X variable stays

true.

Effect of the S and R qualifiers

The S (set) and R (reset) qualifiers

characterize the so-called stored actions.

A stored action has to be executed at

every cycle, from the moment when the

step where it is qualified S becomes

active to the moment when the step

(usually different from the former) where

it is qualified R becomes active. The

figure shows a situation of this type. The

S qualifier is on the action block

associated to step Sx and the R qualifier

is on the action block associated to step

Sz (the intermediate steps make no

reference to action Ax). The diagram

describes this behavior relating the

operations on the Num variable to the

values of the Sx.X and Sz.X variables.

It is worth observing that the same result

can be obtained by associating the Ax

action to all the steps from Sx to Sz (the

last excluded) and qualifying them with

N. More precisely this alternative

solution requires that:

 Sx has associated the action [N, Ax]

 Sy has associated the action [N, Ax]

(if other steps precede Sz, they also

have associated the action [N, Ax])

 Sz does make no reference to action

Ax.

Sx
VxN Ax

Action Ax:

 Num:= Num+1

end_action

Sx
Step activity

Execution

Sx
VxS Ax

Action Ax:

 Num:= Num+1

end_action

Sx
Step activity

Execution

Sy

Sz

. . .

AxR Vx

Sz

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 20/59

Thus, the pair (S, R) is a way to shorten

the SFC scheme, as it avoids duplicating

the same action reference many times.

Unfortunately, the resulting scheme is

often less readable. If the distance

between the S and R steps is

considerable, or a divergence is put in

between, the execution range of such an

action becomes very difficult to

understand. Besides, it may happen to

define paths including the only S or R

qualifiers. This causes serious problems

during testing, maintenance and code

upgrading.

Effect of the L qualifier

The L (time Limited) qualifier is one of

the five time-related qualifiers provided

by the standard to delay or limit in time

the execution of actions, according to

specified time expressions. In particular,

the L qualifier starts the execution of the

relative action when the step becomes

active, and keeps it running for a given

time interval provided that the step

remains active. In the figure on the left,

action Ax execution should last 5 seconds

or less. During the first period of

activation of step Sx such limit is

reached, while during the second period

the step is deactivated before the time

limit is reached.

To better understand the meaning of the

L qualifier, it can be observed that the

same result is obtained by qualifying the

Ax action with N, and subordinating the

increment of the Num variable to the

value of the elapsed time Sx.T

(depending on the implementation of the

L qualifier, the relational operator could

be "<=" or "<"):
N Ax

Action Ax:

if Sx.T <= t#5s then Num:=Num+1

end_if

end_action

Effect of the D qualifier The D (time Delayed) qualifier is also

time-related, as it delays the beginning of

action execution with respect to the step

activation time. The figure on the left

represents a situation where the Ax action

Sx
Vx

 L

t#5s
Ax

Action Ax:

 Num:= Num+1

end_action

Sx
Step activity

Execution

5s 5s

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 21/59

has to start 5 seconds after step Sx is

activated. Since the first activity period of

Sx is longer than 5 seconds the action can

start, while in the second period this does

not happen.

Effect of the N qualifier

See above

To obtain the same time delayed result

with a N qualifier it is sufficient to

modify the Ax action so as to subordinate

the increment of Num to the value of the

elapsed time Sx.T (depending on the

implementation of the D qualifier, the

relational operator could be ">=" or ">"):

N Ax

 Action Ax:

 if Sx.T >= t#5s then Num:=Num+1

 end_if

 end_action

Effect of the SD qualifier

The SD (Stored and time Delayed)

qualifier, used in combination with the R

(reset) qualifier, stores the action but

delays its execution of a given time

interval. Therefore, the action starting

may occur when the step with the SD

qualifier is no more active. More

precisely, it may occur during the

activation of any of the following steps,

but before reaching that with the R

qualifier. In the figure on the left, action

Ax has to start 5 second after its storing.

During the first execution of the sequence

there is time enough to start the action (in

particular, while Sy is active), but this

does not hold during the second

execution as the R qualifier is reached too

soon.

Note: To represent the same behaviour

using only P and N qualifiers, it is

necessary to remember that the starting of

action Ax execution is conditioned by the

elapsed time calculated from the

activation time of step Sx. Unfortunately,

the value of the Sx.T variable is not

Sx
Vx

 D

t#5s
Ax

Action Ax:

 Num:= Num+1

end_action

Sx
Step activity

Execution

5s 5s

Sx
Vx

SD

t#5s
Ax

Action Ax:

 Num:= Num+1

end_action

Sx
Step activity

Execution

Sy

Sz

. . .

AxR Vx

Sy

Sz

5s 5s

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 22/59

sufficient, as Ax can start in a moment

when step Sx is no more active. Then, we

need a timer (say, the time-on timer

TONx) that should be initialised with a

pulse action associated to the Sx step,

like the following:

P Ax1

 Action Ax1:

 TONx (IN:=true, PT:=t#5s)

 end_action

Now, each of the steps where the

execution of Ax could start must have

associated the conditioned version Ax2 of

the action (once again, depending on the

implementation of the SD qualifier, the

relational operator could be ">=" or ">"):

N Ax2

Action Ax2:

if TONx.Q then Num:=Num+1

end_if

end_action

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 23/59

Effect of the DS qualifier

The DS (Delayed and Stored)

qualifier, used in combination with the

R (reset) qualifier, waits for a given

time interval before storing the action.

The action starts within the step with

the SD qualifier, provided it stays

active for a long enough time, or it

does not.

In the figure on the left, action Ax has

to start 5 seconds after step Sx

activation: such a temporal condition

is satisfied during the second cycle,

but not during the first one.

The same behaviour as DS but with only the P and N

qualifiers

Note: To get the same behaviour as

DS using only the P and N qualifiers,

it is necessary to split Sx into two

steps, and use two versions of Sy (and

of all the other steps possibly

preceding Sz), as it is shown in the

figure on the left (the relational

operators depend on the particular

implementation of the DS qualifier).

The actions associated to the steps in

this solution are so characterised:

 Sx1 has associated all the P and N

type actions of Sx, but not Ax

 Sx2 has associated all the N type

actions of Sx, and the action [N,

Ax]

 Sy remains as before (it has not

associated the Ax action)

 Sy' has associated the same actions

as Sy, and the action [N, Ax]

 (if other steps exist before Sz,

they are distinguished as Sy and

Sy')

 Sz does not mention the Ax action.

Sx
Vx

DS

t#5s
Ax

Action Ax:

 Num:= Num+1

end_action

Sx
Step activity

Execution

Sy

Sz

. . .

AxR Vx

Sy

Sz

5s 5s

Sy Sx2

Sx1

Txy and Sx1.T<t#5s Sx1.T>=t#5s

Sy’

Txy

Sz

Tyz

Tyz

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 24/59

Effect of the SL qualifier

Finally, the SL (Stored and time

Limited) qualifier, used in

combination with the R (reset)

qualifier, stores the action and keeps it

in execution for a given time interval.

The ending of action execution may

occur even if the step with the SL

qualifier is no more active. More

precisely, it may occur in each of the

following steps, but before the step

with the R qualifier is reached. In the

figure on the left, the Ax action has to

be executed for 5 seconds. During the

first run of the sequence such a limit is

reached, while during the second run

the R qualifier is reached before.

Note: The representation of such a

behaviour using only the P and N

qualifiers is somehow close to that

previously discussed for the SD

qualifier. In fact, it is again necessary

to measure the elapsed time from the

activation of step Sx using a proper

timer. Thus, the following pulse action

must be associated to Sx:

P Ax1

Action Ax1:

TONx (IN:=true, PT:=t#5s)

end_action

Now, each of the steps where the

action can stop must have associated

the conditioned version Ax2 of the

action (once again, depending on the

implementation of the SL qualifier, the

relational operator could be ">=" or

">"):

N Ax2

Action Ax2:

if not TONx.Q then Num:=Num+1

end_if

end_action

It is very important that the programmer puts much care in using the stored qualifiers, as they can

cause effects difficult to see and control. The major problem with the stored qualifiers is their

hidden association to the steps preceding the R declaration. A clear and strong principle should

inspire the programmer activity: make coding as explicit as possible so as to obtain a more

readable control software although that may be longer.

Sx
Vx

SL

t#5s
Ax

Action Ax:

 Num:= Num+1

end_action

Sx
Step activity

Execution

Sy

Sz

...

AxR Vx

Sy

Sz

5s 5s

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 25/59

3.6 Execution control

Linked to the 3
rd

 edition of the IEC 61131-3 standard section 6.7.4.6 Action Control.

3.6.1 ACTION_CONTROL function block

In order to understand the execution logic of an SFC it is necessary to keep in mind, that there is no

direct link between the active state of a Step and the execution of an associated action.

Associated with each action is an implicit ACTION_CONTROL function block (or a functional

equivalent), which is in control of the execution of the action. An active step sets an input of the

ACTION_CONTROL block and the evaluation of the ACTION_CONTROL block controls

whether or not the action is executed in the current cycle.

This is important if an action is associated to different STEPs and even more, if the action is

associated to these steps with different qualifiers.

For example, if an action is associated with two parallel steps like in the following figure, then the

action will only be executed once in a cycle, even if both steps are active:

A typical execution of an SFC could be done in the following way:

- all ACTION_CONTROL blocks of all actions are reset.

- the new active states of the steps are evaluated according to the old active states and the

transition conditions

- the new active states write to the ACTION_CONTROL blocks of all actions

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 26/59

- the ACTION_CONTROL blocks are executed

- all actions are executed according to the result of the ACTION_CONTROL block (plus final

scan, see next section).

The specifics of this implementation may have significant impact on the semantics of the SFC.

3.6.2 Final Scan

The IEC-Standard defines a “final scan” as an implementation dependent feature of the Action. In

simple words, the final scan means, that an Action is executed one more time after the transition

condition becomes TRUE. If the associated ACTION_CONTROL block of an action produces a

falling edge on its output, then the action is executed in this cycle.

This could be confusing, consider the following example:

If bTest1 is TRUE for one cycle, then ACT will be executed in the next two cycles, even if Step1 is

active only in the next cycle.

Now once again it is important to remember, that the Action is not directly linked to the state of the

Step, but to the state of the ACTION_CONTROL block.

Consider the following slightly different situation:

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 27/59

If bTest1 is TRUE for one cycle, then ACT will be executed in the next three cycles, there is no

final scan between the active states of Step1 and Step2, since the associated ACTION_CONTROL

block does not detect a falling edge.

If an action is associated exactly to one step, and if it is associated with the N-qualifier, then the

final scan can be identified by checking the Step-Flag of the associated step. The execution is in the

final scan, if the Step is not active.

In the upper example, the Action ACT could be implemented in the following way:

ACTION ACT

 IF Step2.x OR Step1.x THEN

 // do cyclic things;

 ;

 ELSE

 // do final things;

 ;

 END_IF

END_ACTION

Some implementations of the SFC will offer in addition to the Step flags (and as an extension to the

standard) Action flags that allow access to the state of the ACTION_CONTROL Block. Then the

final scan can be determined independent from any step flags.

Due to the final scan, it is a common situation, that two actions are executed in the same cycle, even

if there is no parallel branch in the graph. To discuss the problems that may arise due to the final

scan, consider the following SFC graph:

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 28/59

The two Actions ACT1 and ACT2 shall have the following implementations:
ACTION ACT1

 x := x + 1;

END_ACTION

ACTION ACT2

 y := x;

END_ACTION

The following table shows the states of the upper Graph in the following cycles after bTest1 has a

rising edge:

Cycle Step1 Step2 Step3 ACT1 ACT2 x y

1 Active Inactive Inactive Executed Not Executed 1 0

2 Inactive Active Inactive Executed

(final)

Executed 2 1 / 2

3 Inactive Inactive Active Executed Executed

(final)

3 2 / 3

4 Inactive Inactive Inactive Executed

(final)

Not Executed 4 2 / 3

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 29/59

Thus, in cycle 2 and 3, both actions get executed, which may be unexpected. Note furthermore, that

the standard does not require any specific order of execution for the actions. An order of execution

according to the topology in the graph may be expected, but is not possible, since the action may be

associated to different steps at several locations in the graph. ACT1 is above and below ACT2 in

the same graph.

Therefore, after cycle 2 and 3 the value of y may be equal to x or equal to x-1, depending on the

implementation of the SFC, and depending on the order of execution of the actions. If ACT2 is

always executed after ACT1, the sequence of values for y would be 0, 2, 3, 3. If ACT2 is always

executed before ACT1, the sequence of values for y would be 0, 1, 2, 2.

Some implementations of the SFC may execute all final scans before executing all other actions, but

this is an implementation dependent feature and not required by the standard. In this case the order

of execution of the two actions would be different in cycle 2 and 3. In cycle 2 ACT1 would be

executed first, in cycle 3 ACT2 would be executed first. In this case, the sequence of values for y

would be 0, 2, 2, 2.

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 30/59

4 Coding rules SFC

This chapter shows constraints for the usage of SFC.

4.1 Convergence and Divergence do’s and don’ts

Parallel processes must be kept clearly distinct and separated

Wrong SFC scheme

Parallel processes must be kept clearly distinct and

separated.

Therefor it is not allowed to link two parallel

sequences. If this is done, as in the wrong example

on the left, a block of the system control may

occur. In fact, the simultaneous convergence is

applied when the entering steps Sw and Sz are

both active and the condition Tj controlling the

leaving transition is true. Unfortunately, if the

transition Tvz between the two sequences is

activated, the Sw state will never become active

and the control cannot leave this part of the SFC

scheme.

Also this situation may determine a variation in

the number of the simultaneously active steps. At

the divergence time two are the activated steps: Sv

and Sx. If state Sv is left through the transition

Tvw, the number of active steps does not change.

Instead, if the transition Tvz is chosen, it is

possible to obtain that two of the steps on the

right-hand sequence are contemporarily active (Sx

and Sz or Sy and Sz) or even that the number of

globally active steps decreases to one (the only Sz

step). The result is very confused and extremely

difficult to interpret.

Sv

Sw

Tvw

Ti

Tj

Sx

Sy

Sz

Txy

Tyz

Tvz

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 31/59

Every parallel sequence must have only one initial step and only one final step.

Wrong SFC scheme

Every parallel sequence must have only one

initial step and only one final step.

As example shown on the left a wrong

situation is when one of the parallel sequences

included between a simultaneous divergence

and the following convergence presents two or

more final steps. Since only one step of such

sequence is active at a time, the final steps

cannot be all contemporarily active. It means

that, in the example, the final steps Sv and Sw

of the left-hand sequence are never both

active, therefore the simultaneous

convergence will never operate.

A sequence leaving a simultaneous divergence should never be directed towards two or more

simultaneous convergence.

Wrong SFC scheme

A sequence leaving a simultaneous divergence

should never be directed towards two or more

simultaneous convergence.

Combining a simultaneous convergence and

divergence with a simple divergence, as in the

example on the left, can introduce unreachable

steps. The problem does not arise from having

nested parallel sequences, as this is a natural

use of the SFC language. Rather, the mistake is

caused by the fact that the nesting does not

respect the established rules. In the example,

the simple divergence forces to choose between

the execution of transitions Txy and Txz, so

that either step Sy or step Sk can finally be

activated, but not both. This means that one

simultaneous convergence is never reached: the

consequence is again a blocking of the control

function.

Su

Ti

Tj

Sx

Sv Sw

Tuv Tuw

Sx

Ti

Tj

Sw

Sy Sz

Txy Txz

Sk

Tzk

Sj

Ts

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 32/59

A sequence leaving a simultaneous divergence can stop only at a simultaneous convergence.

Wrong SFC scheme

A sequence leaving a simultaneous divergence

can stop only at a simultaneous convergence.

This is a confused situation which can forget

some active steps and is difficult to be

interpreted. With reference to the example on

the left, the step Sj is correctly reached if, at the

branching between Txy and Txz, the former is

chosen. In the other case, Sj will never be

reached and, what is worse, the step Sw will stay

active forever.

4.2 Linearization in SFC

In SFC schemes there are no arrows indicating the orientation of the transition. The implicit

assumption is that the scheme is organized according to a sequential, descending logic. This means

that each transition leaves the upper step to reach the lower one. The only exception is represented

by the sequence loop that normally goes from bottom up.

Linearization of an SFC scheme

As an extension to SFC some programming

systems support the use of the JumpStep to stress

the sequential structure of SFCs. The jump

symbol (downward arrow) follows the transition

condition and includes the indication of the

destination state of the transition itself.

The figure (a) shows an SFC scheme with a

sequence skip and a sequence loop, and (b) its

simplification obtained by the introduction of

two jumps. The use of jumps can help to

improve the scheme readability. (Note: As SFC

lines are not allowed to cross each other,

sometimes JumpStep is the only alternative to

express the intended flow. JumpStep is an

extension to IEC 61131-3.).

Sx

Ti

Tj

Sw

Sy Sz

Txy Txz

Sk

Tzk

Sj

Start

S1

S2

S3

Stop

S4

T01

T12

T34

T14

T23

T4S T41

Start

S1

T01

S2

T12

S3

T23

S4

T34

Stop

T4S T41

S1

T14

S4

(a) regular SFC syntax (b) use of the jump primitive

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 33/59

4.3 Mutually exclusive transition conditions

In SFC schemes the transitions leaving a given step are activated by distinct enabling condition. It is

advised that there is no overlap in the transition conditions, e.g. no ambiguity remains on the next

step to be activated. The definition of overlapping could be either the risky choice of a good

programmer or, more likely, the consequence of a mistake of a bad programmer. To avoid

misunderstandings it is strongly recommended to use always a deterministic approach.

The IEC 61131-3 standard is deterministic: it ensures that in all cases only one branch in a

divergence of sequence can become active. In absence of additional information it is implicitly

assumed that the branch to activate is the leftmost one (among those which present in that moment a

true condition). Otherwise, the programmer can assign an explicit priority value (the lower this

value, the higher the priority) to the branches with overlapping conditions.

The IEC 61131 standard allows the overlapping of conditions associated to transitions leaving the

same state. Nevertheless, even if more than one condition could be true at the same time, only one

is executed and consequently we have only one step activated next. When the triggering event

cannot determine alone the step swap, further information is required to decide. The SFC syntax

suggests that the choice should be made according to a priority parameter, implicitly or explicitly

defined.

In absence of additional information it is implicitly assumed that the branch to activate is the

leftmost one (among those which present in that moment a true condition). Otherwise, the

programmer can assign an explicit priority value (the lower this value, the higher the priority) to the

branches with overlapping conditions.

This idea of priority is still ambiguous and can cause some mistakes. First of all, the word priority is

misleading in itself as it could induce to think that all the overlapping transitions will be executed in

the order given by the established priorities. Besides, the risk of mistakes is very high when the

overlapping transition conditions affect many diverging branches, and various priority relations are

defined on them. These are the reasons why many authors strongly suggest, as we do, to use

mutually exclusive transition conditions only.

 Example for overlapping transition conditions Figure 5

For example, consider a control structure close to that shown in Figure 6 and suppose to establish

the following priority relations (Tij denotes the condition of the transition leaving step Si and

reaching step Sj):

Sa Sb Sc

Sx

Txa Txb Txc

Sd

Txd Txa: v1>3

Txb: (v1=5) and (v2<>0)

Txc: (v2<10) and (v3<10)

Txd: (v1=0) and (v3=0)

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 34/59

Txa precedes Txb e Txc

Txb precedes Txc

Txb precedes Txd

This situation is conveniently represented by means of an oriented graph, with nodes corresponding

to the transition conditions and branches starting from the lower priority node and ending to the

higher priority node (see Figure 6a). If we move along the graph starting from the lowest priority

nodes (Txd in this case) it is easy to assign the correct numerical values to priorities:

priority (Txd) = 4

priority (Txb) = 3

priority (Txc) = 2

priority (Txa) = 1

 Graph of transition precedence Figure 6

The oriented graph technique is particularly useful to find out those cases where priority numerical

values cannot be used. The graph represented in Figure 6a is not cyclic, in that it is not possible to

start from one node and reach the same node moving along the oriented branches. Obtaining an

acyclic graph is a necessary and sufficient condition to assign numerical values to priorities.

Instead, Figure 6b shows a cyclic graph, derived from the previous one by adding the further

relation:

Txd precedes Txc

This condition generates the cycle involving nodes Txb, Txc e Txd. If the graph resulting from the

given relations is cyclic it is not possible to define a set of priority values satisfying all the

conditions. In that case, the only thing to do is modifying the transition conditions in such a way to

remove overlaps. Better, let us see how to achieve the recommended solution constituted by

mutually exclusive transition conditions starting from a non-deterministic SFC scheme.

We examine first a case with only two overlapping conditions Tx e Ty. Figure 7a shows, in form of

a Venn diagram, the truth domains of the two conditions, where the common part is indicated as

Txy. We can say that the Txy domain corresponds to the variable values that force true both

conditions. If we want to disjoint the two conditions without losing the priority of, say, Ty over Tx

(i.e. Ty precedes Tx), we have to redefine the truth domains as follows:

(a) acyclic graph (b) cyclic graph

Txa

Txb Txd

Txc

Txa

Txb Txd

Txc

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 35/59

domain (Tx') = domain (Tx) - domain (Txy)

domain (Ty') = domain (Ty)

The result is shown in Figure 7. It is obtained by simply rewriting the Tx predicate:

Tx' = Tx and not Ty

 Disjoining the truth domains of two overlapping conditions Figure 7

Cases with three or more overlapping conditions are solved in the same way, although their

complexity increases very rapidly with the number of conflicting transitions. Figure 8a shows the

Venn diagram for three non-exclusive conditions. In general, there are four overlapping domains,

namely Txy, Txz, Tyz and Txyz. In order to ensure the following priorities:

Ty precedes Tx and Tz

Tx precedes Tz

and, nevertheless, remove the ambiguities it is necessary to redefine the transition domains

according to the following expressions:

domain (Tx') = domain (Tx) - domain (Txy) - domain (Txyz)

domain (Ty') = domain (Ty)

domain (Tz') = domain (Tz) - domain (Txz) - domain (Tyz) -

domain (Txyz).

 Disjoining the truth domains of three overlapping conditions Figure 8

The result is shown in Figure 8b. In terms of transition conditions, the Tx and Tz predicates are thus

rewritten:

Tx' = Tx and not Ty

Tz' = Tz and not (Tx or Ty

(a) overlapping conditions (b) mutually exclusive conditions

Tx Txy Ty Tx’ Ty’

(a) overlapping conditions (b) mutually exclusive conditions

Tx Ty

Tz

Tx’

Tz’

Ty’

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 36/59

For the sake of completeness, let us consider again the non-deterministic SFC scheme reported in

Figure 8. In order to make it deterministic and taking into account the assigned priorities reported

on the scheme branches, the transition conditions must be modified as follows:

Txa' = Txa and not Txb

Txb' = Txb

Txc' = Txc and not (Txa or Txb or Txd)

Txd' = Txd and not (Txa or Txb)

that is:
Txa' = (V1 > 3) and not ((V1 = 5) and (V2 <> 0))

Txb' = (V1 = 5) and (V2 <> 0)

Txc' = ((V2 < 10) or (V3 < 10)) and not ((V1 > 3) or

 ((V1 =5) and (V2 <> 0)) or ((V1 =0) and (V3 =0)))

Txd' = (V1 = 0) and (V3 = 0) and not ((V1 > 3) or

 ((V1 = 5) and (V2 <> 0)))

4.4 Do not use priorities for the different transitions

Avoid using priorities for the different transitions. The risk of mistakes is very high when the

overlapping transition conditions affect many diverging branches, and various priority relations are

defined on them. These are the reasons why many authors strongly suggest, as we do, to use

mutually exclusive transition conditions only.

4.5 Dependence on the previous state

The need for the actions associated to a given step to behave differently depending on which step

was active before the current one (or, if we prefer, on the transition that led to the current step).

Up to now we have seen examples of actions to execute at the activation of a given step, or during

its activity, or after a given time interval from its activation, or for a given interval of time. We have

not yet considered the possibility that the action presents different behaviours according to which

was the active step before the current one. This case is quite frequent.

 Action dependence on previous steps, original scheme Figure 9

Si

Sy

Sx

AiQi Vi Sj AjQj Vj

Tix Tjx

Txy

AxQx Vx

AyQy Vy

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 37/59

Figure 9 shows a hypothetical case of dependence from the preceding state. In fact, we can assume

that in the text of action Ax, associated to step Sx, it is required to differentiate the code in

consideration of the fact that the control comes from either step Si or step Sj.

If the differentiation is minimal, in that the most part of the code is shared in both cases, the easiest

solution is that shown in Figure 10. The coming from steps Si or Sj is marked by the Boolean

variables FromSi and FromSj which are turned true respectively from the actions Ai and Aj (both of

them have been previously reset). So, the code of action Ax can be properly conditioned.

 Action dependence using step variables Figure 10

If, on the contrary, the behaviour of Ax in the two cases is quite different, the best solution is that

shown in Figure 11, where step Sx is split into two steps, namely Sxi and Sxj. The Axi and Axj

actions are the versions of Ax for the left and the right branches, respectively. Note that this

solution presents the absolutely general advantage of rendering explicit the dependence of the Sx

behaviour from the reaching path. In this way the distinction appears clear simply examining the

graph topology, while in the case of Figure 10 it can be seen only when going through the action

code.

 Action dependence by step splitting Figure 11

Si

Sx

Ai Qi FromSi Sj Aj Qj FromSj

Tix Tjx

Txy

Qx Vx

...

Ax

Action Ax:

...

If FromSi then...

 else

 If FromSj then...

end_If

FromSi:=0

FromSj:=0

end_action

Sxi

Sy

AxiQxi Vxi Sxj AxjQxj Vxj

Txy Txy

AyQy Vy

Si AiQi Vi Sj AjQj Vj

Tix Tjx

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 38/59

4.6 Advanced use of parallel sequences

The possibility of using synchronisation steps to remove stored actions, or even to manage the

interactions among parallel sequences.

Another situation where it is possible to achieve a better representation of the control organisation,

thus improving code readability, is that involving actions characterised by the S (set) and R (reset)

qualifiers. We have seen, in the previous Section, that it is possible to be more explicit by

representing the same actions with the only N qualifier. The limit of this solution it the bore of

replicating the actions as many times as the number of steps where they must be executed, and the

consequent loss of conciseness. An alternative solution is obtained by transferring the problem to

the structural level, with the use of parallel sequences.

Figure 12a shows an example of a stored action, the Axy action, to be executed while steps Sx and

Sy are active. In general, we can assume that both Sx and Sy have other associated actions: if this

was not the case, there would not be any need to take them distinct and it would be enough to

associate the Axy action to a unique step (say Sxy) with the N qualifier. Instead, the scheme in

Figure 12a says that, during the execution of the actions of Sx, and then of Sy, the execution of Axy

has to be kept on running.

 Parallel sequences in place of stored actions Figure 12

The same result is obtained with the scheme of Figure 12b, where the parallelism between the

actions of Sx and Sy and the Axy action (now associated to step Ss) is made evident by the

definition of two sequences activated by a simultaneous divergence. Obviously, the exit condition

from the divergence, that is, the simultaneous convergence condition, is the same that determined

the transition from step Sy to step Sz in the previous scheme.

A similar approach permits to make explicit in structural terms the behaviours of temporally

constrained stored actions, those qualified as SD (Stored and time Delayed), DS (time Delayed and

Stored) and SL (Stored and time Limited). We have seen that a representation based only on N

actions implies the use of a proper timer to measure the elapsed time from the activation of step Sx.

Unfortunately, this timer has to be pre-set in Sx and then tested in the following steps. This fact

introduces a strong coupling between these actions and, what is more important, such a coupling is

hidden in their texts. As a consequence, the degree of reusability of the resulting code is decreased

since the actions can be hardly separated one from the other.

Sy

Sx Axy S Vx

Txy

Sz

Tyz

...

Sx

Txy

...

Sy

Ss

Tx

Sz

Tyz

...

...

 (a) use of S and R qualifiers (b) translation into parallel sequences

 Axy R Vx

 Axy N Vx

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 39/59

Then, we observe that all the cases of temporally constrained stored actions generate the same

structure of Figure 12b. The difference is represented by the way how the actions take into account

the step elapsed times:

 SD (Stored and time Delayed). At any scan cycle, action Axy compares the given time delay with the measure of the elapsed time
from the activation of steps Sx and Ss. This can be done with a proper Axy timer or, more simply, by watching to the value of the
Sx.T variable and, if necessary, to the value of the sum Sx.T + Sy.T. If the delay threshold is reached, the core action body begins
to be executed.

 DS (time Delayed and Stored). In this case, action Axy compares the given time delay only with the measure of the variable Sx.T. If
Sx stays active for a time interval longer then the delay threshold, the core action body begins to be executed.

 SL (Stored and time Limited). As in the SD case, the Axy action compares the given time delay with the measure of the elapsed
time from the activation of steps Sx and Ss. The difference is that the core action body begins to be executed at the activation of the
divergence, and the delay threshold determines the end of its execution.

 Combined cases. Besides the possibility offered by the standard qualifiers, it can be useful to define actions where the execution
interval ranges between two time instants defined by the programmer. This is equivalent to combine the delay option with the time
limit option. While this situation is difficult to realise in the framework given by the standard, it is immediately obtained with the
approach described above. It can be noted that the scheme structure remains always the same represented in Figure 12b.

It is worth observing that step Ss plays a supervision role on the evolution of the control from Sx to

Sy. Thus, each of these steps is no more required to be aware of the behaviour of the other, that is,

the programmer can develop either step autonomously. This makes the resulting code much more

reusable and the step Ss itself, as supervisor of the interactions between steps Sx and Sy, could

become in its turn a reusable module.

A generalised use of a supervision (synchronisation) step is that shown in Figure 13.

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 40/59

 Synchronising parallel sequences Figure 13

The scheme of Figure 13a presents two parallel sequences where the activation of one step of the

former (S1y) is conditioned by the activation of one step of the latter (S2y). By introducing the

synchronisation step Ss (see Figure 13b) the two parallel sequences no longer need to know the

evolution of each other. In fact, action Axy performs the task of assigning the enabling value to the

Boolean variable T1xy at the right moment.

4.7 Action independence

If the choice of splitting the control into steps is crucial for software readability and reusability, the

care of coding actions so as to be sure of their effects is equally important. In this respect it is

necessary to remember that, at every PLC scan cycle, more than one step can be found active and

more than one action is often executed for each active step.

In order to be sure of the correct control program running, and to avoid undesired side effects, it

must be ensured that all the actions that can be executed at a given scan cycle are mutually

independent. It means that they should not use results coming from other simultaneous actions, nor

they should modify variables that other actions use during the same cycle. The reason is that the

S1y

S1x

S2y.X=True

S1z

(a) original scheme

(b) introduction of a synchronization step

S2y

S2x

S2z

T2xy

S1y

S1x

S1z

S2y

S2x

S2z

T1xy

 N Ax

Action Axy:

T1xy:= (S2y.X=true)

end_action

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 41/59

IEC standard gives no rule on the execution order of actions. In practice, every PLC environment

adopts its own execution strategy which is often unknown to the programmer.

 Interdependent actions Figure 14

Therefore we have to imagine that all actions contemporarily active are executed in parallel. We

have no mean to know if an operation precedes or follows another operation on the same variable in

another action. This situation is reproduced in Figure 14 with the two actions Ax1 and Ax2

associated to the same step Sx.

Assuming that the current value of the C variable is 5, let us indicate respectively with C1 and C2

the results produced separately by Ax1 e Ax2:

C1 = C + 10 = 15

C2 = C * 2 = 10.

Thus, after one cycle the following different results could be obtained:

C = C1 = 15 if Ax1 is executed after Ax2

C = C2 = 10 if Ax2 is executed after Ax1

C = C1 * 2 = 30 if Ax2 uses the result of Ax1

C = C2 + 10 = 20 if Ax1 uses the result of Ax2,

and the difference increases in the subsequent cycles.

The case of Figure 14 is a typical symptom of the low communication level between the

programmers that developed Ax1 and Ax2, as variable C is used without paying attention to its

evolution in time. This kind of situation can be singled out by producing cross reference tables and

tracing the changes of system variables. However, a more general and effective rule states that

conflicts do not arise if the contemporarily active actions are mutually independent.

Let E be the set of the actions simultaneously executed during a given scan cycle. A sufficient

condition to avoid conflicts among them is:

 Ai, Aj :
 (i) Mi Mj =

 (ii) Ui Mj =

 (iii) Uj Mi =

where Ui and Mi are the sets of variables respectively used and modified by action Ai, and Uj and

Mj the sets of variables respectively used and modified by action Aj. The condition is only

sufficient since situations may be found where the condition is not true and nevertheless there are

Sx
 CN Ax1

Action Ax1:

 ...

 C:= C+10

 ...

end_actionSy

Txy

 CN Ax2

Action Ax2:

 ...

 C:= C*2

 ...

end_action

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 42/59

no conflicts (for example, in the cases when the used variables do not alter the computation of the

modified variables).

The violation of condition (i) corresponds to the case where both actions try to modify the value of

the same variable. If this is not a programming bug, it is the evidence of a low action cohesion. In

fact, there is an aspect in the control, represented by the variable in conflict, whose management is

in charge of two different actions. In this case we suggest to assemble all the operations dealing

with strongly related variables in to a single action, and to code elsewhere the tasks that correspond

to other control aspects.

A more frequent case is that causing the violation of conditions (ii) and (iii). Not considering code

bugs, it can be interpreted as the programmer intention to modify a given variable many times,

relying on a precise actions execution order. Since, as we have said, such an order is in many cases

unpredictable, the result may be out of control. This case results in a strong action coupling, which

can be corrected by making explicit the desired execution sequence.

Figure 15 shows two possible solutions to the problem described in Figure 14. In Figure 15a it is

suggested to gather the actions in conflict (or, at least, the specific instructions in conflict) in a

unique action fixing the execution order. In Figure 15b, actions Ax1 and Ax2 are associated to steps

Sx1 and Sx2 resulting from splitting Sx. The jump instruction following Sx2 causes the iterated

execution of the two actions in the established order, until the occurring of the exit condition Txy.

 Solution of action conflicts Figure 15

Obviously, the two solutions are not perfectly equivalent: the former guarantees that the two

changes of variable C occur during the same cycle, but this is not true in the latter.

4.8 Rules for S/R qualifiers’ usage

The S (set) and R (reset) qualifiers characterize the so-called stored actions. The pair (S, R) is a way

to shorten the SFC scheme, as it avoids duplicating the same action reference many times.

Unfortunately, the resulting scheme is often less readable. If the distance between the S and R steps

is considerable, or a divergence is put in between, the execution range of such an action becomes

very difficult to understand. Besides, it may happen to define paths including the only S or R

qualifiers. This causes serious problems during testing, maintenance and code upgrading.

Hence, it is suggested to limit the use of the S and R qualifiers and to ensure that the execution

range of the stored action is a short sequence without a divergence.

Overall it is advised not to use S and R qualifiers due to less readable and less understandable code.

Sx
 CN Ax

Action Ax1:

 ...

 C:= C+10

 ...

 C:= C*2

 ...

end_action

Txy

(a) unifying actions

Sx2

Sy

true

Sx1

Ax2 C N

not Txy Txy

Sx1
Ax1 C N

(b) splitting steps

Sx
 CN Ax

Action Ax1:

 ...

 C:= C+10

 ...

 C:= C*2

 ...

end_action

Txy

(a) unifying actions

Sx2

Sy

true

Sx1

Ax2 C N

not Txy Txy

Sx1
Ax1 C N

(b) splitting steps

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 43/59

However, if an action block uses an action with the ‘S’ qualifier then another action block shall use

the same action with the ‘R’ action qualifier (antivalent), or vice versa.

4.9 Rules for Step variables

Create a rule: Avoid using stepname.X and stepName.T variables in action. This interleaves the

graph with the action code. Consequently after changing the association of action blocks to steps the

programmer has to check and adjust the stepName in the actions. ??

4.10 Rules for Actions

Program actions in such a way to be “mutually independent” of each other, avoid dependencies

between different actions. Avoid dependencies or assumptions about the execution order of actions

within the same POU. See also page 20, chapter “Ad 3: Action independence”

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 44/59

5 Introduction State Diagrams

The SFC representation of a system control has all the characteristics of a state diagram. It is

commonly accepted that state diagrams are effective formal tools particularly suitable in

representing dynamics knowledge. The most important differences are:

 A state diagram has only one state active, while SFC can have parallel steps active

 The presence of actions, that is, the activities the control has to perform at each single SFC

step.

State diagrams provide the graphic representation for a class of particularly simple and efficient

algorithms, the so-called finite state automata. A finite state automaton is particularly easy to

handle since it can be formally described in a non-procedural way. It is totally and uniquely defined

by giving the following information:

 The finite set S of states. Each state is the representation of a specific, significant situation
characterising the phenomenon under description. When the automaton describes the dynamics of a
system, the identification of its meaningful states is fundamental for a clear partitioning of the control.

 The set E of events. These are the events causing the transitions from one state to another. In an
automated system they correspond to particular combinations of signals coming from sensors,
commands given by the operator, and values reached by internal variables.

 The initial state I. The automaton execution starts from one of the states of the set S, the so-called
initial state. The initial state is unique. The initial state of an automated system is the one
corresponding to a correct and coherent initialisation phase.

 The set F of final states. The final states F constitute a subset of the set S of states. Each of them
corresponds to one of the correct situations where the system should lie at the end of the execution. If
the automaton stops in a state not belonging to F, it means that we are in presence of an abnormal
termination.

 The set T of transition rules. A transition rule (function) is defined as the triple <si, eij, sj> that relates
the current state si, the event eij enabling the transition to a new state, and the new reached state sj.
The set T contains as many transition rules as the legal state transitions of the automaton.

The execution model of the automaton requires that it has always assigned a state value that changes

time by time. At the beginning, the automaton is placed in the initial state, and there it remains until

one of the events that cause a state transition occurs. The condition under which the transition takes

place is the existence, in the set T, of the rule <si, eij, sj>, where si is the current state (at the

beginning, the initial state) and eij is the occurred event. In such a case the automaton moves to the

new state sj where it remains up to a new transition triggering event. If we think at the automaton as

an algorithm, we see that it receives, as input, a sequence of events and generates, as output, the

indication of the reached final state or that of an abnormal termination.

This execution model implies that a further condition, still not stated, should be satisfied: the

transitions leaving each of the states are enabled by disjoint events, so as to guarantee that the new

state to be reached is uniquely identified. In other words, the two transition rules:

<si, ex, sj> and <si, ex, sk>

cannot belong to the set T simultaneously, otherwise the same event ex could, leaving si, bring to

either sj or sk. An automaton satisfying such a condition is called deterministic. A non-deterministic

automaton is not necessarily wrong, but it requires a more complex and less efficient execution

model.

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 45/59

 State diagram representation and example Figure 16

State diagrams represent finite state automata as oriented graphs, obtained starting from the

graphical primitives shown in Figure 16a: states are circles, the initial state is a circle with the

starting arrow, final states are double line circles, transitions are oriented (arrowed) branches going

from the current state to the next one and carrying the indication of the enabling event. Figure 16b

shows a simple diagram with four states, two of which are final, and six transition rules. Its formal

definition is the following:

S = {A, B, C, D}

E = {a, b, c, d, e, f, g}

I = A

F = {B, D}

T = {<A, a, B>, <A, b, D>, <D, c, B>, <B, d, A>, <D,

 e, C>, <C, f, B>}

The first and most important aspect to consider in defining an automaton is the choice of the states

that better represent the behaviour of the modelled system. In most cases it is not easy to select the

significant states among all the possible states that the system can assume. For instance, suppose

that the system behaviour is described by N variables, and that each of them can assume on the

average M different values. The number of the possible combinations of these values is then MN.

Even if some of the combinations cannot be reached, typically because of incompatibilities among

variable values, the potential number of states still remains very high.

It is for this reason that we are interested to those states we consider significant. Let us imagine a

shuttle moving from point to point in a warehouse. During its motion, the variable expressing its

position assumes continuously changing values. However, if we observe the motion from the PLC

viewpoint, the principal task is verifying that the path actually followed by the shuttle coincides

with the desired one. This control operation has to be executed exactly in the same way at every

cycle, in correspondence of each of the points reached by the shuttle. This means that we can

resume the whole motion states into a unique system state (say, the shuttle moving state) whose

associated action is the path control.

An effective way for identifying the significant states of a system is to start from detecting the

events causing communications between the entities involved in the system control. Two of these

entities are always the controlled system and its control software. Coming back to the shuttle

example, we imagine that another entity could be the operator, who assigns missions to the shuttle.

state

initial state

final state

transition

(a) graphic primitives (b) a simple example

A

C

D B

a

d

c

b

e f

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 46/59

In order to represent the events it is comfortable to use an event trace diagram, based on these

simple rules:

 entities are drawn as vertical lines
 communications between entities are drawn as oriented horizontal lines leaving the sending entity and

reaching the receiving entity
 enabling events are written on the corresponding communication lines
 temporal order of events is expressed, although not in a proportional scale, by the vertical drawing

order of the communication lines.

Figure 17 shows the event trace diagram describing some of the possible events affecting the shuttle

behaviour. At first, the operator sends to the system control a message specifying a new mission for

the shuttle. The control, after executing possible correctness checks, gives the shuttle the command

to move and, at the same time, sends an acknowledgement message to the operator. The shuttle

executes the command and, once reached the new position, sends a confirmation message to the

control. As a consequence, the control informs the operator that now it is possible to work on the

material transported by the shuttle. As this activity terminates, the operator informs the control that

the shuttle is free again, and the control commands the shuttle to go back to its stand-by position.

Once the stand-by position is reached, the shuttle informs the control, and the control sends a

message to the operator to confirm that the shuttle is ready carry out a new mission.

 Event trace diagram for a shuttle Figure 17

Note: Event trace diagrams are called Sequence Diagrams in UML, however use a somewhat different notation.

Starting from this representation, some of the significant states of the shuttle behaviour are easily

identified, namely:

 ready, if it is available to perform a new mission (at the stand-by site)
 moving, while it is changing its position in the warehouse
 arrived, if it has reached the destination (other than the stand-by site)
 working, while the transported material is handled
 free, when it can go back to the stand-by site.

Other states, not considered in the example, could be those corresponding to the different error

conditions (wrong positions along the trajectory, troubles on the motor, and so on).

The relationship to establish between system behaviour and control software functions is now likely

easier to understand. The state diagram representing the system dynamics must be translated into a

control algorithm, say an SFC scheme, with as many steps as the states of the diagram. Each step

operator control shuttle

mission request

acknowledgement move command

destination reached

shuttle in position

work finished

return command

stand-by site reached

shuttle ready

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 47/59

will include the actions (signal analysis, comparisons, computations, command issuing) to perform

whenever the system is in the corresponding state.

Although state diagrams are very useful in the design of PLC software, as the corresponding SFC

schemes present identical structures, it is important to separate the two concepts. On the one hand,

we have a system changing its state as the consequence of internal events or commands sent by the

control. On the other hand, we have a software program which keeps under continuous control the

state of the system so as to react in the shortest possible time. Even though the state change is

forced by the control, this cannot move to the next step until a confirmation of the occurred

transition comes from the system.

The rules that the programmer has to follow to implement correct control algorithms arise from the

comparison between state diagrams and SFC schemes:

 steps and transitions are interleaved
 each transition has a unique origin step
 each transition has a unique destination step
 a step can be both origin and destination of a transition
 for each transition an enabling event is defined
 a single step can have more than one transition reaching it
 a single step can have more than one transition leaving it
 transitions leaving different steps may adopt the same enabling event
 transitions reaching a given step may adopt the same enabling event
 transitions leaving a given step must adopt disjoint enabling events.

The syntactical differences between state diagrams and SFC schemes can lead the non-expert

programmer to some mistakes.

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 48/59

6 Examples with state diagrams

6.1 Example 1: Simple motor control

6.1.1 Introduction

As a first example let us look to a simple motor control via

a switch and 2 push buttons.

Overall there are 3 operational states:

1. Motor at StandStill and power on

2. Motor turning left

3. Motor turning right

The first state is reached by switching the motor on

(PowerOn).

The second state is reached by pushing the button

MoveLeft. Releasing the button brings it back to StandStill.

The third state is reached by pushing the button

MoveRight. Releasing the button brings it back to

StandStill.

Issuing the Stop command in the state StandStill does

nothing, also not issuing an error flag in this case.

Note: in this example it is assumed that the control system is powered already.

6.1.2 States and Transitions:

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 49/59

6.1.3 Mapping to SFC

To map this state diagram to SFC, one can do the following:

Note: /MoveLeft and /MoveRight is the transition with releasing the button.

Couple to the states MotorTurningLeft and MotorTurningRight are action blocks that issue the

commands to the underlying system. Such an action block can be calling an MC_MoveVelocity

with the relevant direction and parameters. As an extension one can add the state Error, on the right

side of MotorTurningRight and StandStill, which will be accessed from all the states in case of an

error. A reset procedure for the error can be switching the power off and on.

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 50/59

6.2 Extended Example 1

6.2.1 Introduction

One can extend this example with continuous

movements, so permanently left or right movement

till the Stop button is pushed. In this case there are 3

operational states:

1. Motor at StandStill and power on

2. Motor turning left

3. Motor turning right

The first state is reached by switching the motor on

(PowerOn).

The second state is reached by pushing the button

MoveLeft. Pushing the Stop button brings it back to

StandStill.

The third state is reached by pushing the button

MoveRight. Pushing the Stop button brings it back to

StandStill.

Pushing the Stop button in the state StandStill does

nothing, not even issuing an error flag in this case.

6.2.2 States and Transitions

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 51/59

6.2.3 Mapping to SFC

The Error handling is not included in this example. How this can be handled is shown in 6.3.3 Error

handling via the loops Stop and Abort.

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 52/59

6.3 Example 2: Mapping of the PackML state diagram to SFC

6.3.1 Introduction of PackML

For a machine, being either part of a production line or stand-alone, it makes sense to use a state

diagram to harmonize the access to its functionality as well as measuring the Overall Equipment

Effectiveness, OEE. In addition, using a state diagram helps to decompose the application software,

making it more transparent, efficient and flexible, and less prone to errors.

As an example of how to use a state diagram, the state diagram Version 3.0 as defined by

www.Make2Pack.org is used, as developed by the OMAC PackML group (see www.omac.org).

Basically PackML consists of 3 elements:

1. A state diagram, which is used here

2. A definition of a set of naming conventions incl. datatypes, called PackTags

3. A description of the different modes of operation

The OMAC State Diagram looks as follows:

 PackML State Diagram. Figure 18

 A Wait State (Orange in picture) is used to identify that a machine has achieved a defined set of

conditions.

 An Acting State (Green in picture) is one which represents some processing activity.

 Dual state (Blue) is defined as a machine actively executing in the chosen mode.

The states in orange and blue are stable states, meaning that they can be valid for a longer period of

time.

http://www.make2pack.org/
http://www.omac.org/

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 53/59

The states in green are states that are only valid for a certain period of time and transfer to the next

state without intervention from an operator. The transition is automatically done if the state is

complete (SC = State Complete).

Shown above is the full state diagram with the state Execute (in blue) the producing state. The loop

underneath, via Suspended, is a waiting loop for material to be worked upon. The loop above, via

Held, is the loop where the operator holds the system out of the producing state.

After all products are made, the producing state Execute is left via Complete, and ready for a new

production order.

At power on, the state Stopped is valid. After a Reset it moves to the state Idle via Resetting.

Issuing ‘Start’ gets the unit to ‘Execute’ via ‘Starting’.

The PackML state diagram leaves its normal loop via either Abort or Stop. The Abort is coupled to

the error handling from every state. The Stop is for the operator interface.

6.3.2 Conversion of the State Diagram to SFC

A State Diagram should be reflected in the programming environment. One way to do this is to use

Sequential Function Chart, SFC.

Because of its general structure, SFC provides also a communication tool, combining people of

different backgrounds, departments or countries.

To map the PackML state diagram, we need to implement the following normal operation

sequences: Stopped, Resetting, Idle (at specified pre-conditions), Starting and Execute. After

Execute there are 3 alternative options: Complete, Hold, and Suspend, where the last 2 will continue

via Execute.

6.3.3 Error handling via the loops Stop and Abort

All states can also be left via the Stop loops (in case a stop is commanded) or the Abort loop (in

case of an error). Concerning this error handling, there are basically two ways of dealing with this:

1 Centralized – all errors in the SFC sequence are linked to one error related Step

2 De-centralized – for each step in the SFC sequence an error loop is defined

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 54/59

Centralized error handling De-centralized error handling example

 Centralized versus Decentralized Error Handling Figure 19

The main states in PackML for the normal production process (executing) looks as follows:

SA1

SA2

SA3

SError

Appl2Cond

Appl3Cond

Appl4Cond

ErrorAll

ErrorAll

ErrorAll

NoErrors

A1

ErrorApplication SA2

ErrorA1

ErrorOff

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 55/59

STOPPED

RESETTING

IDLE

RESET AND

NOT ABORT

STARTING

START AND

NOT ABORT

PRESET AND

NOT ABORT

EXECUTE

NOT ABORT

COMPLETE

COMPLETING

AND NOT ABORT

 Main states of PackML Figure 20

The next figure, Figure 21, shows a basic implementation of the full PackML state diagram,

including the ‘Abort’ and ‘Stop’ loops, and on the lower right side the ‘Hold’ and ‘Suspend’ loops,

which loop back to the ‘Execute’ state. For the error handling option 1 - centralized is in this case

shown via the ‘Abort’ loop. In the top middle, the abort sequence is specified, with the ‘Abort’

entry point on top. All other abort loops refer to this starting point. Also the ‘Stop’ loop is identified

there.

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 56/59

 SFC of PackML Sate Diagram Figure 21

Note 1: In the above drawing the graphical readability has been preferred versus implicit transition conditions [Start

AND NOT Abort vs. left-to-right order (implicit priorities) in Aborting / Stopping / Reset] – because in that case the

graphical representation runs out of the screen on the right side.

Concerning the transition conditions one has to note that the order also could be (from left to right)

first Abort, then Stopping and then the transition condition in the normal production process loop.

For readability this is changed in this example. Note that the conditions are mutually exclusive.

6.3.4 Multi-level approach – safety required

The PackML state diagram is valid for several modes, like Automatic (as used above), Semi-

Automatic, and SetUp. Different modes use different states. In the producing mode all states are

applicable, and no special safety precautions are involved. In the Semi-Automatic mode the holding

STOPPED

RESETTING ABORTING STOPPING

IDLE

RESET AND

NOT ABORT
ABORT STOP

STARTING

START AND

NOT ABORT
ABORT

STATE COMPLETED

AND NOT ABORT
ABORT

EXECUTE

ABORT

COMPLETE

ABORT

UN-HOLD AND

NOT ABORT

ABORTED

CLEARING

CLEAR

HOLDING

HELD

UN-HOLDING

ABORT

ABORT

ABORT

UN-SUSPEND

AND NOT

ABORT

SUSPENDING

SUSPENDED

UN-

SUSPENDING

ABORT

ABORT

ABORT

HOLD SUSPEND

ABORTING

ABORTING

ABORTING

ABORTING

STOPPING

STOPPING

STOPPING

STOPPING

STOPPED

STOPPED

STOPPING

STOPPING

STOPPING

ABORTING

ABORTING

ABORTING

ABORTING

ABORTING

ABORTING

STOPPING

STOPPING

STOPPINGEXECUTEEXECUTE

STOP

STOP

STOP

STOP

STOP STOP

STOP STOP

STOP STOP

ABORT

ABORTING

ABORT

ABORTING

ABORT

STATE COMPLETED

AND NOT ABORT

STATE COMPLETED

AND NOT ABORT

STATE COMPLETED

AND NOT ABORT

STATE COMPLETED

AND NOT ABORT

STATE COMPLETED

AND NOT ABORT

STATE COMPLETED

AND NOT ABORT

STATE

COMPLETED

STATE

COMPLETED

STATE

COMPLETED

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 57/59

loop is not made available, limiting the feed-in of products to on one product at a time only for

checking purposes. In the Setup mode there is no production, so the ‘Execute’, ‘Suspending’, and

‘Holding’ loops are not available. This is coupled to the function blocks in the SFC program above.

For instance, the Starting and Execute states are only accessible if the SetUpMode is not set, and the

‘Holding’ loop if SemiAutoModeSelected is not SET so the system is in Automatic mode.

 Multilevel Sates Figure 22

The different states are linked, like shown in Figure 22.

In order to change between these modes, one has to fulfill the applicable safety requirements. For

instance, a safety approved mode selector can be used, coupled to the safety requirements in the

Setup mode. For this the PLCopen Safety Specification is intended. This specification fulfils also

the requirements as specified in the ANSI / PMMI B155.1-2006 Safety Requirements for Packaging

and Packaging-Related Converting Machines.

In this example, there is no difference in the safety requirements between the automatic and semi-

automatic modes, unlike the mode Setup.

The safe ModeSelector takes care that unacceptable changes are avoided, like an inhibition from

SetUp to Automatic, and like mode changes from the Automatic mode in the execute state without

first stopping. This can be resolved in several ways:

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 58/59

1. The mode change is neglected / not accepted

2. The mode change is accepted, but via the STOP state

3. The mode change generates an ABORT

In parallel, the safety program takes care that in the setup mode the drives are in a safe state. For

this the ‘Safely Limited Speed’ functionality can be used, combined with the ‘EnableSwitch’

functionality, with which the operator can move the machine at a reduced speed. The functional

application program defines the safely limited speed, while the safety application checks that the

limit set is not exceeded.

In addition, one can couple the emergency switch to different stop categories per motor.

A small overview of the applicable safety function blocks is shown in the next drawing. For details

on the PLCopen Safety specification, check the website www.PLCopen.orgff under TC5 Safety.

 Examples of PLCopen Safety Function Block Figure 23

Activate

S_Mode0

Ready

S_Mode0Sel

SF_ModeSelector

SF_ModeSelector

S_Mode1

S_Mode2 S_Mode2Sel

S_Mode3Sel

S_Mode5

S_Mode6

S_Unlock

AutoSetMode

ModeMonitorTime

S_Mode1Sel

S_SetMode

S_Mode7

S_Mode3

S_Mode4

Reset

S_Mode4Sel

S_Mode5Sel

S_Mode7Sel

S_AnyModeSel

S_Mode6Sel

Error

DiagCode

Activate

S_EStopIn

Ready

S_EStopOut

SF_EmergencyStop

SF_EmergencyStop

S_StartReset

S_AutoReset

Error

DiagCode

Reset

Activate

S_StopIn

Ready

S_Standstill

SF_SafeStop2

SF_SafeStop2

AxisID

MonitoringTime

Error

DiagCode

Reset

Activate

S_StopIn

Ready

S_Stopped

SF_SafeStop1

SF_SafeStop1

AxisID

MonitoringTime

Error

DiagCode

Reset

Activate

S_OpMode

Ready

S_SafetyActive

SF_SafelyLimitedSpeed

SF_SafelyLimitedSpeed

S_Enabled

AxisID DiagCode

MonitoringTime

Reset

Error

http://www.plcopen.org/

 PLCopen
®

for efficiency in automation

PLCopen Software Construction Guidelines: July 3, 2018 © PLCopen (2018)

Structuring with SFC: do’s and don’ts Version 1.0 Official Release page 59/59

6.4 SFC is not Petri Nets

The simultaneous presence, at run time, of two or more active steps suggests the possibility of

establishing an analogy between SFC schemes (with parallel sequences) and Petri nets. Petri nets

are a well-known and appreciated modelling tool, particularly suitable to represent the behaviour of

concurrent systems. A Petri net provides a formalised description of the system that makes rigorous

its analysis and the study of its behaviour.

In an automaton the system states are predefined, and the system passes from one state to the other

in such a way that, at every time, only one state is active. On the contrary, in Petri nets state is a

distributed concept and transition is a local concept: at every transition occurring in the net, the

states of some places change while the others are not affected. For this reason Petri nets are suited

to model asynchronous systems, where events impact on different points and do not occur

according to a predefined sequence.

Also Petri nets substantial lack with respect to the SFC approach: not deterministic behaviour,

absence of a primitive for defining the initialization step, places as passive repositories of objects,

need of modelling the control logic in terms of flowing objects.

For these reasons do not consider SFC schemes as variants of Petri nets. Petri nets are worth to be

known as they give interesting hints for modelling asynchronous dynamic systems. Nevertheless,

forcing the analogy with the SFC language could be misleading and, after all, negative. Instead, we

believe that designing the control architecture as a hierarchical state diagram is very useful to the

PLC programmer.

6.5 Relation to Moore automata and the Mealy automata

Concerning the analogy between SFC schemes and state diagrams, it should be observed that two

are the principal classes of finite state automata: the Moore automata and the Mealy automata.

 Moore automata. In these automata the response given by the system is associated to the state reached at every step, and not to
the ways through which such state has been reached. In practice, they represent situations where the decisions to undertake are
not affected by the memory of the preceding events. All the examples that we have seen so far pertain to this class of automata.

 Mealy automata. In these automata the response given by the system is, at least in some cases, a function of the transition leading
to the new state. A typical example is that where a state concludes the execution of a process that might have been turned on, with
some differences, in two or more alternative preceding states. It can be proved that such an automaton can always been converted
into an equivalent Moore automaton.

This explains how to represent “Mealy automaton like” behavior in SFC which is designed to

represent “Moore automaton”.

	1 Introduction to this document
	1.1 Software Modularity and the role of SFC

	2 Introduction SFC
	2.1 Steps and transitions
	2.2 Actions
	2.3 Qualifiers
	2.4 SFC evolution rules
	2.5 Divergence and convergence

	3 Structural properties of SFCs
	3.1 Process Structure
	3.2 Simultaneous sequences
	3.3 Parallel sequences
	3.4 Action Blocks
	3.4.1 Introduction

	3.5 Qualifiers
	3.5.1 Introduction

	3.6 Execution control
	3.6.1 ACTION_CONTROL function block
	3.6.2 Final Scan

	4 Coding rules SFC
	4.1 Convergence and Divergence do’s and don’ts
	4.2 Linearization in SFC
	4.3 Mutually exclusive transition conditions
	4.4 Do not use priorities for the different transitions
	4.5 Dependence on the previous state
	4.6 Advanced use of parallel sequences
	4.7 Action independence
	4.8 Rules for S/R qualifiers’ usage
	4.9 Rules for Step variables
	4.10 Rules for Actions

	5 Introduction State Diagrams
	6 Examples with state diagrams
	6.1 Example 1: Simple motor control
	6.1.1 Introduction
	6.1.2 States and Transitions:
	6.1.3 Mapping to SFC

	6.2 Extended Example 1
	6.2.1 Introduction
	6.2.2 States and Transitions
	6.2.3 Mapping to SFC

	6.3 Example 2: Mapping of the PackML state diagram to SFC
	6.3.1 Introduction of PackML
	6.3.2 Conversion of the State Diagram to SFC
	6.3.3 Error handling via the loops Stop and Abort
	6.3.4 Multi-level approach – safety required

	6.4 SFC is not Petri Nets
	6.5 Relation to Moore automata and the Mealy automata

